# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2003 | 0 | 0.9981 | Characterization of an Escherichia coli Isolate Coharboring the Virulence Gene astA and Tigecycline Resistance Gene tet(X4) from a Dead Piglet. tet(X4) is the critical resistance gene for tigecycline degradation that has been continually reported in recent years. In particular, pathogenic bacteria carrying tet(X4) are a severe threat to human health. However, information describing Escherichia coli coharboring tet(X4) with virulence genes is limited. Here, we isolated an E. coli strain coharboring tet(X4) and the heat-stable toxin gene astA from a dead piglet. The strain named 812A1-131 belongs to ST10. The genome was sequenced using the Nanopore and Illumina platforms. The virulence genes astA and tet(X4) are located on the chromosome and in the IncHI1-type plasmid p812A1-tetX4-193K, respectively. The plasmid could be conjugatively transferred to recipient E. coli J53 with high frequency. In vivo experiments showed that strain 812A1-131 is pathogenic to Galleria mellonella and could colonize the intestines of mice. In summary, pathogenic E. coli could receive a plasmid harboring the tet(X4) gene, which can increase the difficulty of treatment. The prevalence and transmission mechanisms of pathogenic bacteria coharboring the tet(X4) gene need more attention. | 2023 | 37513750 |
| 2004 | 1 | 0.9980 | Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally. | 2020 | 32345737 |
| 1890 | 2 | 0.9978 | Emergence and Characterization of Tigecycline Resistance Gene tet(X4) in ST609 Escherichia coli Isolates from Wastewater in Turkey. Emergence of pathogens harboring tigecycline resistance genes incurs great concerns. Wastewater is recognized as the important reservoir of antimicrobial resistance genes. Here we characterized the phenotypes and genotypes of bacteria carrying tet(X4) from wastewater in Turkey for the first time. Four tet(X4)-positive Escherichia coli isolates were identified and characterized by PCR, Sanger sequencing, antimicrobial susceptibility testing, conjugation assays, Illumina sequencing, nanopore sequencing and bioinformatic analysis. Four tet(X4)-harboring isolates were multidrug-resistant (MDR) bacteria and the tet(X4) gene was nontransferable in four isolates. Genetic analysis revealed that tet(X4) genes in four isolates were located on plasmids co-harboring two replicons IncFIA(HI1) and IncFIB(K). However, none of the four plasmids carried genes associated with horizontal transfer of plasmids. The coexistence of bla(SHV-12)-bearing IncX3-type plasmid and tet(X4)-harboring plasmid was also found in one isolate. These findings indicate that continuous surveillance of the tet(X4)-bearing isolates in different environments worldwide should be strengthened. IMPORTANCE The emergence of tigecycline resistance genes in humans and animals in China seriously threatens the clinical utility of tigecycline, but the molecular epidemiology of tigecycline-resistant bacteria in other countries remained largely unknown. Therefore, it is necessary to learn the prevalence and molecular characteristics of bacteria carrying tigecycline resistance genes, particularly the mobilizable tet(X4), in other countries. In the study, we first described the presence and molecular characteristics of the tet(X4)-positive E. coli isolates from wastewater in Turkey. Four tet(X4)-bearing isolates belonged to ST609, an E. coli clone commonly found from humans, animals and the environment. These findings highlight the importance of monitoring the tet(X4) gene in different settings globally. | 2022 | 35863037 |
| 1514 | 3 | 0.9977 | Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally. | 2022 | 34599956 |
| 1891 | 4 | 0.9977 | Emergence of plasmid-mediated fosfomycin resistance among Escherichia coli harboring fosA4, tet(X4), and mcr-1 genes in wild birds. Fosfomycin represents a last-line reserve antibiotic for the treatment of infections caused by multidrug-resistant (MDR) bacteria. Nevertheless, the advent of plasmid-mediated fosfomycin resistance among bacteria from humans and food animals incurs great concern. This study reports the detection and genomic portrait of the plasmid-mediated fosfomycin resistance gene, fosA4, amid Escherichia coli from wild birds co-harboring plasmid-mediated tigecycline resistance gene, tet(X4), and colistin resistance gene, mcr-1. A total of 100 samples from fecal droppings of wild birds in the urban parks in Faisalabad, Pakistan were subjected for the isolation and characterization of fosfomycin-resistant E. coli. The fosA4 gene was identified in 11 (11%) of the E. coli isolates, and all exhibited an MDR phenotype. Genome sequencing confirmed that all the fosA4-positive isolates also co-harbored the mobile tigecycline resistance tet(X4) gene on a large MDR IncFII plasmid. One isolate PKF8 belonging to ST48 also co-carried the colistin resistance gene mcr-1 on the IncHI2 plasmid. To the extent of our knowledge, this is the first discovery of E. coli isolates in wild birds co-harboring the mcr-1, fosA4, and tet(X4) genes. The emergence of these pivotal antimicrobial resistance genes in wild birds native to South Asia with their close association to humans and animals is alarming. Our findings highlight the urgent need for further surveillance of bacterial resistance to last-resort antibiotics in the clinics, animal farming, and environment with the One Health approach. IMPORTANCE: The global spread of the plasmid-mediated fosfomycin resistance gene fosA4 bearing Escherichia coli strains incurs a public health concern. However, research focusing on the pervasiveness of fosA4-positive isolates in wild birds is still rare, and to the best of our knowledge, this is the first documentation from South Asia highlighting the concurrent presence of the fosA4, mcr-1, and tet(X4) genes within E. coli isolates recovered from fecal samples of wild birds in Pakistan. This co-existence of ARGs along with phylogenetic analysis revealed that MDR plasmids carried by E. coli isolates have the ability to spread horizontally between wild birds, food animals, and humans. Co-existence of fosA4, tet(X4), and mcr-1-carrying plasmids is worrying and warrants further investigation. | 2025 | 40079598 |
| 1776 | 5 | 0.9977 | Broad-Host Dissemination of Plasmids Coharboring the fos Operon for Fructooligosaccharide Metabolism with Antibiotic Resistance Genes. The fos operon encoding short-chain fructooligosaccharide (scFOS) utilization enables bacteria of the family Enterobacteriaceae to grow and be sustained in environments where they would struggle to survive. Despite several cases of the detection of the fos operon in isolates of avian and equine origins, its global distribution in bacterial genomes remains unknown. The presence of the plasmid-harbored fos operon among resistant bacteria may promote the spread of antibiotic resistance. A collection of 11,538 antimicrobial-resistant Enterobacteriaceae isolates from various sources was screened for the fosT gene encoding the scFOS transporter. Out of 307 fosT-positive isolates, 80% of them originated from sources not previously linked to fosT (humans, wastewater, and animals). The chromosomally harbored fos operon was detected in 163/237 isolates subjected to whole-genome sequencing. In the remaining 74 isolates, the operon was carried by plasmids. Further analyses focusing on the isolates with a plasmid-harbored fos operon showed that the operon was linked to various incompatibility (Inc) groups, including the IncHI1, IncF-type, IncK2, IncI1, and IncY families. Long-read sequencing of representative plasmids showed the colocalization of fos genes with antibiotic resistance genes (ARGs) in IncHI1 (containing a multidrug resistance region), IncK2 (bla(TEM-1A)), IncI1 [sul2 and tet(A)], and IncY [aadA5, dfrA17, sul2, and tet(A)] plasmids, while IncF-type plasmids had no ARGs but coharbored virulence-associated genes. Despite the differences in the locations and structures of the fos operons, all isolates except one were proven to utilize scFOSs. In this study, we show that the fos operon and its spread are not strictly bound to one group of plasmids, and therefore, it should not be overlooked. IMPORTANCE It was believed that members of the family Enterobacteriaceae are unable to grow under conditions with short-chain fructooligosaccharides as the only source of carbon. Nevertheless, the first Escherichia coli isolate from chicken intestine was able to utilize these sugars owing to the chromosomally harbored fos operon. Studies on E. coli isolates from horses discovered the horizontal transfer of the fos operon on IncHI1 plasmids along with genes for antibiotic resistance. The first plasmid detected was pEQ1, originating from the feces of a hospitalized horse in the Czech Republic. Follow-up studies also revealed the dissemination of the IncHI1 plasmid-harbored fos operon in the Netherlands, Germany, Denmark, and France among healthy horses. Despite several cases of detection of the fos operon, its global distribution in bacterial genomes remains unknown. The fos operon possibly plays a role in the adaptation of plasmids among resistant bacteria and therefore may promote the spread of antibiotic resistance. | 2023 | 37578374 |
| 1520 | 6 | 0.9976 | Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. OBJECTIVES: The objective of this study was to characterize colistin-resistant bacteria isolated from pigs on a farm in Great Britain following identification of a plasmid-borne colistin resistance mechanism in Escherichia coli from China. METHODS: Phenotypic antimicrobial susceptibility testing was undertaken by broth dilution and WGS was performed to detect the presence of genes encoding resistance and virulence. Transferable colistin resistance was investigated by conjugation. RESULTS: Two E. coli and one Salmonella Typhimurium variant Copenhagen were shown to be MDR, including resistance to colistin, with one E. coli and the Salmonella carrying the mcr-1 gene; all three harboured chromosomal mutations in genes conferring colistin resistance and both E. coli harboured β-lactamase resistance. The Salmonella mcr-1 plasmid was highly similar to pHNSHP45, from China, while the E. coli mcr-1 plasmid only had the ISApII and mcr-1 genes in common. The frequency of mcr-1 plasmid transfer by conjugation to recipient Enterobacteriaceae from Salmonella was low, lying between 10(-7) and 10(-9) cfu/recipient cfu. We were unable to demonstrate mcr-1 plasmid transfer from the E. coli. Plasmid profiling indicated transfer of multiple plasmids from the Salmonella resulting in some MDR transconjugants. CONCLUSIONS: Identification of the mcr-1 gene in Enterobacteriaceae from pigs confirms its presence in livestock in Great Britain. The results suggest dissemination of resistance through different horizontally transferable elements. The in vitro transfer of multiple plasmids carrying colistin and other resistances from the Salmonella isolate underlines the potential for wider dissemination and recombination. | 2016 | 27147305 |
| 1887 | 7 | 0.9976 | Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China. Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria. | 2021 | 33853876 |
| 1888 | 8 | 0.9976 | High prevalence of Escherichia coli co-harboring conjugative plasmids with colistin- and carbapenem resistance genes in a wastewater treatment plant in China. Emergence and dissemination of resistance to last-resort antibiotics such as carbapenem and colistin is a growing, global health concern. Wastewater treatment plants (WWTPs) link human activities and the environment, can act as reservoirs and sources for emerging antibiotic resistance, and likely play a large role in antibiotic resistance transmission. The aim of this study was to investigate occurrence and characteristics of colistin- and carbapenem-resistant Escherichia coli (CCREC) in wastewater and sludge samples collected over a one-year period from different functional areas of an urban WWTP in Jinan city, Shandong, China. A total of 8 CCREC were isolated from 168 samples with selective agar and PCR, corresponding to high prevalence of 4.8%, co-harboring carbapenem resistance genes (bla(NDM)) and colistin resistance gene (mcr-1) and subsequently whole-genome sequenced. Additionally, all isolates were multidrug-resistant by antimicrobial susceptibility testing and carried a variety of antibiotic resistance genes. Two isolates carrying virulence genes associated with avian pathogenic E. coli were identified, one belonging to the high-risk clone O101:H9-ST167. Southern blotting was used to characterize CCREC isolates and plasmids carrying bla(NDM)-genes or mcr-1 could be transferred to a recipient strain E. coli J53 by in vitro conjugation assays. Resistance to other antibiotic classes were sporadically co-transferred to the transconjugant. Transposition of and mcr-1-carrying element from a transferable IncHI2-plasmid was observed among two CCREC clones isolated within 4 days of each other. The occurrence of multidrug-resistant CCREC capable of transferring their antibiotic resistance genotypes via conjugative plasmids is alarming. WWTPs bring bacteria from different sources together, providing opportunities for horizontal exchange of DNA among compatible hosts. Further dissemination of the colistin-, carbapenem-, or both colistin- and carbapenem resistant E. coli could lead to a serious threat to public health. | 2023 | 36989999 |
| 9959 | 9 | 0.9976 | Cryptic environmental conjugative plasmid recruits a novel hybrid transposon resulting in a new plasmid with higher dispersion potential. Cryptic conjugative plasmids lack antibiotic-resistance genes (ARGs). These plasmids can capture ARGs from the vast pool of the environmental metagenome, but the mechanism to recruit ARGs remains to be elucidated. To investigate the recruitment of ARGs by a cryptic plasmid, we sequenced and conducted mating experiments with Escherichia coli SW4848 (collected from a lake) that has a cryptic IncX (IncX4) plasmid and an IncF (IncFII/IncFIIB) plasmid with five genes that confer resistance to aminoglycosides (strA and strB), sulfonamides (sul2), tetracycline [tet(A)], and trimethoprim (dfrA5). In a conjugation experiment, a novel hybrid Tn21/Tn1721 transposon of 22,570 bp (designated Tn7714) carrying the five ARG mobilized spontaneously from the IncF plasmid to the cryptic IncX plasmid. The IncF plasmid was found to be conjugative when it was electroporated into E. coli DH10B (without the IncX plasmid). Two parallel conjugations with the IncF and the new IncX (carrying the novel Tn7714 transposon) plasmids in two separate E. coli DH10B as donors and E. coli J53 as the recipient revealed that the conjugation rate of the new IncX plasmid (with the novel Tn7714 transposon and five ARGs) is more than two orders of magnitude larger than the IncF plasmid. For the first time, this study shows experimental evidence that cryptic environmental plasmids can capture and transfer transposons with ARGs to other bacteria, creating novel multidrug-resistant conjugative plasmids with higher dispersion potential. IMPORTANCE: Cryptic conjugative plasmids are extrachromosomal DNA molecules without antibiotic-resistance genes (ARGs). Environmental bacteria carrying cryptic plasmids with a high conjugation rate threaten public health because they can capture clinically relevant ARGs and rapidly spread them to pathogenic bacteria. However, the mechanism to recruit ARG by cryptic conjugative plasmids in environmental bacteria has not been observed experimentally. Here, we document the first translocation of a transposon with multiple clinically relevant ARGs to a cryptic environmental conjugative plasmid. The new multidrug-resistant conjugative plasmid has a conjugation rate that is two orders of magnitude higher than the original plasmid that carries the ARG (i.e., the new plasmid from the environment can spread ARG more than two orders of magnitude faster). Our work illustrates the importance of studying the mobilization of ARGs in environmental bacteria. It sheds light on how cryptic conjugative plasmids recruit ARGs, a phenomenon at the root of the antibiotic crisis. | 2024 | 38771049 |
| 1509 | 10 | 0.9976 | Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. OBJECTIVES: The aim of this study was to identify and characterize plasmids carrying qnrS1, qnrB2 and qnrB19 genes identified in Salmonella strains from The Netherlands. The identification of plasmids may help to follow the dissemination of these resistance genes in different countries and environments. METHODS: Plasmids from 33 qnr-positive Salmonella strains were transferred to Escherichia coli and analysed by restriction, Southern blot hybridization, PCR and sequencing of resistance determinants. They were also assigned to incompatibility groups by PCR-based replicon typing, including three additional PCR assays for the IncU, IncR and ColE groups. The collection included isolates from humans and one from chicken meat. RESULTS: Five IncN plasmids carrying qnrS1, qnrB2 and qnrB19 genes were identified in Salmonella enterica Bredeney, Typhimurium PT507, Kentucky and Saintpaul. qnrS1 genes were also located on three further plasmid types, belonging to the ColE (in Salmonella Corvallis and Anatum), IncR (in Salmonella Montevideo) and IncHI2 (in Salmonella Stanley) groups. CONCLUSIONS: Multiple events of mobilization, transposition and replicon fusion generate the complexity observed in qnr-positive isolates that are emerging worldwide. Despite the fact that the occurrence of qnr genes in bacteria from animals is scarcely reported, these genes are associated with genetic elements and located on plasmids that are recurrent in animal isolates. | 2009 | 19001452 |
| 1893 | 11 | 0.9975 | Genetic analysis of the first mcr-1 positive Escherichia coli isolate collected from an outpatient in Chile. Global dissemination of mcr-like genes represents a serious threat to public health since it jeopardizes the effectiveness of colistin, an antibiotic used as a last-resort treatment against highly antibiotic-resistant bacteria. In 2017, a mcr-1-positive isolate of Escherichia coli was found in Chile for the first time. Herein we report the genetic features of this strain (UCO-457) by whole-genome sequencing (WGS) and conjugation experiments. The UCO-457 strain belonged to ST4204 and carried a 285 kb IncI2-type plasmid containing the mcr-1 gene. Moreover, this plasmid was transferred by conjugation to an E. coli J53 strain at high frequency. The isolate harbored the cma, iroN, and iss virulence genes and did carry resistance genes to trimethoprim/sulfamethoxazole and fluoroquinolones. Other antibiotic resistance determinants such as β-lactamases-encoding genes were not detected, making the isolate highly susceptible to these antibiotics. Our results revealed that such susceptible isolates could be acting as platforms to disseminate plasmid-mediated colistin resistance. Based on this evidence, we consider that mcr-like prevalence deserves urgent attention and should be examined not only in highly resistant bacteria but also in susceptible isolates. | 2019 | 31228460 |
| 1727 | 12 | 0.9975 | Coexistence and genomics characterization of mcr-1 and extended-spectrum-β-lactamase-producing Escherichia coli, an emerging extensively drug-resistant bacteria from sheep in China. The emergence of pathogens harboring multiple resistance genes poses a great threat to global public health. However, the coexistence of mobile resistance genes that provide resistance to both third-generation cephalosporins and colistin in sheep-origin Escherichia coli has not been previously investigated in China. This study is the first to characterize five E. coli isolates from sheep in Shaanxi province that harbor both Extended-Spectrum β-Lactamase (ESBL) and mcr-1 resistance genes. The isolates were identified and characterized by Illumina sequencing, nanopore sequencing, bioinformatic analysis, conjugation experiments, and antimicrobial susceptibility testing. Genetic analysis revealed that bla(CTX-M-55) gene, mediated by the IS26, was located on the IncFIB-IncFIC plasmid, while the mcr-1 gene was located on the IncI2(Delta) plasmid. Notably, two copies of bla(CTX-M-55) gene were also identified on the chromosome of one isolate (SX45), facilitated by the ISEcp1 insertion sequence. Additionally, the plasmid pSX23-2 was identified as a complex plasmid derived through homologous recombination of pMG337 from E. coli (MK878890) and pZY-1 from Citrobacter freundii (CP055248). Data mining of publicly available databases revealed that isolates carrying both bla(CTX-M-55) and mcr-1 genes have been found in humans, animals, and the environment, indicating the widespread presence of these critical resistance genes across different niches. Antimicrobial susceptibility testing showed that the five isolates were resistant to a nearly all tested antibiotics, except meropenem. Conjugative transfer experiments demonstrated that the IncFIB-IncFIC and IncI2(Delta) plasmids carrying mcr-1 and bla(CTX-M-55) were capable of transferring between different sequence types (STs) of sheep-origin E. coli, including ST10, ST162, and ST457. This finding suggests the potential for wide dissemination of these resistance markers among diverse E. coli strains. Overall, the characterization of these ESBL and mcr-1 co-harboring isolates enhances our understanding of the spread of these resistance genes in sheep-origin E. coli. Global surveillance of these isolates, particularly within the One Health framework, is essential to monitor and mitigate the risks posed by the dissemination of these resistance genes across various settings. | 2024 | 39426540 |
| 2002 | 13 | 0.9975 | IncHI1 plasmids mediated the tet(X4) gene spread in Enterobacteriaceae in porcine. The tigecycline resistance gene tet(X4) was widespread in various bacteria. However, limited information about the plasmid harboring the tet(X4) gene spread among the different species is available. Here, we investigated the transmission mechanisms of the tet(X4) gene spread among bacteria in a pig farm. The tet(X4) positive Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae and Enterobacter hormaeche were identified in the same farm. The whole genome sequencing (WGS) analysis showed that the K. pneumoniae belonged to ST727 (n = 11) and ST3830 (n = 1), E. cloacae and E. hormaeche belonged to ST524 (n = 1) and ST1862 (n = 1). All tet(X4) genes were located on the IncHI1 plasmids that could be conjugatively transferred into the recipient E. coli C600 at 30°C. Moreover, a fusion plasmid was identified that the IncHI1 plasmid recombined with the IncN plasmid mediated by ISCR2 during the conjugation from strains B12L to C600 (pB12L-EC-1). The fusion plasmid also has been discovered in a K. pneumoniae (K1L) that could provide more opportunities to spread antimicrobial resistance genes. The tet(X4) plasmids in these bacteria are derived from the same plasmid with a similar structure. Moreover, all the IncHI1 plasmids harboring the tet(X4) gene in GenBank belonged to the pST17, the newly defined pMLST. The antimicrobial susceptibility testing was performed by broth microdilution method showing the transconjugants acquired the most antimicrobial resistance from the donor strains. Taken together, this report provides evidence that IncHI1/pST17 is an important carrier for the tet(X4) spread in Enterobacteriaceae species, and these transmission mechanisms may perform in the environment. | 2023 | 37065147 |
| 9967 | 14 | 0.9975 | The biology of IncI2 plasmids shown by whole-plasmid multi-locus sequence typing. IncI2 type plasmids are medium-sized (~55-80 kb) conjugative plasmids that have been found carrying important antimicrobial resistance genes but have also been frequently found as cryptic plasmids. The DNA sequences for 147 fully sequenced IncI2 plasmids were studied by a whole-plasmid multi-locus sequence typing (wpMLST) scheme. A total of 171 loci were identified of which 52 were considered core (carried by greater than 95% of the plasmids). Most of the plasmids carrying the antimicrobial gene mcr-1 were in a distinct clade while most of the antimicrobial gene free plasmids were more distantly related. However, the host strains of bacteria were disparate for both groups of plasmids, showing that conjugal transfer of IncI2 plasmid is frequent. The mcr-1 gene was likely to have been introduced into IncI2 plasmids multiple times. It was also observed that the genes for conjugation showed significant linkage disequilibrium despite substantial diversity for most of those genes. Genes associated with biofilm formation were also among the core genes. The core genes can be considered the cohesive unit that defines the IncI2 plasmid group. Given the role conjugation can play in biofilm formation, it was concluded that conjugation is an active survival strategy for IncI2 plasmids. The IncI2 plasmid will have selective advantage when the plasmid-bearing bacteria are introduced to a new animal host that carries potential conjugal mates. | 2019 | 31629716 |
| 1725 | 15 | 0.9975 | Letter to the Editor: Escherichia fergusonii Harboring IncHI2 Plasmid Containing mcr-1 Gene-A Novel Reservoir for Colistin Resistance in Brazil. Emergence of colistin-resistant bacteria harboring mobile colistin resistance genes (mcr genes) pose a threat for food-producing animals and humans. In this article, we aim to highlight the emergence of Escherichia fergusonii as an important new reservoir to mcr-1-harboring plasmid in poultry production. Three strains closely related were isolated from cloacal swabs. Their genome contains four plasmids, including a 182,869 bp IncHI2 plasmid harboring the colistin resistance gene mcr-1. These results will contribute to our understanding of plasmid-mediated mcr-1 gene presence and transmission in E. fergusonii. | 2021 | 33001761 |
| 1886 | 16 | 0.9975 | Comparative genomic analysis of Colistin resistant Escherichia coli isolated from pigs, a human and wastewater on colistin withdrawn pig farm. In this study, genomic and plasmid characteristics of Escherichia coli were determined with the aim of deducing how mcr genes may have spread on a colistin withdrawn pig farm. Whole genome hybrid sequencing was applied to six mcr-positive E. coli (MCRPE) strains isolated from pigs, a farmworker and wastewater collected between 2017 and 2019. Among these, mcr-1.1 genes were identified on IncI2 plasmids from a pig and wastewater, and on IncX4 from the human isolate, whereas mcr-3 genes were found on plasmids IncFII and IncHI2 in two porcine strains. The MCRPE isolates exhibited genotypic and phenotypic multidrug resistance (MDR) traits as well as heavy metal and antiseptic resistance genes. The mcr-1.1-IncI2 and IncX4 plasmids carried only colistin resistance genes. Whereas, the mcr-3.5-IncHI2 plasmid presented MDR region, with several mobile genetic elements. Despite the MCRPE strains belonged to different E. coli lineages, mcr-carrying plasmids with high similarities were found in isolates from pigs and wastewater recovered in different years. This study highlighted that several factors, including the resistomic profile of the host bacteria, co-selection via adjunct antibiotic resistance genes, antiseptics, and/or disinfectants, and plasmid-host fitness adaptation may encourage the maintenance of plasmids carrying mcr genes in E. coli. | 2023 | 36991093 |
| 3041 | 17 | 0.9975 | pCERC1, a small, globally disseminated plasmid carrying the dfrA14 cassette in the strA gene of the sul2-strA-strB gene cluster. Commensal Escherichia coli from healthy adult humans were screened for antibiotic resistance genes. Two unrelated strains contained the sul2 sulphonamide resistance gene and strAB streptomyicn resistance genes with the dfrA14 trimethoprim resistance gene cassette in the strA gene and conferred resistance to trimethoprim and sulphamethoxazole. A 6.8 kb plasmid, pCERC1, that contains these resistance genes was recovered and sequenced. Deletions were constructed, and the pCERC1 replication region was confined to a 1 kb segment carrying genes for RNAs that are closely related to the ColE1 replication initiation RNAs. Polymerase chain reaction assays, developed to detect the sul2-strA-strB gene cluster in this context, identified a streptomycin and sulphonamide resistance plasmid, pCERC2, identical to pCERC1 without the dfrA14 cassette in two further E. coli isolates. Bioinformatic analysis revealed plasmids similar to pCERC1 and two more members of this family. One, the probable progenitor, carries only the sul2 gene adjacent to the small mobile element CR2. The other has a variant resistance gene cluster that has evolved from pCERC2 via acquisition of the tet(A) tetracycline resistance determinant. pCERC1 and pCERC2 have been detected in many countries, indicating a global distribution and appear to have been circulating in Gram-negative bacteria for more than 25 years. | 2012 | 22416992 |
| 1511 | 18 | 0.9975 | Characterization of an Extensively Drug-Resistant Salmonella Kentucky ST198 Co-Harboring cfr, mcr-1 and tet(A) Variant from Retail Chicken Meat in Shanghai, China. The emergence of extensively drug-resistant (XDR) foodborne pathogens poses grave threats to food safety. This study characterizes the genome of an XDR Salmonella Kentucky isolate (Sal23C1) co-harboring cfr, mcr-1 and tet(A) from Shanghai chicken meat in 2022, which was the only isolate co-harboring these three key resistance genes among 502 screened Salmonella isolates. Genomic analysis revealed that the multidrug resistance gene cfr, which confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins and streptogramin A, was identified within a Tn3-IS6-cfr-IS6 structure on the transferable plasmid p3Sal23C1 (32,387 bp), showing high similarity to the Citrobacter braakii plasmid pCE32-2 (99% coverage, 99.98% identity). Concurrently, the mcr-1 gene resided in a pap2-mcr-1 structure on the transferable IncI2 plasmid p2Sal23C1 (63,103 bp). Notably, both genes could be co-transferred to recipient bacteria via conjugative plasmids at frequencies of (1.15 ± 0.98) × 10(-6). Furthermore, a novel ~79 kb multidrug resistance region (MRR) chromosomally inserted at the bcfH locus was identified, carrying fosA3, mph(A), rmtB, qnrS1 and bla(CTX-M-55). Additionally, a novel Salmonella Genomic Island 1 variant (SGI1-KI) harbored aadA7, qacEΔ1, sul1 and the tet(A) variant. The acquisition of these antibiotic resistance genes in this isolate enhanced bacterial resistance to 21 antimicrobials, including resistance to the critical last-resort antibiotics tigecycline and colistin, which left virtually no treatment options for potential infections. Taken together, this is the first comprehensive genomic report of an XDR poultry-derived Salmonella Kentucky isolate co-harboring cfr, mcr-1 and the tet(A) variant. The mobility of these resistance genes, facilitated by IS6 elements and conjugative plasmids, underscores significant public health risks associated with such isolates in the food chain. | 2025 | 40941142 |
| 9961 | 19 | 0.9975 | Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. OBJECTIVES: To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process. METHODS: pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids. RESULTS: The nine pAQU-type plasmids ranged from ∼160 to 206 kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process. CONCLUSIONS: This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing. | 2017 | 28637205 |