# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6733 | 0 | 0.9365 | Bioavailability of tetracycline to antibiotic resistant Escherichia coli in water-clay systems. Tetracyclines are a class of antimicrobials frequently found in the environment, and have promoted the proliferation of antibiotic resistance. An unanswered research question is whether tetracycline sorbed to soils is still bioavailable to bacteria and exerts selective pressure on the bacterial community for the development of antibiotic resistance. In this study, bioreporter E. coli MC4100/pTGM strain was used to probe the bioavailability of tetracycline sorbed by smectite clay, a class of common soil minerals. Batch sorption experiments were conducted to prepare clay samples with a wide range of sorbed tetracycline concentration. The bioreporter was incubated with tetracycline-sorbed clay at different clay/solution ratios and water contents, as well as using dialysis tubings to prevent the direct contact between bacterial cells and clay particles. The expression of antibiotic resistance genes from the bioreporter was measured using a flow cytometer as a measurement of bioavailability/selective pressure. The direct contact of bioreporter cells to clay surfaces represented an important pathway facilitating bacterial access to clay-sorbed tetracycline. In clay-water suspensions, reducing solution volume rendered more bacteria to attach to clay surfaces enhancing the bioavailability of clay-sorbed tetracycline. The strong fluorescence emission from bioreporter cells on clay surfaces indicated that clay-sorbed tetracycline was still bioavailable to bacteria. The formation of biofilms on clay surfaces could increase bacterial access to clay-sorbed tetracycline. In addition, desorption of loosely sorbed tetracycline into bulk solution contributed to bacterial exposure and activation of the antibiotic resistance genes. Tetracycline sorbed by soil geosorbents could exert selective pressure on the surrounding microbial communities via bacterial exposure to tetracycline in solution from desorption and to the geosorbent-sorbed tetracycline as well. | 2018 | 30253298 |
| 6732 | 1 | 0.9355 | Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria. | 2020 | 32786566 |
| 539 | 2 | 0.9315 | A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation. | 2010 | 21059273 |
| 8796 | 3 | 0.9306 | Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance. | 2024 | 38372817 |
| 8518 | 4 | 0.9304 | Influence of Dissolved Organic Matter on Tetracycline Bioavailability to an Antibiotic-Resistant Bacterium. Complexation of tetracycline with dissolved organic matter (DOM) in aqueous solution could alter the bioavailability of tetracycline to bacteria, thereby alleviating selective pressure for development of antibiotic resistance. In this study, an Escherichia coli whole-cell bioreporter construct with antibiotic resistance genes coupled to green fluorescence protein was exposed to tetracycline in the presence of DOM derived from humic acids. Complexation between tetracycline and DOM diminished tetracycline bioavailability to E. coli, as indicated by reduced expression of antibiotic resistance genes. Increasing DOM concentration resulted in decreasing bioavailability of tetracycline to the bioreporter. Freely dissolved tetracycline (not complexed with DOM) was identified as the major fraction responsible for the rate and magnitude of antibiotic resistance genes expressed. Furthermore, adsorption of DOM on bacterial cell surfaces inhibited tetracycline diffusion into the bioreporter cells. The magnitude of the inhibition was related to the amount of DOM adsorbed and tetracycline affinity for the DOM. These findings provide novel insights into the mechanisms by which the bioavailability of tetracycline antibiotics to bacteria is reduced by DOM present in water. Agricultural lands receiving livestock manures commonly have elevated levels of both DOM and antibiotics; the DOM could suppress the bioavailability of antibiotics, hence reducing selective pressure on bacteria for development of antibiotic resistance. | 2015 | 26370618 |
| 8740 | 5 | 0.9304 | Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite. | 2003 | 12823193 |
| 8735 | 6 | 0.9299 | The Effect of Ice-Nucleation-Active Bacteria on Metabolic Regulation in Evergestis extimalis (Scopoli) (Lepidoptera: Pyralidae) Overwintering Larvae on the Qinghai-Tibet Plateau. Evergestis extimalis (Scopoli) is a significant pest of spring oilseed rape in the Qinghai-Tibet Plateau. It has developed resistance to many commonly used insecticides. Therefore, biopesticides should be used to replace the chemical pesticides in pest control. In this study, the effects of ice-nucleation-active (INA) microbes (Pseudomonas syringae 1.7277, P. syringae 1.3200, and Erwinia pyrifoliae 1.3333) on E. extimalis were evaluated. The supercooling points (SCP) were markedly increased due to the INA bacteria application when they were compared to those of the untreated samples. Specifically, the SCP of E. extimalis after its exposure to a high concentration of INA bacteria in February were -10.72 °C, -13.73 °C, and -14.04 °C. Our findings have demonstrated that the trehalase (Tre) genes were up-regulated by the application of the INA bacteria, thereby resulting in an increased trehalase activity. Overall, the INA bacteria could act as effective heterogeneous ice nuclei which could lower the hardiness of E. extimalis to the cold and then freeze them to death in an extremely cold winter. Therefore, the control of insect pests with INA bacteria goes without doubt, in theory. | 2022 | 36292857 |
| 8496 | 7 | 0.9299 | Neglected resistance risks: Cooperative resistance of antibiotic resistant bacteria influenced by primary soil components. Various antibiotic resistant bacteria (ARB) can thrive in soil and resist such environmental pressures as antibiotics through cooperative resistance, thereby promoting ARB retention and antibiotic resistance genes transmission. However, there has been finite knowledge in regard to the mechanisms and potential ecological risks of cooperative resistance in soil microbiome. In this study, soil minerals and organic matters were designed to treat a mixture of two Escherichia coli strains with different antibiotic resistance (E. coli DH5α/pUC19 and E. coli XL2-Blue) to determine how soil components affected cooperative resistance, and Luria-Bertani plates containing two antibiotics were used to observe dual-drug resistant bacteria (DRB) developed via cooperative resistance. Results showed quartz, humic acid, and biochar promoted E. coli XL2-Blue with high fitness costs, whereas kaolin, montmorillonite, and soot inhibited both strains. Using fluorescence microscope and PCR, it was speculated DRB could resist the antibiotic pressure via E. coli XL2-Blue coating E. coli DH5α/pUC19. E. coli DH5α/pUC19 dominated cooperative resistance. Correlation analysis and scanning electron microscope images indicated soil components influenced cooperative resistance. Biochar promoted cooperative resistance by increasing intracellular reactive oxygen species, thereby reducing the dominant strain concentration required for DRB development. Kaolin inhibited cooperative resistance the most, followed by soot and montmorillonite. | 2022 | 35074748 |
| 6734 | 8 | 0.9296 | Organic acids enhance bioavailability of tetracycline in water to Escherichia coli for uptake and expression of antibiotic resistance. Tetracyclines are a large class of antimicrobials used most extensively in livestock feeding operations. A large portion of tetracyclines administered to livestock is excreted in manure and urine which is collected in waste lagoons. Subsequent land application of these wastes introduces tetracyclines into the soil environment, where they could exert selective pressure for the development of antibiotic resistance genes in bacteria. Tetracyclines form metal-complexes in natural waters, which could reduce their bioavailability for bacterial uptake. We hypothesized that many naturally-occurring organic acids could effectively compete with tetracyclines as ligands for metal cations, hence altering the bioavailability of tetracyclines to bacteria in a manner that could enhance the selective pressure. In this study, we investigated the influence of acetic acid, succinic acid, malonic acid, oxalic acid and citric acid on tetracycline uptake from water by Escherichia coli bioreporter construct containing a tetracycline resistance gene which induces the emission of green fluorescence when activated. The presence of the added organic acid ligands altered tetracycline speciation in a manner that enhanced tetracycline uptake by E. coli. Increased bacterial uptake of tetracycline and concomitant enhanced antibiotic resistance response were quantified, and shown to be positively related to the degree of organic acid ligand complexation of metal cations in the order of citric acid > oxalic acid > malonic acid > succinic acid > acetic acid. The magnitude of the bioresponse increased with increasing aqueous organic acid concentration. Apparent positive relation between intracellular tetracycline concentration and zwitterionic tetracycline species in aqueous solution indicates that (net) neutral tetracycline is the species which most readily enters E. coli cells. Understanding how naturally-occurring organic acid ligands affect tetracycline speciation in solution, and how speciation influences tetracycline uptake by bacteria, allows more accurate assessment of the selective pressure from trace levels of antibiotics in the environment on microbial communities for preserving and developing antibiotic resistance. | 2014 | 25100186 |
| 8497 | 9 | 0.9290 | Conjugation-mediated transfer of antibiotic resistance genes influenced by primary soil components and underlying mechanisms. Soil is the main natural reservoir of antibiotic resistant bacteria and antibiotic resistance genes (ARGs). Their dissemination and proliferation were largely motivated by conjugative transfer, while the influence of soil components on bacterial conjugative transfer and the underlying mechanisms remain poorly understood. In the present study, two Escherichia coli strains were exposed to soil minerals (quartz, kaolinite and montmorillonite) and organic matters (humic acid, biochar and soot) respectively to investigate their impact on ARGs conjugation. The results showed that quartz had no significant effect on conjugation; montmorillonite promoted the growth of the donor, but inhibited the recipient and conjugant; kaolinite and three organic matters significantly promoted the production of conjugant, while biochar promoted and then inhibited it with time prolong. Within the range of bacterial concentration involved in this study, the concentration of conjugant increased with the ratio of the concentration of donor and recipient (R(D/R)), indicating that the variation of conjugant production was mainly mediated by changing R(D/R). Further observation of biochar treatment group showed that the bacterial responses such as cell membrane permeability, cell surface hydrophobicity and biofilm formation ability shifted with the exposure time, which might be a potential factor affecting conjugative transfer. Collectively, our findings suggest that the type and exposure time of soil components jointly affected conjugation, while the change of R(D/R) and related bacterial responses are the main underlying mechanisms. | 2023 | 36586689 |
| 8619 | 10 | 0.9290 | Bioavailability of pollutants and chemotaxis. The exposure of bacteria to pollutants induces frequently chemoattraction or chemorepellent reactions. Recent research suggests that the capacity to degrade a toxic compound has co-evolved in some bacteria with the capacity to chemotactically react to it. There is an increasing amount of data which show that chemoattraction to biodegradable pollutants increases their bioavailability which translates into an enhancement of the biodegradation rate. Pollutant chemoreceptors so far identified are encoded on degradation or resistance plasmids. Genetic engineering of bacteria, such as the transfer of chemoreceptor genes, offers thus the possibility to optimize biodegradation processes. | 2013 | 22981870 |
| 509 | 11 | 0.9290 | A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn-degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn-quenching regulation of bacteria, demonstrating that the LysR-type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn-degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn) -quenching regulatory system mimics the ToxR(Txn) -mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn-quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn. | 2021 | 34009736 |
| 580 | 12 | 0.9289 | Acid-tolerant bacteria and prospects in industrial and environmental applications. Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F(1)-F(0)-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria. | 2023 | 37093306 |
| 342 | 13 | 0.9288 | Heat-shock-increased survival to far-UV radiation in Escherichia coli is wavelength dependent. Heat-shock-induced resistance to far-UV (FUV) radiation was studied in Escherichia coli. The induction of FUV resistance was shown to be dependent on the products of the genes uvrA and polA in bacteria irradiated at 254 nm. Heat shock increased the resistance to 280 nm radiation in a uvrA6 recA13 mutant. Heat shock lowered the mutation frequency (reversion to tryptophan proficiency) in wild-type or uvrA strains irradiated at 254 nm. When these strains were irradiated at 280 nm, heat shock did not interfere with the mutation frequency in the wild-type strain, but greatly enhanced mutations in the uvrA mutant. After heat-shock treatment, the wild-type strain irradiated at 254 nm showed increased DNA degradation, indicating enhanced repair activity. However, heat shock did not stimulate SOS repair triggered by FUV. An increased survival of bacteriophages irradiated with FUV and inoculated into heat-shock-treated bacteria was not detected. The possibility that heat shock enhances excision repair activity in a wavelength-dependent manner is discussed. | 1994 | 8176549 |
| 8489 | 14 | 0.9286 | Signaling molecules accelerate the transmission of antibiotic resistance genes under the stress of copper. Heavy metals can accelerate the dissemination of antibiotic resistance genes (ARGs) in aquatic environments by imposing environmental stresses. Signaling molecules play a role in bacterial communication and help bacteria adapt to environmental stresses. However, little is known whether the presence of signaling molecules has an effect on the spread of ARGs induced by heavy metals. In this study, we investigated how N-decanoyl-L-homoserine lactone (C10-HSL) affects copper-induced conjugative transfer of ARGs. We calculated the conjugative transfer frequency and measured reactive oxygen species (ROS) production, membrane permeability, and the expression of relevant genes. The results demonstrated that the addition of C10-HSL increased the conjugative transfer frequency of ARGs under copper ions (Cu(2+)) stress, showing a 7.2-fold increase under 0.5 μM Cu(2+) and 0.39 μM C10-HSL treatment compared to the control. This enhancement was associated with elevated intracellular ROS production and increased membrane permeability. The reduced conjugative transfer frequency under anaerobic conditions or with thiourea treatment supported the key role of ROS in this process. Furthermore, ROS overproduction triggered the SOS response, as evidenced by a 9-fold upregulation of recA expression. C10-HSL also modulated membrane-associated gene expression by upregulating outer membrane porins and downregulating efflux pump genes under Cu(2+)stress. This study provides a new insight into the spread of ARGs in aquatic environments. | 2025 | 40840413 |
| 8866 | 15 | 0.9286 | Contribution of rpoS and bolA genes in biofilm formation in Escherichia coli K-12 MG1655. Flexibility of gene expression in bacteria permits its survival in varied environments. The genetic adaptation of bacteria through systematized gene expression is not only important, but also clinically relevant in their ability to grow biofilms in stress environments. Stress responses enable their survival under more severe conditions, enhanced resistance and/or virulence. In Escherichia coli (E. coli), two of the possible important genes for biofilm growth are rpoS and bolA gene. RpoS is also called as a master regulator of general stress response. Even though many studies have revealed the importance of rpoS in planktonic cells, little is known about the functions of rpoS in biofilms. In contrast, bolA which is a morphogene in E. coli is overexpressed under stressed environments resulting in round morphology. The hypothesis is that bolA could be implicated in biofilm development. This study reviewed the literature with the aim of understanding the stress tolerance response of E. coli in relation with rpoS and bolA genes in different environmental conditions including heat shock, cold shock, and stress in response to oxidation, acidic condition and in presence of cadmium. Knowledge of the genetic regulation of biofilm formation may lead to the understanding of the factors that drive the bacteria to switch to the biofilm mode of growth. | 2010 | 20480211 |
| 738 | 16 | 0.9285 | Protozoan-induced regulation of cyclic lipopeptide biosynthesis is an effective predation defense mechanism for Pseudomonas fluorescens. Environmental bacteria are exposed to a myriad of biotic interactions that influence their function and survival. The grazing activity of protozoan predators significantly impacts the dynamics, diversification, and evolution of bacterial communities in soil ecosystems. To evade protozoan predation, bacteria employ various defense strategies. Soil-dwelling Pseudomonas fluorescens strains SS101 and SBW25 produce the cyclic lipopeptide surfactants (CLPs) massetolide and viscosin, respectively, in a quorum-sensing-independent manner. In this study, CLP production was shown to protect these bacteria from protozoan predation as, compared to CLP-deficient mutants, strains SS101 and SBW25 exhibited resistance to grazing by Naegleria americana in vitro and superior persistence in soil in the presence of this bacterial predator. In the wheat rhizosphere, CLP-producing strains had a direct deleterious impact on the survival of N. americana. In vitro assays further showed that N. americana was three times more sensitive to viscosin than to massetolide and that exposure of strain SS101 or SBW25 to this protozoan resulted in upregulation of CLP biosynthesis genes. Enhanced expression of the massABC and viscABC genes did not require physical contact between the two organisms as gene expression levels were up to threefold higher in bacterial cells harvested 1 cm from feeding protozoans than in cells collected 4 cm from feeding protozoans. These findings document a new natural function of CLPs and highlight that bacterium-protozoan interactions can result in activation of an antipredator response in prey populations. | 2009 | 19717630 |
| 8526 | 17 | 0.9285 | Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes. | 2022 | 35278945 |
| 504 | 18 | 0.9283 | Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs. | 2025 | 39665630 |
| 604 | 19 | 0.9283 | Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon--a review. The soxRS regulon of Escherichia coli coordinates the induction of at least twelve genes in response to superoxide or nitric oxide. This review describes recent progress in understanding the signal transduction and transcriptional control mechanisms that activate the soxRS regulon, and some aspects of the physiological functions of this system. The SoxS protein represents a growing family of transcription activators that stimulate genes for resistance to oxidative stress and antibiotics. SoxR is an unusual transcription factor whose activity in vitro can be switched off by the removal of [2Fe-2S] centers, and activated by their reinsertion. The activated form of SoxR remodels the structure of the soxS promoter to activate transcription. When the soxRS system is activated, bacteria gain resistance to oxidants, antibiotics and immune cells that generate nitric oxide. The latter features could increase the success (virulence) of some bacterial infections. | 1996 | 8955629 |