BPSS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
882100.8922Aromatics valorization to polyhydroxyalkanoate by the ligninolytic bacteria isolated from soil sample. Polyhydroxyalkanoates (PHA) are ecofriendly alternatives to conventional plastics due to their biodegradable nature. However, the high production cost limits their applications. Exploring novel bacteria with ligninolytic potential would be crucial to advance cost-effective PHA synthesis. The current study aims to unveil soil bacteria capable of aromatics valorization to PHA. Considering this, six aromatics resistance bacteria from a soil sample were isolated through culture acclimatization strategy and their growth was analyzed in various lignin model compounds. Ralstonia sp. BPSS-1 and Arthrobacter sp. BPSS-3 presented high-cell-densities in 4-hydroxybenzoic acid (4-HBA) and benzoate, respectively. Fluorescence microscopy confirmed the strains to be PHA positive and were subsequently evaluated for PHA synthesis from 4-HBA and benzoate at a concentration of 2 g L(-1) in a nitrogen-limited M9 medium. However, applying a co-feeding strategy by the integration of 4-HBA and benzoate further increased the substrates consumption efficiency, biomass and PHA titer compared to single carbon sources. The maximum dry cell weight (DCW) and PHA yield by Ralstonia sp. BPSS-1 through the substrate co-feeding under optimized fermentation conditions was 0.69 ± 0.03, and 0.4 ± 0.02 g L(-1), respectively. The draft genome analysis confirmed the genes involved in aromatic degradation. Besides, the proposed metabolic pathway was validated by studying the expression level of key genes, analyzing key intermediates and associated enzymes activities. The FTIR, (1)H NMR and GC-MS determined the PHA functional group, chemical structure and monomers analysis, respectively. Overall, the current study highlighted the aromatic valorization potential of newly isolated PHA producing bacteria for sustainable biomanufacturing.202540032105
52310.8899Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas.202439019186
1120.8875Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris (Xcc) via JA signaling in Arabidopsis and Brassica oleracea. BACKGROUND: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. METHODS: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. RESULTS: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. CONCLUSION: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea.202337404719
2230.8863A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.202236438094
3740.8858N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Many Gram-negative bacteria use small signal molecules, such as N-acyl-homoserine lactones (AHLs), to communicate with each other and coordinate their collective behaviors. Recently, increasing evidence has demonstrated that long-chained quorum-sensing signals play roles in priming defense responses in plants. Our previous work indicated that a short-chained signal, N-3-oxo-octanoyl homoserine lactone (3OC8-HSL), enhanced Arabidopsis resistance to the hemi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 through priming the salicylic acid (SA) pathway. Here, we found that 3OC8-HSL could also prime resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) through the jasmonic acid (JA) pathway, and is dependent on auxin responses, in both Chinese cabbage and Arabidopsis. The subsequent Pcc invasion triggered JA accumulation and increased the down-stream genes' expressions of JA synthesis genes (LOX, AOS, and AOC) and JA response genes (PDF1.2 and VSP2). The primed state was not observed in the Arabidopsis coi1-1 and jar1-1 mutants, which indicated that the primed resistance to Pcc was dependent on the JA pathway. The 3OC8-HSL was not transmitted from roots to leaves and it induced indoleacetic acid (IAA) accumulation and the DR5 and SAUR auxin-responsive genes' expressions in seedlings. When Arabidopsis and Chinese cabbage roots were pretreated with exogenous IAA (10 μM), the plants had activated the JA pathway and enhanced resistance to Pcc, which implied that the JA pathway was involved in AHL priming by coordinating with the auxin pathway. Our findings provide a new strategy for the prevention and control of soft rot in Chinese cabbage and provide theoretical support for the use of the quorum-sensing AHL signal molecule as a new elicitor.202235774826
998950.8857Molecular Insights into Fungal Innate Immunity Using the Neurospora crassa - Pseudomonas syringae Model. Recent comparative genomics and mechanistic analyses support the existence of a fungal immune system. Fungi encode genes with features similar to non-self recognition systems in plants, animals, and bacteria. However, limited functional or mechanistic evidence exists for the surveillance-system recognition of heterologous microbes in fungi. We found that Neurospora species coexist with Pseudomonas in their natural environment. We leveraged two model organisms, Neurospora crassa and Pseudomonas syringae DC3000 (PSTDC3000) to observe immediate fungal responses to bacteria. PSTDC3000 preferentially surrounds N. crassa cells on a solid surface, causing environmental dependent growth responses, bacterial proliferation and varying fungal fitness. Specifically, the Type III secretion system (T3SS) ΔhrcC mutant of PSTDC3000 colonized N. crassa hyphae less well. To dissect initial cellular signaling events within the population of germinated asexual spores (germlings), we performed transcriptomics on N. crassa after PSTDC3000 inoculation. Upon contact with live bacteria, a subpopulation of fungal germlings initiate a response as early as ten minutes post-contact revealing transcriptional differentiation of Reactive Oxygen Species (ROS) mechanisms, trace metal warfare, cell wall remodeling dynamics, multidrug-efflux transporters, secondary metabolite synthesis, and excretion. We dissected mutants of plausible receptors, signaling pathways, and responses that N. crassa uses to detect and mount a defense against PSTDC3000 and found seven genes that influence resistant and susceptibility phenotypes of N. crassa to bacterial colonization. Mutants in genes encoding a ctr copper transporter ( tcu-1 ), ferric reductase ( fer-1 ), superoxide reductase ( sod-2 ), multidrug resistance transporter ( mdr-6 ), a secreted lysozyme-Glycoside hydrolase ( lyz ) and the Woronin body tether leashin (NCU02793, lah-1 and lah-2 ) showed a significant reduction of growth in the presence of bacteria, allowing the bacteria to fully take over the fungal mycelium faster than wildtype. In this study we provide a bacterial-fungal model system within Dikarya that allows us to begin to dissect signaling pathways of the putative fungal immune system.202539896647
2360.8855Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens.201222970151
13170.8844Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of Brevundimonas nasdae: Discovery of a New Arsenic Resistance Determinant. Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).202235628430
1080.8843YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance.202033154763
882790.8841Vancomycin-Induced Modulation of Gram-Positive Gut Bacteria and Metabolites Remediates Insulin Resistance in iNOS Knockout Mice. The role of oxidative and nitrosative stress has been implied in both physiology and pathophysiology of metabolic disorders. Inducible nitric oxide synthase (iNOS) has emerged as a crucial regulator of host metabolism and gut microbiota activity. The present study examines the role of the gut microbiome in determining host metabolic functions in the absence of iNOS. Insulin-resistant and dyslipidemic iNOS(-/-) mice displayed reduced microbial diversity, with a higher relative abundance of Allobaculum and Bifidobacterium, gram-positive bacteria, and altered serum metabolites along with metabolic dysregulation. Vancomycin, which largely depletes gram-positive bacteria, reversed the insulin resistance (IR), dyslipidemia, and related metabolic anomalies in iNOS(-/-) mice. Such improvements in metabolic markers were accompanied by alterations in the expression of genes involved in fatty acid synthesis in the liver and adipose tissue, lipid uptake in adipose tissue, and lipid efflux in the liver and intestine tissue. The rescue of IR in vancomycin-treated iNOS(-/-) mice was accompanied with the changes in select serum metabolites such as 10-hydroxydecanoate, indole-3-ethanol, allantoin, hippurate, sebacic acid, aminoadipate, and ophthalmate, along with improvement in phosphatidylethanolamine to phosphatidylcholine (PE/PC) ratio. In the present study, we demonstrate that vancomycin-mediated depletion of gram-positive bacteria in iNOS(-/-) mice reversed the metabolic perturbations, dyslipidemia, and insulin resistance.202135127558
47100.8838LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance.201626123657
519110.8835The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.201222563425
38120.8832Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture.201931521273
19130.8832Strengthening Grapevine Resistance by Pseudomonas fluorescens PTA-CT2 Relies on Distinct Defense Pathways in Susceptible and Partially Resistant Genotypes to Downy Mildew and Gray Mold Diseases. Downy mildew caused by the oomycete Plasmopara viticola and gray mold caused by the fungus Botrytis cinerea are among the highly threatening diseases in vineyards. The current strategy to control these diseases relies totally on the application of fungicides. The use of beneficial microbes is arising as a sustainable strategy in controlling various diseases. This can be achieved through the activation of the plants' own immune system, known as induced systemic resistance (ISR). We previously showed that bacteria-mediated ISR in grapevine involves activation of both immune response and priming state upon B. cinerea challenge. However, the effectiveness of beneficial bacteria against the oomycete P. viticola remains unknown, and mechanisms underpinning ISR against pathogens with different lifestyles need to be deciphered. In this study, we focused on the capacity of Pseudomonas fluorescens PTA-CT2 to induce ISR in grapevine against P. viticola and B. cinerea by using two grafted cultivars differing in their susceptibility to downy mildew, Pinot noir as susceptible and Solaris as partially resistant. On the basis of their contrasting phenotypes, we explored mechanisms underlying ISR before and upon pathogen infection. Our results provide evidence that in the absence of pathogen infection, PTA-CT2 does not elicit any consistent change of basal defenses, while it affects hormonal status and enhances photosynthetic efficiency in both genotypes. PTA-CT2 also induces ISR against P. viticola and B. cinerea by priming common and distinct defensive pathways. After P. viticola challenge, PTA-CT2 primes salicylic acid (SA)- and hypersensitive response (HR)-related genes in Solaris, but SA and abscisic acid (ABA) accumulation in Pinot noir. However, ISR against B. cinerea was associated with potentiated ethylene signaling in Pinot noir, but with primed expression of jasmonic acid (JA)- and SA-responsive genes in Solaris, together with downregulation of HR-related gene and accumulation of ABA and phytoalexins.201931620150
45140.8832Vitis vinifera VvNPR1.1 is the functional ortholog of AtNPR1 and its overexpression in grapevine triggers constitutive activation of PR genes and enhanced resistance to powdery mildew. Studying grapevine (Vitis vinifera) innate defense mechanisms is a prerequisite to the development of new protection strategies, based on the stimulation of plant signaling pathways to trigger pathogen resistance. Two transcriptional coactivators (VvNPR1.1 and VvNPR1.2) with similarity to Arabidopsis thaliana NPR1 (Non-Expressor of PR genes 1), a well-characterized and key signaling element of the salicylic acid (SA) pathway, were recently isolated in Vitis vinifera. In this study, functional characterization of VvNPR1.1 and VvNPR1.2, including complementation of the Arabidopsis npr1 mutant, revealed that VvNPR1.1 is a functional ortholog of AtNPR1, whereas VvNPR1.2 likely has a different function. Ectopic overexpression of VvNPR1.1 in the Arabidopsis npr1-2 mutant restored plant growth at a high SA concentration, Pathogenesis Related 1 (PR1) gene expression after treatment with SA or bacterial inoculation, and resistance to virulent Pseudomonas syringae pv. maculicola bacteria. Moreover, stable overexpression of VvNPR1.1-GFP in V. vinifera resulted in constitutive nuclear localization of the fusion protein and enhanced PR gene expression in uninfected plants. Furthermore, grapevine plants overexpressing VvNPR1.1-GFP exhibited an enhanced resistance to powdery mildew infection. This work highlights the importance of the conserved SA/NPR1 signaling pathway for resistance to biotrophic pathogens in V. vinifera.201121505863
8719150.8830Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains.202133514061
8195160.8828Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance.202133035671
8725170.8826CuO nanoparticles facilitate soybean suppression of Fusarium root rot by regulating antioxidant enzymes, isoflavone genes, and rhizosphere microbiome. BACKGROUND: Fusarium root rot is a widespread soil-borne disease severely impacting soybean yield and quality. Compared to traditional fertilizers' biological and environmental toxicity, CuO nanoparticles (NPs) hold promise for disease control in a low dose and high efficiency manner. METHODS: We conducted both greenhouse and field experiments, employing enzymatic assays, elemental analysis, qRT-PCR, and microbial sequencing (16S rRNA, ITS) to explore the potential of CuO NPs for sustainable controlling Fusarium-induced soybean disease. RESULTS: Greenhouse experiments showed that foliar spraying of CuO NPs (10, 100, and 500 mg L(-1)) promoted soybean growth more effectively than EDTA-CuNa(2) at the same dose, though 500 CuO NPs caused mild phytotoxicity. CuO NPs effectively controlled root rot, while EDTA-CuNa(2) worsened the disease severity by 0.85-34.04 %. CuO NPs exhibited more substantial antimicrobial effects, inhibiting F. oxysporum mycelial growth and spore germination by 5.04-17.55 % and 10.24-14.41 %, respectively. 100 mg L(-1) CuO NPs was the optimal concentration for balancing soybean growth and disease resistance. Additionally, CuO NPs boosted antioxidant enzyme activity (CAT, POD, and SOD) in leaves and roots, aiding in ROS clearance during pathogen invasion. Compared to the pathogen control, 100 mg L(-1) CuO NPs upregulated the relative expression of seven isoflavone-related genes (Gm4CL, GmCHS8, GmCHR, GmCHI1a, GmIFS1, GmUGT1, and GmMYB176) by 1.18-4.51 fold, thereby enhancing soybean disease resistance in place of progesterone-receptor (PR) genes. Field trials revealed that CuO NPs' high leaf-to-root translocation modulated soybean rhizosphere microecology. Compared to the pathogen control, 100 mg L(-1) CuO NPs increased nitrogen-fixing bacteria (Rhizobium, Azospirillum, Azotobacter) and restored disease-resistant bacteria (Pseudomonas, Burkholderia) and fungi (Trichoderma, Penicillium) to healthy levels. Furthermore, 100 mg L(-1) CuO NPs increased beneficial bacteria (Pedosphaeraceae, Xanthobacteraceae, SCI84, etc.) and fungi (Trichoderma, Curvularia, Hypocreales, etc.), which negatively correlated with F. oxysporum, while recruiting functional microbes to enhance soybean yield. CONCLUSION: 100 mg L(-1) CuO NPs effectively promoting soybean growth and providing strong resistance against root rot disease by improving antioxidant enzyme activity, regulating the relative expression of isoflavone-related genes, increasing beneficial bacteria and fungi and restoring disease-resistant. Our findings suggest that CuO NPs offer an environmentally sustainable strategy for managing soybean disease, with great potential for green production.202540096759
18180.8823Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial.202438336608
8815190.8822Phosphorus-Solubilizing Bacteria Enhance Cadmium Immobilization and Gene Expression in Wheat Roots to Reduce Cadmium Uptake. The application of phosphorus-solubilizing bacteria is an effective method for increasing the available phosphorus content and inhibiting wheat uptake of heavy metals. However, further research is needed on the mechanism by which phosphorus-solubilizing bacteria inhibit cadmium (Cd) uptake in wheat roots and its impact on the expression of root-related genes. Here, the effects of strain Klebsiella aerogenes M2 on Cd absorption in wheat and the expression of root-related Cd detoxification and immobilization genes were determined. Compared with the control, strain M2 reduced (64.1-64.6%) Cd uptake by wheat roots. Cd fluorescence staining revealed that strain M2 blocked the entry of exogenous Cd into the root interior and enhanced the immobilization of Cd by cell walls. Forty-seven genes related to Cd detoxification, including genes encoding peroxidase, chalcone synthase, and naringenin 3-dioxygenase, were upregulated in the Cd+M2 treatment. Strain M2 enhanced the Cd resistance and detoxification activity of wheat roots through the regulation of flavonoid biosynthesis and antioxidant enzyme activity. Moreover, strain M2 regulated the expression of genes related to phenylalanine metabolism and the MAPK signaling pathway to enhance Cd immobilization in roots. These results provide a theoretical basis for the use of phosphorus-solubilizing bacteria to remediate Cd-contaminated fields and reduce Cd uptake in wheat.202439065516