BREAM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
544300.8658Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. Extensive use of antimicrobial agents in finfish farming and the consequent selective pressure lead to the acquisition of antibiotic resistance in aquaculture environment bacteria. Vibrio genus represents one of the main pathogens affecting gilthead sea bream. The development of antibiotic resistance by Vibrio represents a potential threat to human health by exchange of resistant genes to human pathogens through food chain. The objective of the present study was to conduct a multisite survey on the antibiotic resistance of Vibrio spp. isolated from gilthead sea bream reared in Italian mariculture. Vibrio spp. strains were isolated from skin, gills, muscles and intestinal content of 240 gilthead sea bream. A random selection of 150 strains was sequenced for species identification. Resistance against 15 antimicrobial agents was tested by the broth microdilution method. Vibrio harveyi and Vibrio alginolyticus accounted for 36.7% and 33.3% of the isolates respectively. 96% of the strains showed multiple resistance to the tested drugs, with two strains, Vibrio aestuarianus and Vibrio harveyi resistant to 10 and 9 antibiotics, respectively. Ampicillin, amoxicillin, erythromycin and sulfadiazine showed low efficacy against Vibrio spp. Rational use of antimicrobial agents and surveillance on antibiotic administration may reduce the acquisition of resistance by microorganisms of aquatic ecosystems.201425180847
82210.8606Exoglucanase-encoding genes from three Wickerhamomyces anomalus killer strains isolated from olive brine. Wickerhamomyces anomalus killer strains are important for fighting pathogenic yeasts and for controlling harmful yeasts and bacteria in the food industry. Targeted disruption of key genes in β-glucan synthesis of a sensitive Saccharomyces cerevisiae strain conferred resistance to the toxins of W. anomalus strains BS91, BCA15 and BCU24 isolated from olive brine. Competitive inhibition of the killing activities by laminarin and pustulan refer to β-1,3- and β-1,6-glucans as the main primary toxin targets. The extracellular exoglucanase-encoding genes WaEXG1 and WaEXG2 from the three strains were sequenced and were found to display noticeable similarities to those from known potent W. anomalus killer strains.201323148020
373820.8583In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria.201728749770
538430.8573Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. The virulence of bacteria can be evaluated through both phenotypic and molecular assays. We applied these techniques to 114 strains of Salmonella enterica subsp. enterica collected from July 2010 to June 2012. Salmonella strains were of human origin (71/114) or isolated from food (43/114). The strain set included only the three predominant Salmonella serovars isolated in Italy from humans (S. Enteritidis, S. Typhimurium, S. 4,[5],12:i:-). These strains were screened via polymerase chain reaction for 12 virulence factors (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE, spvC, pefA, mig5, rck, srgA), while antimicrobial sensitivity was evaluated through the Kirby-Bauer assay. Fifty-nine different virulence profiles were highlighted; the genes showing the highest homology were those related to the presence of prophages (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE), while the genes related to the presence of plasmids were less frequently detected (spvC, pefA, mig5, rck, srgA). The Salmonella serovars Typhimurium and 4,[5],12:i:- were closely related in terms of both virulotyping and antibiotic resistance. S. Enteritidis showed higher antibiotic sensitivity and a higher prevalence of genes related to plasmids.201324102078
544240.8571Prevalence, Antimicrobial Susceptibility and Resistance Gene Detection in Bacteria Isolated from Goldfish and Tiger Barb from Ornamental Fish Farms of Tamil Nadu. This study aims to determine the antimicrobial resistance (AMR) pattern in freshwater ornamental cyprinids, such as Goldfish and Tiger barb. Molecular characterization of bacterial isolates confirmed the presence of 7 bacterial isolates in Goldfish and 6 in Tiger barb. Antimicrobial susceptibility test using 36 antibiotics revealed a higher resistance pattern for bacitracin, rifampicin, trimethoprim, cefalexin, ampicillin, amoxicillin, nalidixic acid and nitrofurantoin. Sulphafurazole, norfloxacin and ciprofloxacin were effective against all the bacterial isolates derived from Goldfish and Tiger barb. Most bacterial isolates exhibited > 0.2 multi-drug resistance index (MDR), indicating the severity of antibiotic use in the culture system. The finding of the present study suggests that ornamental fish may act as the reservoir of MDR bacteria and dissemination of resistance genes to clinical and human commensal bacteria through horizontal gene transfer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-022-01023-y.202235974915
544150.8561Presence of SXT integrating conjugative element in marine bacteria isolated from the mucus of the coral Fungia echinata from Andaman Sea. In this study, we characterize 18 cultivable bacteria associated within the mucus of the coral Fungia echinata from Andaman Sea, India. 16S rRNA gene sequence analysis showed that all the 18 strains isolated in this study from the coral mucus belong to the group Gammaproteobacteria and majority of them were identified as Vibrio core group. Our objective was to investigate the presence of the SXT/R391 integrating conjugative elements (ICEs) targeting integrase int(SXT) and SXT Hotspot IV genetic elements in these isolates. SXT/ICE initially reported in Vibrio cholerae contains many antibiotic and heavy metal resistance genes and acts as an effective tool for the horizontal transfer of resistance genes in other bacterial populations. Two of our strains, AN44 and AN60, were resistant to sulfamethoxazole, trimethoprim, chloramphenicol, and streptomycin, in addition to other antibiotics such as neomycin, ampicillin, rifampicin, and tetracycline. Using PCR followed by sequencing, we detected the SXT/ICE in these strains. The SXT integrase genes of AN44 and AN60 had a 99% and 100% identity with V. cholerae serogroup O139 strain SG24. This study provides the first evidence of the presence of SXT/R391 ICEs in Marinomonas sp. strain AN44 (JCM 18476(T) ) and Vibrio fortis strain AN60 (DSM 26067(T) ) isolated from the mucus of the coral F. echinata.201323083057
605660.8561Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems.201424960293
81370.8561Fighting against evolution of antibiotic resistance by utilizing evolvable antimicrobial drugs. Antibiotic resistance is a worldwide public health problem (Bush et al. in Nat Rev Microbiol 9:894-896, 2011). The lack of effective therapies against resistant bacteria globally leads to prolonged treatments, increased mortality, and inflating health care costs (Oz et al. in Mol Biol Evol 31:2387-2401, 2014; Martinez in Science 321:365-367, 2008; Lipsitch et al. in Proc Natl Acad Sci USA 97:1938-1943, 2000; Taubes in Science 321:356-361, 2008; Laxminarayan et al. in Lancet, 2016; Laxminarayan et al. in Lancet Infect Dis 13:1057-1098, 2013). Current efforts towards a solution of this problem can be boiled down to two main strategies: (1) developing of new antimicrobial agents and (2) searching for smart strategies that can restore or preserve the efficacy of existing antimicrobial agents. In this short review article, we discuss the need for evolvable antimicrobial agents, focusing on a new antimicrobial technology that utilizes peptide-conjugated phosphorodiamidate morpholino oligomers to inhibit the growth of pathogenic bacteria by targeting bacterial genes.201728497241
613380.8560Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential.201626706221
584390.8559Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Six strains of Enterococcus faecalis (S1, S12, S17, S18, S19 and S32) were isolated from copper fed pigs in Denmark. These Gram-positive bacteria within the genus Enterococcus are able to survive a variety of physical and chemical challenges by the acquisition of diverse genetic elements. The genome of strains S1, S12, S17, S18, S19 and S32 contained 2,615, 2,769, 2,625, 2,804, 2,853 and 2,935 protein-coding genes, with 41, 42, 27, 42, 32 and 44 genes encoding antibiotic and metal resistance, respectively. Differences between Cu resistant and sensitive E. faecalis strains, and possible co-transfer of Cu and antibiotic resistance determinants were detected through comparative genome analysis.201526203344
6127100.8558Paenibacillus associated with milky disease in Central and South American scarabs. Thirty-one isolates of bacteria causing milky disease in scarab larvae collected in Central and South America were identified as Paenibacillus popilliae or Paenibacillus lentimorbus by use of DNA similarity analysis. The isolates were more similar to each other than to the North American isolates that are the type strains of the species. All of the bacteria of both species produced parasporal bodies, a characteristic previously believed to be unique to P. popilliae. Screening of the bacteria using PCR with parasporal protein primers revealed differences among the parasporal protein genes of P. popilliae isolates and between the parasporal genes of P. popilliae and P. lentimorbus. In contrast to P. popilliae from North America, none of the isolates from Central and South America was resistant to vancomycin, an indication of an interesting geographic distribution of the resistance genes.200011023744
6132110.8557Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Copper sprays have been widely used for control of endemic citrus canker caused by Xanthomonas citri subsp. citri in citrus-growing areas for more than 2 decades. Xanthomonas alfalfae subsp. citrumelonis populations were also exposed to frequent sprays of copper for several years as a protective measure against citrus bacterial spot (CBS) in Florida citrus nurseries. Long-term use of these bactericides has led to the development of copper-resistant (Cu(r)) strains in both X. citri subsp. citri and X. alfalfae subsp. citrumelonis, resulting in a reduction of disease control. The objectives of this study were to characterize for the first time the genetics of copper resistance in X. citri subsp. citri and X. alfalfae subsp. citrumelonis and to compare these organisms to other Cu(r) bacteria. Copper resistance determinants from X. citri subsp. citri strain A44(pXccCu2) from Argentina and X. alfalfae subsp. citrumelonis strain 1381(pXacCu2) from Florida were cloned and sequenced. Open reading frames (ORFs) related to the genes copL, copA, copB, copM, copG, copC, copD, and copF were identified in X. citri subsp. citri A44. The same ORFs, except copC and copD, were also present in X. alfalfae subsp. citrumelonis 1381. Transposon mutagenesis of the cloned copper resistance determinants in pXccCu2 revealed that copper resistance in X. citri subsp. citri strain A44 is mostly due to copL, copA, and copB, which are the genes in the cloned cluster with the highest nucleotide homology (≥ 92%) among different Cu(r) bacteria.201121515725
6150120.8554Redox biotransformation of arsenic along with plant growth promotion by multi-metal resistance Pseudomonas sp. MX6. Remediation of toxic metal-polluted sites by microorganisms is an environment-friendly remediation technique. Multi-metal-resistant bacteria were isolated from a wastewater treatment plant showing resistance against As(III), As(V), Cr, Co, Cu, Cd, Hg, Ni, Pb, Se and Zn. Maximum resistance against all metals was shown by the bacterial isolate MX-6 (As 20mM, Cd 30mM, Cr 5.0mM, Co 25mM, Cu 25mM, Ni 20mM, Zn 30mM, Pb 15mM, Se 20mM and Hg 2.5mM), which was identified as Pseudomonas sp. through 16S rDNA sequencing. Pseudomonas sp. MX-6 reduced 506μM As(V) and also oxidized 160μM As(III). The genes for As, Cd, Se and Zn resistance in Pseudomonas sp. MX-6 were found to be plasmid borne, as indicated by transformation. Pseudomonas sp. MX-6 produced 49.37μg·mL(-1) IAA and was also positive for HCN production and phosphate solubilisation. The bacterial isolate also supported Vigna radiata growth, both in the absence and presence of the aforementioned metals. Such bacteria can be used as biofertilizers to reclaim the polluted lands and to enhance crop production in metal-contaminated soils.201728684222
2996130.8553Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns.202235460193
4445140.8552Genomic Analysis and Resistance Mechanisms in Shigella flexneri 2a Strain 301. Shigella flexneri is one of the most prominent pathogenic bacteria in developing countries. In the battle against shigellosis and other bacterial diseases, antibiotic resistance has become an increasing global public health threat. Although the serious phenomenon of multidrug resistance (MDR) has been identified as one of the top three burdens on human health, resistance mechanisms are still poorly understood at the molecular level. In this study, we analyzed genomic data and the evolution of resistance in Shigella flexneri under sequential selection stress from three separate antibiotics: ciprofloxacin (CIP), ceftriaxone (CRO), and tetracycline. Through whole-genome sequencing, 82 chromosomal antibiotic resistance genes were identified. Re-sequencing of the evolved populations identified single nucleotide polymorphisms (SNPs) that contributed to MDR and SNPs that were specific to a single drug. A total of 40 SNPs in 8 genes and 3 intergenic regions, including mutations in metG (L582R) and 1538924, 1538924, and 1538924, appeared under each antibiotic. Several nonsynonymous mutations in gyrB (S464Y), ydgA (E378A), rob (R156H), and narX (K75E) were observed under selective pressure from CIP or CRO. Based on a bioinformatic analysis and previous reports, we discuss the contribution of these mutated genes to resistance. Therefore, more circumspect selection and use of antimicrobial drugs for treating shigellosis is necessary.201828853989
105150.8552Resistance of the cholera vaccine candidate IEM108 against CTXPhi infection. The cholera toxin (CT) genes ctxAB are carried on a lysogenic phage of Vibrio cholerae, CTXPhi, which can transfer ctxAB between toxigenic and nontoxigenic strains of bacteria. This transfer may pose a problem when live oral cholera vaccine is given to people in epidemic areas, because the toxin genes can be reacquired by the vaccine strains. To address this problem, we have constructed a live vaccine candidate, IEM108, which carries an El Tor-derived rstR gene. This gene encodes a repressor and can render bacterial resistance to CTXPhi infection. In this study, we evaluated the resistance of IEM108 against CTXPhi infection by using a CTXPhi marked for chloramphenicol (CAF) resistance and an in vivo model. We found that the cloned rstR gene rendered IEM108 immune to infection with the marked CTXPhi. In addition, the infection rate of IEM108 was even lower than that of the native CTXPhi-positive strain. These results suggest that the vaccine candidate IEM108 is resistant to infection by CTXPhi.200616343705
2994160.8552Molecular Characterization of Salmonella spp. Isolates from Wild Colombian Babilla (Caiman crocodilus fuscus) Isolated In Situ. Salmonella enterica is a pathogen capable of colonizing various environments, including the intestinal tract of different animals such as mammals, birds, and reptiles, which can act as carriers. S. enterica infection induces different clinical diseases, gastroenteritis being the most common, which in some cases, can evolve to septicemia and meningitis. Reptiles and amphibians have been reported as a reservoir of Salmonella, and transmission of the pathogen to humans has been documented. This study aimed to determine the presence of virulence genes and characterize the genotypic antibiotic resistance profile in Salmonella strains isolated from Caiman crocodilus fuscus obtained in situ (natural habitat) in Prado, Tolima, Colombia in a previous study and stored in a strain bank in our laboratory. Fifteen Salmonella strains were evaluated through endpoint PCR to determine the presence of resistance genes and virulence genes. The genes bla(TEM), strB, and sul1 were detected in all the strains that confer resistance to ampicillin, streptomycin, and sulfamethoxazole, as well as the virulence genes invA, pefA, prgH, spaN, tolC, sipB, sitC, pagC, msgA, spiA, sopB, sifA, lpfA, csgA, hilA, orgA, iroN, avrA, and sivH, indicating the possible role of babilla (Caiman crocodilus fuscus) as a carrier of multidrug-resistant bacteria.202236496880
9998170.8551mSphere of Influence: Uncovering New Ways To Control Multidrug Resistance by Dissecting Essential Cell Processes. Ana L. Flores-Mireles works in the fields of microbial pathogenesis and development of new therapeutics. In this mSphere of Influence article, she reflects on how the papers "Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously" by H. Cho et al. (Nat Microbiol 1:16172, 2016, https://doi.org/10.1038/nmicrobiol.2016.172) and "A comprehensive, CRISPR-based functional analysis of essential genes in bacteria" by J. M. Peters et al. (Cell 165:1493-1506, 2016, https://doi.org/10.1016/j.cell.2016.05.003) made an impact on her approach to dissecting essential processes to understand microbial pathogenesis in catheter-associated urinary tract infections and generate an effective treatment with reduced likelihood of developing resistance.201931554727
5213180.8550Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation.202541170963
5449190.8549Antibiotic susceptibility and resistance genes profiles of Vagococcus salmoninarum in a rainbow trout (Oncorhyncus mykiss, Walbaum) farm. Disease outbreaks negatively affect fish production. Antimicrobial agents used in the treatment of diseases become ineffective over time because of antibiotic resistance developed by bacteria distributed in the aquaculture environment. This study was conducted for 4 months (cold period) in a fish farm to detect the fish disease, cold water streptococcosis. In the study, four brood stock showing disease signs were detected. Bacteria isolates were obtained and identified as Vagococcus salmoninarum. Antimicrobial susceptibility of V. salmoninarum was tested and antibiotic resistance gene profiles of V. salmoninarum isolates were screened. The phylogenetic relation of the isolates with the previously reported strains was evaluated. Antibiotic resistance developed by pathogenic bacteria is distributed in the aquaculture environment. The transfer of resistance genes from one bacterium to another is very common. This situation causes the antimicrobial agents used in the treatment of diseases to become ineffective over time. The disc diffusion test showed that all four isolates developed resistance to 13 (FFC30, AX25, C30, E15, CF30, L2, OX1, S10, T30, CRO30, CC2, PT15 and TY15) of the evaluated antibiotics and were about to develop resistance to six others (AM 10, FM 300, CFP75, SXT25, APR15 and TE30). Furthermore, antibiotic resistance genes tetA, sul1, sul2, sul3, dhfr1, ereB and floR were detected in the isolated strain. Moreover, the phylogenetic analysis showed that isolated V. salmoninarum strain (ESN1) was closely related to the bacterial strains isolated from USA and Jura.202438560471