# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6010 | 0 | 0.9864 | The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Putrescine, one of the main biogenic amines associated to microbial food spoilage, can be formed by bacteria from arginine via ornithine decarboxylase (ODC), or from agmatine via agmatine deiminase (AgDI). This study aims to correlate putrescine production from agmatine to the pathway involving N-carbamoylputrescine formation via AdDI (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), or putrescine carbamoyltransferase (the ptcA product) in bacteria. PCR methods were developed to detect the two genes involved in putrescine production from agmatine. Putrescine production from agmatine could be linked to the aguA and ptcA genes in Lactobacillus hilgardii X1B, Enterococcus faecalis ATCC 11700, and Bacillus cereus ATCC 14579. By contrast Lactobacillus sakei 23K was unable to produce putrescine, and although a fragment of DNA corresponding to the gene aguA was amplified, no amplification was observed for the ptcA gene. Pseudomonas aeruginosa PAO1 produces putrescine and is reported to harbour aguA and aguB genes, responsible for agmatine deiminase and N-carbamoylputrescine amidohydrolase activities. The enzyme from P. aeruginosa PAO1 that converts N-carbamoylputrescine to putrescine (the aguB product) is different from other microorganisms studied (the ptcA product). Therefore, the aguB gene from P. aeruginosa PAO1 could not be amplified with ptcA-specific primers. The aguB and ptcA genes have frequently been erroneously annotated in the past, as in fact these two enzymes are neither homologous nor analogous. Furthermore, the aguA, aguB and ptcA sequences available from GenBank were subjected to phylogenetic analysis, revealing that gram-positive bacteria harboured ptcA, whereas gram-negative bacteria harbour aguB. This paper also discusses the role of the agmatine deiminase system (AgDS) in acid stress resistance. | 2010 | 21404211 |
| 6135 | 1 | 0.9856 | Complete genome sequence of Bifidobacterium animalis subsp. lactis KLDS 2.0603, a probiotic strain with digestive tract resistance and adhesion to the intestinal epithelial cells. Bifidobacterium animalis subsp. lactis KLDS 2.0603 (abbreviated as KLDS 2.0603) is a probiotic strain isolated from the feces of an adult human. Previous studies showed that KLDS 2.0603 has a high resistance to simulated digestive tract conditions and a high ability to adhere to intestinal epithelial cells (Caco-2). These two characteristics are essential requirements for the selection of probiotic bacteria. To explore the stress resistance mechanism to the digestive tract environment and the adhesive proteins of this strain, in this paper, we reported the complete genome sequence of KLDS 2.0603, which contains 19,469bp and encodes 1614 coding sequences(CDSs), 15 rRNA genes, 52 tRNA genes with 1678 open reading frames. | 2016 | 26795356 |
| 6140 | 2 | 0.9850 | Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Lactobacillus plantarum KLDS1.0391 is a probiotic strain isolated from the traditional fermented dairy products and identified to produce bacteriocin against Gram-positive and Gram-negative bacteria. Previous studies showed that the strain has a high resistance to gastrointestinal stress and has a high adhesion ability to the intestinal epithelial cells (Caco-2). We reported the entire genome sequence of this strain, which contains a circular 2,886,607-bp chromosome and three circular plasmids. Genes, which are related to the biosynthesis of bacteriocins, the stress resistance to gastrointestinal tract environment and adhesive performance, were identified. Whole genome sequence of Lactobacillus plantarum KLDS1.0391 will be helpful for its applications in food industry. | 2017 | 28676278 |
| 6050 | 3 | 0.9847 | Vancomycin resistance factor of Lactobacillus rhamnosus GG in relation to enterococcal vancomycin resistance (van) genes. Lactobacillus rhamnosus GG (ATCC 53103) is a probiotic strain used in fermented dairy products in many countries and is also used as a food supplement in the form of freeze-dried powder. The relationship of the vancomycin resistance factor in L. rhamnosus GG and the vancomycin resistance (van) genes of Enterococcus faecalis and E. faecium were studied using polymerase chain reaction (PCR), Southern hybridization and conjugation methods. Our results show that the vancomycin resistance determinant in L. rhamnosus GG is not closely related to enterococcal van genes, since no PCR product was amplified in L. rhamnosus GG with any of the three sets of vanA primers used, and enterococcal vanA, vanB, vnH, vanX, vanZ, vanY, vanS and vanR genes did not hybridize with DNA of L. rhamnosus GG. This strain does not contain plasmids and transfer of chromosomal vancomycin resistance determinant from L. rhamnosus GG to enterococcal species was not detected. Our results are in accordance with previous findings of intrinsically vancomycin-resistant lactic acid bacteria. | 1998 | 9706787 |
| 6049 | 4 | 0.9843 | Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH(•) (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry. | 2023 | 37317238 |
| 6357 | 5 | 0.9843 | Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Production of pediocin in Pediococcus acidilactici is associated with pMBR1.0, which encodes prepediocin, a pediocin immunity protein, and two proteins involved in secretion and precursor processing. These four genes are organized as an operon under control of a single promoter. We have constructed shuttle vectors that contain all four structural genes, the chromosomal promoter ST(P2201) from Streptococcus thermophilus, and repA from the 2-kbp S. thermophilus plasmid pER8. The recombinant plasmid, pPC318, expressed and secreted active pediocin in Escherichia coli. Streptococcus thermophilus, Lactococcus lactis subsp. lactis, and Enterococcus faecalis were electrotransformed with pPC418, a modified vector fitted with an erythromycin resistance tracking gene. Pediocin was produced and secreted in each of the lactic acid bacteria, and production was stable for up to ten passages. The expression of pediocin in dairy fermentation microbes has important implications for bacteriocins as food preservatives in dairy products. | 1999 | 10489440 |
| 803 | 6 | 0.9842 | Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. | 1992 | 1624446 |
| 5390 | 7 | 0.9839 | Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Lactic acid bacteria (LAB) resistant to erythromycin were isolated from different food samples on selective media. The isolates were identified as Enterococcus durans, Enterococcus faecium, Enterococcus lactis, Enterococcus casseliflavus, Lactobacillus salivarius, Lactobacillus reuteri, Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus and Leuconostoc mesenteroides. Of the total 60 isolates, 88 % harbored the ermB gene. The efflux gene msrA was identified in E. faecium, E. durans, E. lactis, E. casseliflavus, P. pentosaceus and L. fermentum. Further analysis of the msrA gene by sequencing suggested its homology to msrC. Resistance to tetracycline due to the genes tetM, tetW, tetO, tetK and tetL, alone or in combination, were identified in Lactobacillus species. The tetracycline efflux genes tetK and tetL occurred in P. pentosaceus and Enterococcus species. Since it appeared that LAB had acquired these genes, fermented foods may be a source of antibiotic resistance. | 2012 | 22644346 |
| 6134 | 8 | 0.9837 | Complete genome and gene expression analyses of Asaia bogorensis reveal unique responses to culture with mammalian cells as a potential opportunistic human pathogen. Asaia bogorensis, a member of acetic acid bacteria (AAB), is an aerobic bacterium isolated from flowers and fruits, as well as an opportunistic pathogen that causes human peritonitis and bacteraemia. Here, we determined the complete genomic sequence of the As. bogorensis type strain NBRC 16594, and conducted comparative analyses of gene expression under different conditions of co-culture with mammalian cells and standard AAB culture. The genome of As. bogorensis contained 2,758 protein-coding genes within a circular chromosome of 3,198,265 bp. There were two complete operons encoding cytochrome bo3-type ubiquinol terminal oxidases: cyoABCD-1 and cyoABCD-2. The cyoABCD-1 operon was phylogenetically common to AAB genomes, whereas the cyoABCD-2 operon belonged to a lineage distinctive from the cyoABCD-1 operon. Interestingly, cyoABCD-1 was less expressed under co-culture conditions than under the AAB culture conditions, whereas the converse was true for cyoABCD-2. Asaia bogorensis shared pathogenesis-related genes with another pathogenic AAB, Granulibacter bethesdensis, including a gene coding pathogen-specific large bacterial adhesin and additional genes for the inhibition of oxidation and antibiotic resistance. Expression alteration of the respiratory chain and unique hypothetical genes may be key traits that enable the bacterium to survive under the co-culture conditions. | 2015 | 26358298 |
| 6141 | 9 | 0.9837 | Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus. In lactic acid bacteria (LAB), amino acids and their derivatives may be converted into amine-containing compounds designated biogenic amines, in pathways providing metabolic energy and/or acid resistance to the bacteria. In a previous study, a pathway converting tyrosine to tyramine was detected in Lactobacillus brevis and a fragment of a gene possibly involved in the production of another biogenic amine, putrescine, from agmatine, was detected in the same locus. The present study was carried out to determine if Lb. brevis actually harbours two biogenic amine-producing pathways in the same locus and to investigate the occurrence of the two gene clusters in other bacteria. Sequencing of the DNA locus in Lb. brevis revealed a cluster of six genes that are related to previously reported genes of agmatine deiminase pathways but with marked differences such as two genes encoding putative agmatine deiminases rather than one. Heterologous expression of encoded enzymes confirmed the presence of at least one active agmatine deiminase and one amino acid transporter that efficiently exchanged agmatine and putrescine. It was concluded that the Lb. brevis gene cluster encodes a functional and highly specific agmatine deiminase pathway. Screening of a collection of 197 LAB disclosed the same genes in 36 strains from six different species, and almost all the positive bacteria also contained the tyrosine catabolic pathway genes in the same locus. These results support the hypothesis that the agmatine deiminase and tyrosine catabolic pathways belong to a genomic region that provides acid resistance and that is exchanged horizontally as a whole between LAB. | 2007 | 17600066 |
| 6079 | 10 | 0.9837 | Genomic and metabonomic methods reveal the probiotic functions of swine-derived Ligilactobacillus salivarius. BACKGROUND: As substitutes for antibiotics, probiotic bacteria protect against digestive infections caused by pathogenic bacteria. Ligilactobacillus salivarius is a species of native lactobacillus found in both humans and animals. Herein, a swine-derived Ligilactobacillus salivarius was isolated and shown to colonize the ileal mucous membrane, thereby promoting nutritional digestion, absorption, and immunity. To evaluate its probiotic role, the entire genome was sequenced, the genetic information was annotated, and the metabolic information was analyzed. RESULTS: The phylogenetic relationship indicated that the bacteria was closer to L. salivarius MT573555.1 and MT585431.1. Functional genes included transporters, membrane proteins, enzymes, heavy metal resistance proteins, and putative proteins; metabolism-related genes were the most abundant. The six types of metabolic pathways secreted by L. salivarius were mainly composed of secretory transmembrane proteins and peptides. The secretory proteins of L. salivarius were digestive enzymes, functional proteins that regulate apoptosis, antibodies, and hormones. Non-targeted metabolomic analysis of L. salivarius metabolites suggested that ceramide, pyrrolidone- 5- carboxylic acid, N2-acetyl-L-ornithine, 2-ethyl-2-hydroxybutyric acid, N-lactoyl-phenylalanine, and 12 others were involved in antioxidation, repair of the cellular membrane, anticonvulsant, hypnosis, and appetite inhibition. Metabolites of clavaminic acid, antibiotic X14889C, and five other types of bacteriocins were identified, namely phenyllactic acid, janthitrem G, 13-demethyl tacrolimus, medinoside E, and tertonasin. The adherence and antioxidation of L. salivarius were also predicted. No virulence genes were found. CONCLUSION: The main probiotic properties of L. salivarius were identified using genomic, metabonomic, and biochemical assays, which are beneficial for porcine feeding. Our results provided deeper insights into the probiotic effects of L. salivarius. | 2023 | 37648978 |
| 6082 | 11 | 0.9836 | Complete genome sequence of the probiotic candidate strain Lacticaseibacillus rhamnosus B3421 isolated from Panax ginseng C. A. Meyer in South Korea. OBJECTIVES: Lacticaseibacillus rhamnosus is a widely recognized probiotic bacteria with therapeutic applications in human and animal health. The L. rhamnosus B3421 strain, isolated from Panax ginseng, has been reported to be associated with antioxidant and anti-inflammatory properties, supporting its functional potential. We sequenced and analyzed the genome of L. rhamnosus B3421 to evaluate its probiotic potential for human healthcare and animal applications, focusing on genomic features related to safety and functionality. DATA DESCRIPTION: In this study, we isolated L. rhamnosus B3421 from Panax ginseng C. A. Meyer (Ginseng) and performed whole-genome sequencing. The genome of L. rhamnosus B3421 consists of 3,000,051 base pairs (bp) with a guanine + cytosine (G + C) content of 46.70%. It encodes 59 transfer RNAs, 15 ribosomal RNAs, and 2,807 coding sequences (CDSs). Of these CDSs, 99.13% (2,758 proteins) were assigned to functional categories in the Clusters of Orthologous Group (COGs) classification system, while 49 proteins remained uncharacterized. Our genome analysis identified no antibiotic resistance (ABR) or antimicrobial resistance (AMR) genes, indicating that L. rhamnosus B3421 is a safe probiotic bacterium with minimal risk of contributing to the horizontal transfer of antibiotic resistance within the gut microbiome. Additionally, the genome contains genes associated with the ggmotif (PF10439), Enterocin X chain beta, and Carnocin CP52, as identified through BAGEL4 analysis, along with 24 other genes related to reductase or peroxidase activities. These genes may confer competitive advantages against pathogenic bacteria and oxidative stress. Our findings highlight the probiotic potential of L. rhamnosus B3421 and its prospective applications in promoting human and animal health. | 2025 | 40877785 |
| 6053 | 12 | 0.9835 | Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development. | 2014 | 25117002 |
| 6137 | 13 | 0.9834 | Genomic and phenotypic analyses of Carnobacterium jeotgali strain MS3(T), a lactate-producing candidate biopreservative bacterium isolated from salt-fermented shrimp. Carnobacterium jeotgali strain MS3(T) was isolated from traditionally fermented Korean shrimp produced with bay salt. The bacterium belongs to the family Carnobacteriaceae, produces lactic acid and contains gene clusters involved in the production of lactate, butyrate, aromatic compounds and exopolysaccharides. Carnobacterium jeotgali strain MS3(T) was characterized through extensive comparison of the virulence potential, genomic relatedness and sequence similarities of its genome with the genomes of other Carnobacteria and lactic acid bacteria. In addition, links between predicted functions of genes and phenotypic characteristics, such as antibiotic resistance and lactate and butyrate production, were extensively evaluated. Genomic and phenotypic analyses of strain MS3(T) revealed promising features, including minimal virulence genes and lactate production, which make this bacterium a desirable candidate for exploitation by the fermented food industry. | 2015 | 25868912 |
| 6123 | 14 | 0.9834 | Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. BACKGROUND: Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS: The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS: The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS: This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms. | 2020 | 32272213 |
| 5184 | 15 | 0.9834 | In silico evaluation of genomic characteristics of Streptococcus infantarius subsp. infantarius for application in fermentations. This study aims to evaluate the in silico genomic characteristics of Streptococcus infantarius subsp. infantarius, isolated from Coalho cheese from Paraíba, Brazil, with a view to application in lactic fermentations. rRNA sequences from the 16S ribosomal region were used as input to GenBank, in the search for patterns that could reveal a non-pathogenic behavior of S. infantarius subsp. infantarius, comparing mobile genetic elements, antibiotic resistance genes, pan-genome analysis and multi-genome alignment among related species. S. infantarius subsp. infantarius CJ18 was the only complete genome reported by BLAST/NCBI with high similarity and after comparative genetics with complete genomes of Streptococcus agalactiae (SAG153, NJ1606) and Streptococcus thermophilus (ST106, CS18, IDCC2201, APC151) revealed that CJ18 showed a low number of transposases and integrases, infection by phage bacteria of the Streptococcus genus, absence of antibiotic resistance genes and presence of bacteriocin, folate and riboflavin producing genes. The genome alignment revealed that the collinear blocks of S. thermophilus ST106 and S. agalactiae SAG153 have inverted blocks when compared to the CJ18 genome due to gene positioning, insertions and deletions. Therefore, the strains of S. infantarius subsp. infantarius isolated from Coalho cheese from Paraíba showed genomic similarity with CJ18 and the mobility of genes analyzed in silico showed absence of pathogenicity throughout the genome of CJ18, indicating the potential of these strains for the dairy industry. | 2022 | 36417612 |
| 5385 | 16 | 0.9833 | Environmental heterogeneity of Staphylococcus species from alkaline fermented foods and associated toxins and antimicrobial resistance genetic elements. Different samples of three products including Bikalga and Soumbala from Burkina Faso (West Africa) and Ntoba Mbodi from Congo-Brazzaville (Central Africa) were evaluated. The bacteria (400) were phenotyped and genotypically characterized by Rep-PCR, PFGE, 16S rRNA and rpoB gene sequencing and spa typing. Their PFGE profiles were compared with those of 12,000 isolates in the Center for Disease Control (CDC, USA) database. They were screened for the production of enterotoxins, susceptibility to 19 antimicrobials, presence of 12 staphylococcal toxin and 38 AMR genes and the ability to transfer erythromycin and tetracycline resistance genes to Enterococcus faecalis JH2-2. Fifteen coagulase negative (CoNS) and positive (CoPS) species characterized by 25 Rep-PCR/PFGE clusters were identified: Staphylococcus arlettae, S. aureus, S. cohnii, S. epidermidis, S. gallinarum, S. haemolyticus, S. hominis, S. pasteuri, S. condimenti, S. piscifermentans, S. saprophyticus, S. sciuri, S. simulans, S. warneri and Macrococcus caseolyticus. Five species were specific to Soumbala, four to Bikalga and four to Ntoba Mbodi. Two clusters of S. gallinarum and three of S. sciuri were particular to Burkina Faso. The S. aureus isolates exhibited a spa type t355 and their PFGE profiles did not match any in the CDC database. Bacteria from the same cluster displayed similar AMR and toxin phenotypes and genotypes, whereas clusters peculiar to a product or a location generated distinct profiles. The toxin genes screened were not detected and the bacteria did not produce the staphylococcal enterotoxins A, B, C and D. AMR genes including blazA, cat501, dfr(A), dfr(G), mecA, mecA1, msr(A) and tet(K) were identified in CoNS and CoPS. Conjugation experiments produced JH2-2 isolates that acquired resistance to erythromycin and tetracycline, but no gene transfer was revealed by PCR. The investigation of the heterogeneity of Staphylococcus species from alkaline fermented foods, their relationship with clinical and environmental isolates and their safety in relation to antimicrobial resistance (AMR) and toxin production is anticipated to contribute to determining the importance of staphylococci in alkaline fermented foods, especially in relation to the safety of the consumers. | 2019 | 31670141 |
| 660 | 17 | 0.9833 | Expression of Genes Involved in Bacteriocin Production and Self-Resistance in Lactobacillus brevis 174A Is Mediated by Two Regulatory Proteins. We have previously shown that the lactic acid bacterium Lactobacillus brevis 174A, isolated from Citrus iyo fruit, produces a bacteriocin designated brevicin 174A, which is comprised of two antibacterial polypeptides (designated brevicins 174A-β and 174A-γ). We have also found a gene cluster, composed of eight open reading frames (ORFs), that contains genes for the biosynthesis of brevicin 174A, self-resistance to its own bacteriocin, and two transcriptional regulatory proteins. Some lactic acid bacterial strains have a system to start the production of bacteriocin at an adequate stage of growth. Generally, the system consists of a membrane-bound histidine protein kinase (HPK) that senses a specific environmental stimulus and a corresponding response regulator (RR) that mediates the cellular response. We have previously shown that although the HPK- and RR-encoding genes are not found on the brevicin 174A biosynthetic gene cluster in the 174A strain, two putative regulatory genes, designated breD and breG, are in the gene cluster. In the present study, we demonstrate that the expression of brevicin 174A production and self-resistance is positively controlled by two transcriptional regulatory proteins, designated BreD and BreG. BreD is expressed together with BreE as the self-resistance determinant of L. brevis 174A. DNase I footprinting analysis and a promoter assay demonstrated that BreD binds to the breED promoter as a positive autoregulator. The present study also demonstrates that BreG, carrying a transmembrane domain, binds to the common promoter of breB and breC, encoding brevicins 174A-β and 174A-γ, respectively, for positive regulation.IMPORTANCE The problem of the appearance of bacteria that are resistant to practical antibiotics and the increasing demand for safe foods have increased interest in replacing conventional antibiotics with bacteriocin produced by the lactic acid bacteria. This antibacterial substance can inhibit the growth of pathogenic bacteria without side effects on the human body. The bacteriocin that is produced by a Citrus iyo-derived Lactobacillus brevis strain inhibits the growth of pathogenic bacteria such as Listeria monocytogenes, Staphylococcus aureus, and Streptococcus mutans In general, lactic acid bacterial strains have a system to start the production of bacteriocin at an adequate stage of growth, which is called a quorum-sensing system. The system consists of a membrane-bound histidine protein kinase that senses a specific environmental stimulus and a corresponding response regulator that mediates the cellular response. The present study demonstrates that the expression of the genes encoding bacteriocin biosynthesis and the self-resistance determinant is positively controlled by two transcriptional regulatory proteins. | 2018 | 29352085 |
| 6056 | 18 | 0.9833 | Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems. | 2014 | 24960293 |
| 6015 | 19 | 0.9833 | Integrative genome analysis of bacteriocin-producing Lactiplantibacillus pentosus LNP1-39 and its synbiotic role in suppressing food-borne pathogens. Lactic acid bacteria were isolated from traditional Thai-fermented foods. Among these, the strain LNP1-39, closely related to Lactiplantibacillus pentosus, was selected for further study because of its non-pathogenic profile. The bacteriocins produced by L. pentosus LNP1-39 were proteinaceous substances that exhibited strong antimicrobial activity across a wide pH range (pH 2-11; 6400-2400 AU/mL) and thermal stability at 100 °C for 40 min (400 AU/mL). These bacteriocins showed a narrow antimicrobial spectrum, effectively targeting Gram-positive pathogens, such as Kocuria rhizophila MIII, Enterococcus faecalis JCM 5803( T), and Listeria monocytogenes ATCC 19115. Comprehensive safety assessments, including whole-genome analysis and in vitro tests, confirmed a low risk of antibiotic resistance and the absence of virulence factors. Strain LNP1-39 was confirmed to be closely related to L. pentosus DSM 20314( T) via digital DNA‒DNA hybridization (dDDH; 75.4%), with average nucleotide identity (ANI) at 96.56% ANIb and 97.22% ANIm values. Additionally, LNP1-39 produces pediocin with notable similarity (76.29% identity to pediocin) and presents low risks for antibiotic-resistance genes or transfer genes while providing antioxidant properties. Strain LNP1-39 survived harsh gastrointestinal tract conditions and exhibited a favorable prebiotic index and positive prebiotic activity score when paired with polydextrose or isomalto-oligosaccharide. These findings support L. pentosus LNP1-39 as potential bacteriocin-producing lactic acid bacteria for further application in food preservation and pathogen control or as a synbiotic. | 2025 | 40622670 |