BRASILENSE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
32000.8807Monitoring Azospirillum-wheat interactions using the gfp and gusA genes constitutively expressed from a new broad-host range vector. To monitor the colonization of wheat roots by Azospirillum brasilense, we constructed several plasmids based on the pBBR1 replicon expressing the gfp and gusA genes constitutively. Both genes were placed under control of the gentamycin resistance gene promoter resulting in high levels of expression in Escherichia coli and A. brasilense. The constructed plasmids were stably maintained in A. brasilense strains even in the absence of selective pressure. The colonization of wheat plants grown under controlled conditions in sterilized vermiculite by A. brasilense strain FP2 (a Sp7-derivative) transconjugants containing these plasmids was monitored. Bacteria expressing GFP were easily observed in fresh plant material by fluorescence microscopy. Cell aggregates and single bacteria were visualized on the surfaces of young root zones, such as roots hairs and lateral roots. Large cellular clumps were observed at the points of lateral root emergence or at intercellular spaces of root epidermal cells 30 days after inoculation. Although we failed to detected bacteria in internal cortical and xylem tissues of wheat roots, the initial stage of endophytic colonization by A. brasilense may involve the sites detected in this work.200212084480
110.8758Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria.199910411257
80420.8740Cloning, mutagenesis, and characterization of the microalga Parietochloris incisa acetohydroxyacid synthase, and its possible use as an endogenous selection marker. Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type.201222488216
53630.8725Thymidylate synthase gene from Lactococcus lactis as a genetic marker: an alternative to antibiotic resistance genes. The potential of the thymidylate synthase thyA gene cloned from Lactococcus lactis subsp. lactis as a possible alternative selectable marker gene to antibiotic resistance markers has been examined. The thyA mutation is a recessive lethal one; thyA mutants cannot survive in environments containing low amounts of thymidine or thymine (such as Luria-Bertani medium) unless complemented by the thyA gene. The cloned thyA gene was strongly expressed in L. lactis subsp. lactis, Escherichia coli, Rhizobium meliloti, and a fluorescent Pseudomonas strain. In addition, when fused to a promoterless enteric lac operon, the thyA gene drove expression of the lac genes in a number of gram-negative bacteria. In transformation experiments with thyA mutants of E. coli and conjugation experiments with thyA mutants of R. meliloti, the lactococcal thyA gene permitted selection of transformants and transconjugants with the same efficiency as did genes for resistance to ampicillin, chloramphenicol, or tetracycline. Starting from the broad-host-range plasmid pGD500, a plasmid, designated pPR602, was constructed which is completely free of antibiotic resistance genes and has the lactococcal thyA gene fused to a promoterless lac operon. This plasmid will permit growth of thyA mutant strains in the absence of thymidine or thymine and has a number of unique restriction sites which can be used for cloning.19902117883
7740.8721A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Genes and proteins related to patatin, the major storage protein of potato tubers, have been identified in many plant species and shown to be induced by a variety of environmental stresses. The Arabidopsis patatin-like gene family (PLPs) comprises nine members, two of which (PLP2 and PLP7) are strongly induced in leaves challenged with fungal and bacterial pathogens. Here we show that accumulation of PLP2 protein in response to Botrytis cinerea or Pseudomonas syringae pv. tomato (avrRpt2) is dependent on jasmonic acid and ethylene signaling, but is not dependent on salicylic acid. Expression of a PLP2-green fluorescent protein (GFP) fusion protein and analysis of recombinant PLP2 indicates that PLP2 encodes a cytoplasmic lipid acyl hydrolase with wide substrate specificity. Transgenic plants with altered levels of PLP2 protein were generated and assayed for pathogen resistance. Plants silenced for PLP2 expression displayed enhanced resistance to B. cinerea, whereas plants overexpressing PLP2 were much more sensitive to this necrotrophic fungus. We also established a positive correlation between the level of PLP2 expression in transgenic plants and cell death or damage in response to paraquat treatment or infection by avirulent P. syringae. Interestingly, repression of PLP2 expression increased resistance to avirulent bacteria, while PLP2-overexpressing plants multiplied avirulent bacteria close to the titers reached by virulent bacteria. Collectively, the data indicate that PLP2-encoded lipolytic activity can be exploited by pathogens with different lifestyles to facilitate host colonization. In particular PLP2 potentiates plant cell death inflicted by Botrytis and reduces the efficiency of the hypersensitive response in restricting the multiplication of avirulent bacteria. Both effects are possibly mediated by providing fatty acid precursors of bioactive oxylipins.200516297072
10250.8715Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.19853883148
54260.8712Role of Yops and adhesins in resistance of Yersinia enterocolitica to phagocytosis. Yersinia enterocolitica is a pathogen endowed with two adhesins, Inv and YadA, and with the Ysc type III secretion system, which allows extracellular adherent bacteria to inject Yop effectors into the cytosol of animal target cells. We tested the influence of all of these virulence determinants on opsonic and nonopsonic phagocytosis by PU5-1.8 and J774 mouse macrophages, as well as by human polymorphonuclear leukocytes (PMNs). The adhesins contributed to phagocytosis in the absence of opsonins but not in the presence of opsonins. In agreement with previous results, YadA counteracted opsonization. In every instance, the Ysc-Yop system conferred a significant level of resistance to phagocytosis. Nonopsonized single-mutant bacteria lacking either YopE, -H, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs. Opsonized bacteria were phagocytosed more than nonopsonized bacteria, and mutant bacteria lacking either YopH, -T, or -O were phagocytosed significantly more by J774 cells and by PMNs than were wild-type (WT) bacteria. Opsonized mutants lacking only YopE were phagocytosed significantly more than were WT bacteria by PMNs but not by J774 cells. Thus, YopH, -T, and -O were involved in all of the phagocytic processes studied here but YopE did not play a clear role in guarding against opsonic phagocytosis by J774. Mutants lacking YopP and YopM were, in every instance, as resistant as WT bacteria. Overexpression of YopE, -H, -T, or -O alone did not confer resistance to phagocytosis, although it affected the cytoskeleton. These results show that YopH, YopT, YopO, and, in some instances, YopE act synergistically to increase the resistance of Y. enterocolitica to phagocytosis by macrophages and PMNs.200212117925
33570.8711Construction and characterization of a replication-competent retroviral shuttle vector plasmid. We constructed two versions of an RCASBP-based retroviral shuttle vector, RSVP (RCASBP shuttle vector plasmid), containing either the zeocin or blasticidin resistance gene. In this vector, the drug resistance gene is expressed in avian cells from the long terminal repeat (LTR) promoter, whereas in bacteria the resistance gene is expressed from a bacterial promoter. The vector contains a bacterial origin of replication (ColE1) to allow circular viral DNA to replicate as a plasmid in bacteria. The vector also contains the lac operator sequence, which binds to the lac repressor protein, providing a simple and rapid way to purify the vector DNA. The RSVP plasmid contains the following sequence starting with the 5" end: LTR, gag, pol, env, drug resistance gene, lac operator, ColE1, LTR. After this plasmid was transfected into DF-1 cells, we were able to rescue the circularized unintegrated viral DNA from RSVP simply by transforming the Hirt DNA into Escherichia coli. Furthermore, we were able to rescue the integrated provirus. DNA from infected cells was digested with an appropriate restriction enzyme (ClaI) and the vector-containing segments were enriched using lac repressor protein and then self-ligated. These enriched fractions were used to transform E. coli. The transformation was successful and we did recover integration sites, but higher-efficiency rescue was obtained with electroporation. The vector is relatively stable upon passage in avian cells. Southern blot analyses of genomic DNAs derived from successive viral passages under nonselective conditions showed that the cassette (drug resistance gene-lac operator-ColE1) insert was present in the vector up to the third viral passage for both resistance genes, which suggests that the RSVP vectors are stable for approximately three viral passages. Together, these results showed that RSVP vectors are useful tools for cloning unintegrated or integrated viral DNAs.200211799171
999580.8708Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Quantum dots (QDs) are inorganic fluorescent nanocrystals with excellent properties such as tunable emission spectra and photo-bleaching resistance compared with organic dyes, which make them appropriate for applications in molecular beacons. In this work, quantum dot-based molecular beacons (QD-based MBs) were fabricated to specifically detect β-lactamase genes located in pUC18 which were responsible for antibiotic resistance in bacteria Escherichia coli (E. coli) DH5α. QD-based MBs were constructed by conjugating mercaptoacetic acid-quantum dots (MAA-QDs) with black hole quencher 2 (BHQ2) labeled thiol DNA vial metal-thiol bonds. Two types of molecular beacons, double-strands beacons and hairpin beacons, were observed in product characterization by gel electrophoresis. Using QD-based MBs, one-step FISH in tiny bacteria DH5α was realized for the first time. QD-based MBs retained their bioactivity when hybridizing with complementary target DNA, which showed excellent advantages of eliminating background noise caused by adsorption of non-specific bioprobes and achieving clearer focus of genes in plasmids pUC18, and capability of bacterial cell penetration and signal specificity in one-step in situ hybridization.201020729070
1090.8705YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance.202033154763
41100.8704Rice WRKY13 regulates cross talk between abiotic and biotic stress signaling pathways by selective binding to different cis-elements. Plants use a complex signal transduction network to regulate their adaptation to the ever-changing environment. Rice (Oryza sativa) WRKY13 plays a vital role in the cross talk between abiotic and biotic stress signaling pathways by suppressing abiotic stress resistance and activating disease resistance. However, it is not clear how WRKY13 directly regulates this cross talk. Here, we show that WRKY13 is a transcriptional repressor. During the rice responses to drought stress and bacterial infection, WRKY13 selectively bound to certain site- and sequence-specific cis-elements on the promoters of SNAC1 (for STRESS RESPONSIVE NO APICAL MERISTEM, ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR1/2, CUP-SHAPED COTYLEDON), the overexpression of which increases drought resistance, and WRKY45-1, the knockout of which increases both bacterial disease and drought resistance. WRKY13 also bound to two cis-elements of its native promoter to autoregulate the balance of its gene expression in different physiological activities. WRKY13 was induced in leaf vascular tissue, where bacteria proliferate, during infection, and in guard cells, where the transcriptional factor SNAC1 enhances drought resistance, during both bacterial infection and drought stress. These results suggest that WRKY13 regulates the antagonistic cross talk between drought and disease resistance pathways by directly suppressing SNAC1 and WRKY45-1 and autoregulating its own expression via site- and sequence-specific cis-elements on the promoters of these genes in vascular tissue where bacteria proliferate and guard cells where the transcriptional factor SNAC1 mediates drought resistance by promoting stomatal closure.201324130197
373110.8702The ybiT gene of Erwinia chrysanthemi codes for a putative ABC transporter and is involved in competitiveness against endophytic bacteria during infection. We investigated the role in bacterial infection of a putative ABC transporter, designated ybiT, of Erwinia chrysanthemi AC4150. The deduced sequence of this gene showed amino acid sequence similarity with other putative ABC transporters of gram-negative bacteria, such as Escherichia coli and Pseudomonas aeruginosa, as well as structural similarity with proteins of Streptomyces spp. involved in resistance to macrolide antibiotics. The gene contiguous to ybiT, designated as pab (putative antibiotic biosynthesis) showed sequence similarity with Pseudomonas and Streptomyces genes involved in the biosynthesis of antibiotics. A ybiT mutant (BT117) was constructed by marker exchange. It retained full virulence in potato tubers and chicory leaves, but it showed reduced ability to compete in planta against the wild-type strain or against selected saprophytic bacteria. These results indicate that the ybiT gene plays a role in the in planta fitness of the bacteria.200211916677
339120.8701Multiple mechanisms of resistance to cisplatin toxicity in an Escherichia coli K12 mutant. The mechanisms underlying cellular resistance to the antitumor drug cis-diamminedichloro-platinum(II) (CDDP) were studied in Escherichia coli K12. A bacterial strain (MC4100/DDP) was selected from the MC4100 wild-type strain after growth for four cycles in CDDP. MC4100/DDP bacteria showed a high level of resistance and exhibited various modifications including (1) a decrease in drug uptake and platinum/DNA binding which only partly contributed to resistance, (2) an increase in glutathione content not involved in the resistant phenotype, (3) an increase in DNA repair capacity. Resistance was unmodified by introducing a uvrA mutation which neutralizes the excision-repair pathway. In contrast, it was abolished by deletion of the recA gene which abolishes recombination and SOS repair but also by a mutation in the recA gene leading to RecA co-protease minus (no SOS induction). RecA protein was unchanged in MC4100/DDP but the expression of RecA-dependent gene(s) was required for CDDP resistance. The regulation of genes belonging to the SOS regulon was analysed in MC4100/DDP by monitoring the expression of sfiA and recA::lacZ gene fusions after UV irradiation. These gene fusions were derepressed faster and the optimal expression was obtained for a lower number of UV lesions in MC4100/DDP, suggesting a role of RecA co-protease activity in the mechanism of resistance to CDDP in this E. coli strain.19947974517
328130.8701Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin.200010796024
824140.8696Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola. Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3. 0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria.19989726857
579150.8695Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA.200516158236
392160.8695Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring. A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the lambdap(R) promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 10 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment.199316349015
7170.8694An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity.201930770836
65180.8693Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. A genetic approach was used to assess the extent to which a particular plant defense response, phytoalexin biosynthesis, contributes to Arabidopsis thaliana resistance to Pseudomonas syringae pathogens. The A. thaliana phytoalexin, camalexin, accumulated in response to infection by various P. syringae strains. No correlation between pathogen avirulence and camalexin accumulation was observed. A biochemical screen was used to isolate three mutants of A. thaliana ecotype Columbia that were phytoalexin deficient (pad mutants). The mutations pad1, pad2, and pad3 were found to be recessive alleles of three different genes. pad1 and pad2 were mapped to chromosome IV and pad3 was mapped to chromosome III. Infection of pad mutant plants with strains carrying cloned avirulence genes revealed that the pad mutations did not affect the plants' ability to restrict the growth of these strains. This result strongly suggests that in A. thaliana, phytoalexin biosynthesis is not required for resistance to avirulent P. syringae pathogens. Two of the pad mutants displayed enhanced sensitivity to isogenic virulent P. syringae pathogens, suggesting that camalexin may serve to limit the growth of virulent bacteria.19948090752
534190.8693Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164