# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 12 | 0 | 0.8767 | A Diketopiperazine, Cyclo-(L-Pro-L-Ile), Derived From Bacillus thuringiensis JCK-1233 Controls Pine Wilt Disease by Elicitation of Moderate Hypersensitive Reaction. Pine wilt disease (PWD) caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus is one of the devastating diseases affecting pine forests worldwide. Although effective control measurements are still missing, induction of resistance could represent a possible eco-friendly alternative. In this study, induced resistance-based in vitro and in vivo screening tests were carried out for selection of bacteria with the ability to suppress PWD. Out of 504 isolated bacteria, Bacillus thuringiensis JCK-1233 was selected for its ability to boost pathogenesis-related 1 (PR1) gene expression, a marker of systemic acquired resistance. Moreover, treatment of pine seedlings with B. thuringiensis JCK-1233 resulted in increased expression of other defense-related genes, and significantly inhibited PWD development under greenhouse conditions. However, B. thuringiensis JCK-1233 showed no direct nematicidal activity against B. xylophilus. To identify the effective compound responsible for the induction of resistance in B. thuringiensis JCK-1233, several diketopiperazines (DPKs) including cyclo-(D-Pro-L-Val), cyclo-(L-Pro-L-Ile), cyclo-(L-Pro-L-Phe), and cyclo-(L-Leu-L-Val) were isolated and tested. Foliar treatment of pine seedlings with Cyclo-(L-Pro-L-Ile) resulted in suppression of PWD severity and increased the expression of defense-related genes similarly to B. thuringiensis JCK-1233 treatment. Interestingly, treatment with B. thuringiensis JCK-1233 or cyclo-(L-Pro-L-Ile) showed moderately enhanced expression of PR-1, PR-2, PR-3, PR-4, PR-5, and PR-9 genes following inoculation with PWN compared to that in the untreated control, indicating that they mitigated the burst of hypersensitive reaction in susceptible pine seedlings. In contrast, they significantly increased the expression levels of PR-6 and PR-10 before PWN inoculation. In conclusion, foliar spraying with either B. thuringiensis JCK-1233 culture suspension or DPKs could induce resistance in pine seedlings, thereby alleviating the serious damage by PWD. Taken together, this study supports aerial spraying with eco-friendly biotic or abiotic agents as a valuable strategy that may mark an epoch for the control of PWD in pine forests. | 2020 | 32849672 |
| 13 | 1 | 0.8761 | Streptomyces sp. JCK-6131 Protects Plants Against Bacterial and Fungal Diseases via Two Mechanisms. Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31-10% and 0.31-1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance. | 2021 | 34603354 |
| 8782 | 2 | 0.8746 | Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. BACKGROUND: Bacterial wilt caused by Ralstonia solanacearum (RS) is a serious threat for agricultural production. In this study, Bacillus amyloliquefaciens strains CM-2 and T-5 antagonistic to RS were used to create bioorganic fertilisers to control tomato wilt under greenhouse conditions. The possible mechanism of resistance inducement by the antagonistic bacteria was also evaluated. RESULTS: The application of bioorganic fertilisers significantly reduced incidences of tomato wilt (by 63-74%), promoted plant growth and significantly reduced the RS populations in rhizosphere compared with the control. Both strains CM-2 and T-5 applied with bioorganic fertilisers survived well in the tomato rhizosphere. Tomato seedlings treated with cell suspension of T-5 followed by challenge inoculation with RS increased the activities of polyphenol oxidase, phenylalanine ammonia lyase and peroxidase compared with the untreated control. Furthermore, the expressions of the marker genes responsible for synthesis of phytohormones salicylic acid, ethylene and jasmonic acid in seedlings treated with T-5 in response to inoculated pathogen were significantly higher. CONCLUSIONS: This study suggests that strains CM-2 and T-5 containing bioorganic fertilisers effectively control tomato wilt. Increased enzyme activities and expression of defence genes in plants indicated that the antagonistic bacteria induced plant resistance, which was the potential biocontrol mechanism of tomato wilt. | 2013 | 23519834 |
| 18 | 3 | 0.8746 | Antivirulence effects of cell-free culture supernatant of endophytic bacteria against grapevine crown gall agent, Agrobacterium tumefaciens, and induction of defense responses in plantlets via intact bacterial cells. BACKGROUND: Crown gall disease caused by Agrobacterium tumefaciens is a very destructive affliction that affects grapevines. Endophytic bacteria have been discovered to control plant diseases via the use of several mechanisms. This research examined the potential for controlling crown gall by three endophytic bacteria that were previously isolated from healthy cultivated and wild grapevines including Pseudomonas kilonensis Ba35, Pseudomonas chlororaphis Ba47, and Serratia liquefaciens Ou55. RESULT: At various degrees, three endophytic bacteria suppressed the populations of A. tumefaciens Gh1 and greatly decreased the symptoms of crown gall. Furthermore, biofilm production and motility behaviors of A. tumefaciens Gh1were greatly inhibited by the Cell-free Culture Supernatant (CFCS) of endophytic bacteria. According to our findings, CFCS may reduce the adhesion of A. tumefaciens Gh1 cells to grapevine cv. Rashe root tissues as well as their chemotaxis motility toward the extract of the roots. When compared to the untreated control, statistical analysis showed that CFCS significantly reduced the swimming, twitching, and swarming motility of A. tumefaciens Gh1. The findings demonstrated that the endophytic bacteria effectively stimulated the production of plant defensive enzymes including superoxide dismutase (SOD), polyphenol oxidase (PPO), peroxidase (POD), phenylalanine ammonia lyase (PAL), and total soluble phenols at different time intervals in grapevine inoculated with A. tumefaciens Gh1. The Ba47 strain markedly increased the expression levels of defense genes associated with plant resistance. The up-regulation of PR1, PR2, VvACO1, and GAD1 genes in grapevine leaves indicates the activation of SA and JA pathways, which play a role in enhancing resistance to pathogen invasion. The results showed that treating grapevine with Ba47 increased antioxidant defense activities and defense-related gene expression, which reduced oxidative damage caused by A. tumefaciens and decreased the incidence of crown gall disease. CONCLUSION: This is the first study on how A. tumefaciens, the grapevine crown gall agent, is affected by CFCS generated by endophytic bacteria in terms of growth and virulence features. To create safer plant disease management techniques, knowledge of the biocontrol processes mediated by CFCS during microbial interactions is crucial. | 2024 | 38336608 |
| 8774 | 4 | 0.8711 | Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Agriculturally important grasses contain numerous diazotrophic bacteria, the interactions of which are speculated to have some other benefits to the host plants. In this study, we analyzed the effects of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in host rice plants. Rice plants (Oryza sativa cv. Nipponbare) were inoculated with B510 exhibited enhanced resistance against diseases caused by the virulent rice blast fungus Magnaporthe oryzae and by the virulent bacterial pathogen Xanthomonas oryzae. In the rice plants, neither salicylic acid (SA) accumulation nor expression of pathogenesis-related (PR) genes was induced by interaction with this bacterium, except for slight induction of PBZ1. These results indicate the possibility that strain B510 is able to induce disease resistance in rice by activating a novel type of resistance mechanism independent of SA-mediated defense signaling. | 2009 | 19966496 |
| 8731 | 5 | 0.8710 | Isolation of Potato Endophytes and Screening of Chaetomium globosum Antimicrobial Genes. Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production. | 2022 | 35563004 |
| 8736 | 6 | 0.8708 | Effects of intracanal irrigant MTAD Combined with nisin at sub-minimum inhibitory concentration levels on Enterococcus faecalis growth and the expression of pathogenic genes. Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. | 2014 | 24603760 |
| 11 | 7 | 0.8705 | Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris (Xcc) via JA signaling in Arabidopsis and Brassica oleracea. BACKGROUND: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. METHODS: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. RESULTS: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. CONCLUSION: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea. | 2023 | 37404719 |
| 22 | 8 | 0.8702 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 16 | 9 | 0.8701 | A glycoside hydrolase 30 protein BpXynC of Bacillus paralicheniformis NMSW12 recognized as A MAMP triggers plant immunity response. Bacillus spp. has been widely used as a biocontrol agent to control plant diseases. However, little is known about mechanisms of the protein MAMP secreted by Bacillus spp. Herein, our study reported a glycoside hydrolase family 30 (GH30) protein, BpXynC, produced by the biocontrol bacteria Bacillus paralicheniformis NMSW12, that can induce cell death in several plant species. The results revealed that the recombinant protein triggers cell death in Nicotiana benthamiana in a BAK1-dependent manner and elicits an early defense response, including ROS burst, activation of MAPK cascades, and upregulation of plant immunity marker genes. BpXynC was also found to be a glucuronoxylanase that exhibits hydrolysis activity on xlyan. Two mutants of BpXynC which lost the glucuronoxylanase activity still retained the elicitor activity. The qRT-PCR results of defense-related genes showed that BpXynC induces plant immunity responses via an SA-mediated pathway. BpXynC and its mutants could induce resistance in N. benthamiana against infection by Sclerotinia sclerotiorum and tobacco mosaic virus (TMV). Furthermore, BpXynC-treated tomato fruits exhibited strong resistance to the infection of Phytophthora capsica. Overall, our study revealed that GH30 protein BpXynC can induce plant immunity response as MAMP, which can be further applied as a biopesticide to control plant diseases. | 2024 | 38286384 |
| 54 | 10 | 0.8700 | Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance. | 2022 | 35563637 |
| 8781 | 11 | 0.8698 | Rhizosphere bacteria induce programmed cell death defence genes and signalling in chilli pepper. AIM: To understand how beneficial bacteria assist chilli plants (Capsicum annuum) in defence against biotrophic or hemibiotrophic pathogens. METHOD AND RESULTS: We quantified marker genes of plant defence pathways in Phytophthora capsici-infected chilli pepper treated with anti-oomycete plant growth-promoting rhizobacteria, Bacillus amyloliquefaciens, Bacillus velezensis and Acinetobacter sp. Plants displayed strong resistance, and the pathogen load in the roots was significantly lower in infected plants treated with bacterial biocontrol agents at all time points tested (1, 2 and 7 days after pathogen inoculation, p < 0.05). Gene expression profiling revealed that P. capsici infection in the absence of beneficial bacteria led to the upregulation of a wide array of defence genes. The addition of biocontrol bacteria modulated defence by further enhancing genes involved in programmed cell death, such as CaLOX1, CaPAL1, CaChitIV and CaPTI1, while suppressing others CaLRR1, a negative regulator of cell death. CONCLUSIONS: Our results suggest that the bacteria exerted a combined effect by directly antagonizing the pathogen and enhancing the expression of key plant defence genes, including those involved in cell death, causing resistance at early stages of infection by this hemibiotrophic pathogen. | 2022 | 35061923 |
| 23 | 12 | 0.8696 | Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. | 2012 | 22970151 |
| 95 | 13 | 0.8694 | NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Pathogenesis-related proteins (PRs) are associated with the development of systemic acquired resistance (SAR) against further infection enforced by fungi, bacteria and viruses. PR1a is the first PR-1 member that could be purified and characterized. Previous studies have reported its role in plants' resistance system against oomycete pathogens. However, the role of PR1a in Solanaceae plants against the bacterial wilt pathogen Ralstonia solanacearum remains unclear. To assess roles of NtPR1a in tobacco responding to R. solanacearum, we performed overexpression experiments in Yunyan 87 plants (a susceptible tobacco cultivar). The results illuminated that overexpression of NtPR1a contributed to improving resistance to R. solanacearum in tobacco Yunyan 87. Specifically speaking, NtPR1a gene could be induced by exogenous hormones like salicylic acid (SA) and pathogenic bacteria R. Solanacearum. Moreover, NtPR1a-overexpressing tobacco significantly reduced multiple of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. Importantly, overexpression of NtPR1a activated a series of defense-related genes expression, including the hypersensitive response (HR)-associated genes NtHSR201 and NtHIN1, SA-, JA- and ET-associated genes NtPR2, NtCHN50, NtPR1b, NtEFE26, and Ntacc oxidase, and detoxification-associated gene NtGST1. In summary, our results suggested that NtPR1a-enhanced tobacco resistance to R. solanacearum may be mainly dependent on activation of the defense-related genes. | 2019 | 30545635 |
| 8753 | 14 | 0.8694 | Rhizosphere Bacteria From Panax notoginseng Against Meloidogyne hapla by Rapid Colonization and Mediated Resistance. Root-knot nematodes (RKNs) are soil-borne pathogens that severely affect Panax notoginseng growth and productivity. Thus, there is an urgent need for biological control agents or green nematicides to control root-knot nematodes. Rhizosphere bacteria can effectively control RKNs through different mechanisms. In this study, the three rhizosphere Bacillus strains, isolated from the root of P. notoginseng, were evaluated for the nematicidal activity and biological control efficacy against root-knot nematodes. In addition, we also evaluated the colonization ability of the two bacterial strains with significant biocontrol effect and dynamic regulation of genes related to systemic resistance in P. notoginseng. The rhizosphere Bacillus velezensis GJ-7 and Bacillus cereus NS-2 showed high nematicidal activity against Meloidogyne hapla in vitro and significantly reduced the number of root galls in three different control experiments. The results of colonization experiments showed that the strains GJ-7 and NS-2 colonized P. notoginseng root rapidly and stably. Additionally, the colonization of the strains NS-2 and GJ-7 activated the defense-responsive genes in P. notoginseng. These results indicated that the B. cereus strain NS-2 and B. velezensis strain GJ-7 have the potential for successful ecological niche occupation and enhance plant resistance and therefore could be considered as potential biocontrol agents against root-knot nematodes. | 2022 | 35572637 |
| 38 | 15 | 0.8692 | Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Alginate Oligosaccharide (AOS) is a natural biological carbohydrate extracted from seaweed. In our study, Arabidopsis thaliana was used to evaluate the AOS-induced resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Resistance was vitally enhanced at 25 mg/L in wild type (WT), showing the decreased disease index and bacteria colonies, burst of ROS and NO, high transcription expression of resistance genes PR1 and increased content of salicylic acid (SA). In SA deficient mutant (sid2), AOS-induced disease resistance dropped obviously compared to WT. The disease index was significantly higher than WT and the expression of recA and avrPtoB are two and four times lower than WT, implying that AOS induces disease resistance injecting Pst DC3000 after three days treatment by arousing the SA pathway. Our results provide a reference for the profound research and application of AOS in agriculture. | 2019 | 31521273 |
| 538 | 16 | 0.8692 | The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli. In a culture of Escherichia coli K12 gal (lambdadg), cells which form large colonies on agar plates containing galactose and thiomethyl beta-D-galactoside (TMG) appear at high frequency. These clones are resistant to growth inhibition by TMG on galactose minimal medium. Biochemical studies of the steady-state levels of galactokinase and UDPgalactose 4-epimerase suggest that the resistant clones have extra copies of the genes for the galactose-metabolizing enzymes. The mutation for TMG resistance is not located in either the bacterial or the bacteriophage genome, but is probably due to an aberrant association between cell and prophage DNA. Mapping the TMG-resistant characteristic by phage P1 indicates that TMG-resistant bacteria posses at least two GAL+ OPERONS, ONE OF WHICH IS COTRANSDUCIBLe with bio+. In addition, TMG-resistant bacteria behave like lambdadg polylysogens when challenged with the phage lambdaI90c17. From these genetic experiments we conclude that TMG-resistant bacteria arise by duplication of the lambdadg prophage. Finally, gal+ bacteria which carry a single, additional, lambdadg prophage are TMG-resistant. TMG resistance is probably a gal+ gene dosage effect. | 1978 | 344832 |
| 8475 | 17 | 0.8689 | Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence. | 2022 | 35722285 |
| 8746 | 18 | 0.8689 | Enhanced Resistance to Fungal and Bacterial Diseases Due to Overexpression of BSR1, a Rice RLCK, in Sugarcane, Tomato, and Torenia. Sugarcane smut caused by Sporisorium scitamineum is one of the most devastating sugarcane diseases. Furthermore, Rhizoctonia solani causes severe diseases in various crops including rice, tomato, potato, sugar beet, tobacco, and torenia. However, effective disease-resistant genes against these pathogens have not been identified in target crops. Therefore, the transgenic approach can be used since conventional cross-breeding is not applicable. Herein, the overexpression of BROAD-SPECTRUM RESISTANCE 1 (BSR1), a rice receptor-like cytoplasmic kinase, was conducted in sugarcane, tomato and torenia. BSR1-overexpressing tomatoes exhibited resistance to the bacteria Pseudomonas syringae pv. tomato DC3000 and the fungus R. solani, whereas BSR1-overexpressing torenia showed resistance to R. solani in the growth room. Additionally, BSR1 overexpression conferred resistance to sugarcane smut in the greenhouse. These three BSR1-overexpressing crops exhibited normal growth and morphologies except in the case of exceedingly high levels of overexpression. These results indicate that BSR1 overexpression is a simple and effective tool for conferring broad-spectrum disease resistance to many crops. | 2023 | 36835053 |
| 9996 | 19 | 0.8686 | In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies. Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené's organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively. | 2024 | 39770285 |