BIVALVES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
362300.9706Multiresistant bacteria: Invisible enemies of freshwater mussels. Freshwater mussels are among the most endangered groups of fauna anywhere in world. The indiscriminate use of antibiotics has led to the emergence of resistant strains. These antibiotic-resistant bacteria play a key role in increasing the risk allied with the use of surface water and in spread of resistance genes. Two endangered freshwater mussel species, Margaritifera margaritifera and Potomida littoralis, were sampled at 4 sampling sites along a 50 km stretch of River Tua. Water samples were taken at same sites. Of the total of 135 isolates, 64.44% (39.26% from water and 25.19% from mussels) were coliform bacteria. Site T1, with the lowest concentration of coliform bacteria, and site T2 were the only ones where M. margaritifera was found. No E. coli isolates were found in this species and the pattern between water and mussels was similar. P. littoralis, which was present at T3/T4 sites, is the one that faces the highest concentration of bacterial toxins, which are found in treated wastewater effluents and around population centers. Sites T3/T4 have the isolates (water and mussels) with the highest resistance pattern, mainly to β-lactams. Water and P. littoralis isolates (T3/T4) showed resistance to penicillins and their combination with clavulanic acid, and to cephalosporins, precisely to a fourth generation of cephalosporin antibiotics. The analysis provides important information on the risk to water systems, as well as the need to investigate possible management measures. It is suggested that future studies on the health status of freshwater bivalves should incorporate measures to indicate bacteriological water quality.202234902528
812910.9702Pesticide contamination and antimicrobial resistance: Two threats to the Neotropical Otter (Lontra longicaudis) in the Peñas Blancas River Basin, Costa Rica. The effects of synthetic pesticides on antibiotic-resistance genes (ARGs) in bacterial communities from contaminated waters are unclear. Otters in the Peñas Blancas basin encounter various anthropogenic residues, including pesticides. In 2022, we analyzed the presence of pesticides in six water samples and ARGs in eight otter fecal samples. Thirteen pesticides (herbicides, insecticides, fungicides, and multi-target) and seven ARGs (qnrS, tetA, tetB, tetQ, tetW, sulI, sulII) were detected. Regulated pesticides such as chlorpyrifos and ethoprophos, along with diazinon, diuron, imidacloprid, and terbutryn were found. These pesticides have been implicated in promoting antimicrobial resistance (AMR) in bacteria, particularly when combined with sub-lethal doses of antibiotics. Elevated levels of ethoprophos (0.67 ng/L) and a fecal sample containing four ARGs (tetA, tetB, sulI, and sulII) came from the upper basin. Our findings reveal pesticide application practices in the region, and highlight the potential risk of pesticide exposure to wildlife, including development of AMR.202540473152
767920.9699The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.202235463633
665130.9697A complex cyclical One Health pathway drives the emergence and dissemination of antimicrobial resistance. Since their commercialization, scientists have known that antimicrobial use kills or inhibits susceptible bacteria while allowing resistant bacteria to survive and expand. Today there is widespread antimicrobial resistance (AMR), even to antimicrobials of last resort such as the carbapenems, which are reserved for use in life-threatening infections. It is often convenient to assign responsibility for this global health crisis to the users and prescribers of antimicrobials. However, we know that animals never treated with antimicrobials carry clinically relevant AMR bacteria and genes. The causal pathway from bacterial susceptibility to resistance is not simple, and dissemination is cyclical rather than linear. Amplification of AMR occurs in healthcare environments and on farms where frequent exposure to antimicrobials selects for resistant bacterial populations. The recipients of antimicrobial therapy release antimicrobial residues, resistant bacteria, and resistance genes in waste products. These are reduced but not removed during wastewater and manure treatment and enter surface waters, soils, recreational parks, wildlife, and fields where animals graze and crops are grown for human and animal consumption. The cycle is complete when a patient carrying AMR bacteria is treated with antimicrobials that amplify the resistant bacterial populations. Reducing the development and spread of AMR requires a One Health approach with the combined commitment of governments, medical and veterinary professionals, agricultural industries, food and feed processors, and environmental scientists. In this review and in the companion Currents in One Health by Ballash et al, JAVMA, April 2024, we highlight just a few of the steps of the complex cyclical causal pathway that leads to the amplification, dissemination, and maintenance of AMR.202438467112
670940.9694Molluscs-A ticking microbial bomb. Bivalve shellfish consumption (ark shells, clams, cockles, and oysters) has increased over the last decades. Following this trend, infectious disease outbreaks associated with their consumption have been reported more frequently. Molluscs are a diverse group of organisms found wild and farmed. They are common on our tables, but unfortunately, despite their great taste, they can also pose a threat as a potential vector for numerous species of pathogenic microorganisms. Clams, in particular, might be filled with pathogens because of their filter-feeding diet. This specific way of feeding favors the accumulation of excessive amounts of pathogenic microorganisms like Vibrio spp., including Vibrio cholerae and V. parahaemolyticus, Pseudomonas aeruginosa, Escherichia coli, Arcobacter spp., and fecal coliforms, and intestinal enterococci. The problems of pathogen dissemination and disease outbreaks caused by exogenous bacteria in many geographical regions quickly became an unwanted effect of globalized food supply chains, global climate change, and natural pathogen transmission dynamics. Moreover, some pathogens like Shewanella spp., with high zoonotic potential, are spreading worldwide along with food transport. These bacteria, contained in food, are also responsible for the potential transmission of antibiotic-resistance genes to species belonging to the human microbiota. Finally, they end up in wastewater, thus colonizing new areas, which enables them to introduce new antibiotic-resistance genes (ARG) into the environment and extend the existing spectrum of ARGs already present in local biomes. Foodborne pathogens require modern methods of detection. Similarly, detecting ARGs is necessary to prevent resistance dissemination in new environments, thus preventing future outbreaks, which could threaten associated consumers and workers in the food processing industry.202236699600
665450.9694Natural recreational waters and the risk that exposure to antibiotic resistant bacteria poses to human health. Antimicrobial resistance (AMR) is widely recognised as a considerable threat to human health, wellbeing and prosperity. Many clinically important antibiotic resistance genes are understood to have originated in the natural environment. However, the complex interactions between humans, animals and the environment makes the health implications of environmental AMR difficult to quantify. This narrative review focuses on the current state of knowledge regarding antibiotic resistant bacteria (ARB) in natural bathing waters and implications for human health. It considers the latest research focusing on the transmission of ARB from bathing waters to humans. The limitations of existing evidence are discussed, as well as research priorities. The authors are of the opinion that future studies should include faecally contaminated bathing waters and people exposed to these environments to accurately parameterise environment-to-human transmission.202234739925
260560.9693Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.201930980689
341370.9691Tetracycline resistance gene tet(M) of a marine bacterial strain is not accumulated in bivalves from seawater in clam tank experiment and mussel monitoring. Antibiotic resistance genes (ARGs) are found in marine as well as terrestrial bacteria. Bivalves are known to accumulate chemical pollutants and pathogenic microbes, however, the fate of ARGs in bivalves after the intake of ARG-possessing bacteria is not known. Here we show that the copy number of oxytetracycline resistance gene tet(M) increased rapidly in the clam digestive tract by filtering water, then remained constant over 96h in a tank experiment even with the addition of tet(M)-possessing bacteria every 24h. >99.9% of the added tet(M) was decomposed, reaching a balanced state. Environmental sampling of mussel digestive tract and seawater supported the hypothesis that tet(M) was decomposed in bivalves as tet(M) was present in seawater from April to October at a concentration of 10(-5) to 10(-6) copies/16S, whereas tet(M) in mussels was mostly below the detection limit. Two (April) and three (July and October) individual mussels were positive for tet(M) with a concentration equivalent to that of seawater. We therefore conclude that bivalves do not accumulate tet(M) from seawater.201829627540
657980.9691Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. The risks of pharmaceuticals and endocrine disrupting compounds (P&EDC) to the environment and human health are a current topic of interest. Hundreds of P&EDC may reach the environment, hence, there is a need to rank the level of concern of human exposure to these compounds. Thus, this work aimed at setting a priority list of P&EDC in Brazil, by studying their occurrence in raw and drinking water, calculating health guideline values (GV), and estimating the risks of population exposure to water intake. Data on the Brazilian pharmaceutical market as well as published data of the monitoring of Brazilian natural and drinking water have been collected by means of an exhaustive literature review. Furthermore, many foreign data were also collected to enable a comparison of the values found in Brazilian studies. A list of 55 P&EDC that have the potential to be found in Brazilian water is proposed, and for 41 of these a risk assessment was performed by estimating their margin of exposure (ME), by considering their occurrence in drinking water, and guideline values estimated from reported acceptable daily intake (ADI) data. For seven compounds the risk was deemed high (three estrogens and four anti-inflammatories), whereas for another seven compounds, it was regarded as an 'alert' situation. Although such risk analysis is conservative, since it has been calculated based on the highest reported P&EDC concentration in drinking water, it highlights the need to enhance their monitoring in Brazil to strengthen the database and support decision makers. An analysis of the occurrence of antimicrobial resistance agents (antibiotics, resistant bacteria, and resistance genes) in surface waters was also carried out and confirmed that such agents are present in water sources throughout Brazil, which deserves the attention of policy makers and health agents to prevent dissemination of antimicrobial resistance through water use.202134831521
655990.9691Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks. The discovery and evolution of antibiotics for humans and animals are among the most significant milestones of the 20th century. However, antibiotics play a significant role in the induction and dissemination of antibiotic resistance genes (ARGs) in groundwater that has recently become the primary environmental concern. They are administrated to humans and animals on a large scale and are persistent in the environment. Long term impacts of antibiotics in the ecological environment are not still clearly understood, and their occurrence and consequences have become an important research topic worldwide. The hotspot reservoirs of antibiotics and ARGs include medical facilities, livestock farming, aquaculture, landfills, on-site sanitation systems, sewage, and wastewater treatment plants. Our meta-analysis demonstrated that antibiotics, including ciprofloxacin, sulfamethoxazole, erythromycin, and tetracycline were found at high concentrations while sulfonamide and tetracycline ARGs were more prevalent in groundwater. Moreover, the highest reported concentrations of targeted antibiotics were used to calculate hazard quotient (HQ) and risk quotient (RQ) in global groundwater bodies to estimate environmental and human health risks, respectively. Due to limited available ecotoxicity data, RQ and HQ can only be calculated for a few antibiotics in groundwater. The risk assessment of antibiotics demonstrated that antibiotics with their current groundwater levels pose no human health risks, whereas only ciprofloxacin, erythromycin, flumequine, and sulfamethoxazole revealed moderate to low risks to aquatic species. The occurrence of ARGs and antibiotic resistant bacteria (ARBs) in groundwater is also not likely to pose human health risk but consumption of groundwater contaminated with ARGs and ARBs might contribute to the development of antibiotic resistance in humans. The present review also sheds light on the relationship between ARGs, antibiotics, microbial communities, and environmental factors in groundwater, and reported a significant correlation between them. It also addresses prospects for future outlooks into further areas of relevant research.202033032106
7661100.9691Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.202336951567
6548110.9690Review of Antimicrobial Resistance in Wastewater in Japan: Current Challenges and Future Perspectives. Antimicrobial resistance (AMR) circulates through humans, animals, and the environments, requiring a One Health approach. Recently, urban sewage has increasingly been suggested as a hotspot for AMR even in high-income countries (HICs), where the water sanitation and hygiene infrastructure are well-developed. To understand the current status of AMR in wastewater in a HIC, we reviewed the epidemiological studies on AMR in the sewage environment in Japan from the published literature. Our review showed that a wide variety of clinically important antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antimicrobial residues are present in human wastewater in Japan. Their concentrations are lower than in low- and middle-income countries (LMICs) and are further reduced by sewage treatment plants (STPs) before discharge. Nevertheless, the remaining ARB and ARGs could be an important source of AMR contamination in river water. Furthermore, hospital effluence may be an important reservoir of clinically important ARB. The high concentration of antimicrobial agents commonly prescribed in Japan may contribute to the selection and dissemination of AMR within wastewater. Our review shows the importance of both monitoring for AMR and antimicrobials in human wastewater and efforts to reduce their contamination load in wastewater.202235884103
6473120.9690The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.201728689129
3863130.9689Antibiotic resistance in mucosal bacteria from high Arctic migratory salmonids. Two related salmonids, Arctic char (Salvelinus alpinus) and lake whitefish (Coregonus clupeaformis) sampled from the high Arctic region of Nunavut, Canada are anadromous fish, migrating annually from the same ice-covered freshwater waterbodies to spend summers in the marine waters of the Arctic Ocean. Microbiota associated with the skin-associated mucus undergo community change coincident with migration, and irrespective of this turnover, antibiotic resistance was detected in mixed bacterial cultures initiated with mucus samples. Although as expected most bacteria were unculturable, however, 5/7 isolates showed susceptibility to a panel of five common antibiotics. The fish were sampled under severe conditions and at remote locations far from human habitation. Regardless, two isolates, 'Carnobacterium maltaromaticum sm-2' and 'Arthrobacter citreus sm', showed multi-resistance to two or more antibiotics including ampicillin and streptomycin indicating multiple resistance genes. It is unknown if these fish bacteria have 'natural' resistance phenotypes or if resistance has been acquired. As result of these observations, we urge long-term monitoring of drug-resistant bacteria in the region and caution the assumption of a lack of drug-resistant organisms even in such extreme environments.202234109745
7355140.9689Influence of food sources and trace elements in the acquisition of antimicrobial resistance in Escherichia coli isolated from white stork nestlings (Ciconia ciconia). Foraging in landfills enhances the probability of acquiring antimicrobial resistance (AMR) in wildlife and increases exposure to pollutants like metal(loid)s, pharmaceuticals and caffeine. Exposure to metal(loid)s in the environment may cause selective pressure on bacteria, inducing metal resistance genes that drive antimicrobial resistance genes (ARGs) through co-resistance and cross-resistance mechanisms. Hence, white storks fed in landfills could increase AMR acquisition through the combined effect of urban-waste and pollutants. Using a novel approach combining stable isotopes, trace elements and microbiological analysis, our study investigates the influence of the degree of anthropization of the diet and the presence of metal(loid)s in the occurrence of AMR/ARGs in E. coli in nestlings. Cloacal swabs, blood samples, and contour feathers were collected from 86 white stork nestlings from five breeding colonies. ARGs in E. coli were previously studied in cloacal swabs. Plasma was analysed for veterinary pharmaceuticals and caffeine and feathers for carbon/nitrogen isotope ratios and concentrations of metals and arsenic. Isotopic signature classified nestlings into natural or urban-waste diet, relating Al/Ni/Co/Cr/Pb and caffeine to urban-waste diet, while As/Hg/Cu/Zn were more related to natural diet. No pharmaceuticals were detected in the plasma of nestlings. The probability of acquisition of AMR and some ARGs (those conferring resistance to phenicols, tetracyclines and ampicillin) was higher in nestlings fed with urban-waste diet, but no effect of metal(loid) pollution was observed. This shows AMR in wildlife can occur even without direct contact with antibiotics, highlighting the complexity and challenges of addressing the threat of bacterial resistance in the environment.202540712540
6547150.9689An overview on the prevalence and potential impact of antimicrobials and antimicrobial resistance in the aquatic environment of India. India at present is one of the leading countries in antimicrobial drug production and use, leading to increasing antimicrobial resistance (AMR) and public health problems. Attention has mainly been focused on the human and food animals' contribution to AMR neglecting the potential contribution of the perceptibly degraded aquatic environment in India. The paper reviews the available published literature in India on the prevalence of antimicrobial residues and their dissemination pathways in wastewater of pharmaceutical industries, sewage treatment plants, hospitals, riverine, community pond water, and groundwater. The prevalence of antimicrobial residue concentration, pathogenic and non-pathogenic bacteria antimicrobial resistant bacteria (ARB), their drug resistance levels, and their specific antimicrobial resistant genes (ARGs) occurring in various water matrices of India have been comprehensively depicted from existing literature. The concentration of some widely used antimicrobials recorded from the sewage treatment plants and hospital wastewater and rivers in India has been compared with other countries. The ecotoxicological risk posed by these antimicrobials in the various water matrices in India indicated high hazard quotient (HQ) values for pharmaceutical effluents, hospital effluents, and river water. The degraded aquatic environment exhibited the selection of a wide array of co-existent resistant genes for antibiotics and metals. The review revealed improper use of antibiotics and inadequate wastewater treatment as major drivers of AMR contaminating water bodies in India and suggestion for containing the challenges posed by AMR in India has been proposed.202337530878
6648160.9689Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
2781170.9689COMPARING ANTIBIOTIC RESISTANCE IN FREE-RANGING VS. CAPTIVE AFRICAN WILD HERBIVORES. Antimicrobial resistance (AMR) is a critical challenge of the 21st century for public and animal health. The role of host biodiversity and the environment in the evolution and transmission of resistant bacteria between populations and species, and specifically at the wildlife-livestock-human interface, needs to be further investigated. We evaluated the AMR of commensal Escherichia coli in three mammalian herbivore species-impala (Aepyceros melampus), greater kudu (Tragelaphus strepsiceros), and plains zebra (Equus quagga)-targeting populations living under two conditions: captivity (French zoos) and free ranging (natural and private parks in Zimbabwe). From 137 fecal samples from these three host species, 328 E. coli isolates were isolated. We measured the AMR of each isolate against eight antibiotics, and we assessed the presence of AMR genes and mobile genetic element class 1 integrons (int1). Isolates obtained from captive hosts had a higher probability of being resistant than those obtained from free-ranging hosts (odds ratio, 293.8; confidence interval, 10-94,000). This statistically higher proportion of AMR bacteria in zoos than in natural parks was especially observed for bacteria resistant to amoxicillin. The percentage of int1 detection was higher when isolates were obtained from captive hosts, particularly captive impalas. Ninety percent of bacterial isolates with genes involved in antibiotic resistance also had the int1 gene. The sul1, sul2, blaTEM, and stra genes were found in 14, 19, 0, and 31%, respectively, of E. coli with respective antibiotic resistance. Finally, plains zebra carried AMR significantly more often than the other species.202337074787
2603180.9688Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine.202032034890
6733190.9688Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well.201830253298