BIOMARKERS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
716400.9929Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators.202540858019
726710.9923Antimicrobial resistance transmission in the environmental settings through traditional and UV-enabled advanced wastewater treatment plants: a metagenomic insight. BACKGROUND: Municipal wastewater treatment plants (WWTPs) are pivotal reservoirs for antibiotic-resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Selective pressures from antibiotic residues, co-selection by heavy metals, and conducive environments sustain ARGs, fostering the emergence of ARB. While advancements in WWTP technology have enhanced the removal of inorganic and organic pollutants, assessing ARG and ARB content in treated water remains a gap. This metagenomic study meticulously examines the filtration efficiency of two distinct WWTPs-conventional (WWTPC) and advanced (WWTPA), operating on the same influent characteristics and located at Aligarh, India. RESULTS: The dominance of Proteobacteria or Pseudomonadota, characterized the samples from both WWTPs and carried most ARGs. Acinetobacter johnsonii, a prevailing species, exhibited a diminishing trend with wastewater treatment, yet its persistence and association with antibiotic resistance underscore its adaptive resilience. The total ARG count was reduced in effluents, from 58 ARGs, representing 14 distinct classes of antibiotics in the influent to 46 and 21 in the effluents of WWTPC and WWTPA respectively. However, an overall surge in abundance, particularly influenced by genes such as qacL, bla(OXA-900), and rsmA was observed. Numerous clinically significant ARGs, including those against aminoglycosides (AAC(6')-Ib9, APH(3'')-Ib, APH(6)-Id), macrolides (EreD, mphE, mphF, mphG, mphN, msrE), lincosamide (lnuG), sulfonamides (sul1, sul2), and beta-lactamases (bla(NDM-1)), persisted across both conventional and advanced treatment processes. The prevalence of mobile genetic elements and virulence factors in the effluents possess a high risk for ARG dissemination. CONCLUSIONS: Advanced technologies are essential for effective ARG and ARB removal. A multidisciplinary approach focused on investigating the intricate association between ARGs, microbiome dynamics, MGEs, and VFs is required to identify robust indicators for filtration efficacy, contributing to optimized WWTP operations and combating ARG proliferation across sectors.202540050994
693920.9922Field ponding water exacerbates the dissemination of manure-derived antibiotic resistance genes from paddy soil to surrounding waterbodies. Farmlands fertilized with livestock manure-derived amendments have become a hot topic in the dissemination of antibiotic resistance genes (ARGs). Field ponding water connects rice paddies with surrounding water bodies, such as reservoirs, rivers, and lakes. However, there is a knowledge gap in understanding whether and how manure-borne ARGs can be transferred from paddy soil into field ponding water. Our studies suggest that the manure-derived ARGs aadA1, bla1, catA1, cmlA1-01, cmx(A), ermB, mepA and tetPB-01 can easily be transferred into field ponding water from paddy soil. The bacterial phyla Crenarchaeota, Verrucomicrobia, Cyanobacteria, Choloroflexi, Acidobacteria, Firmicutes, Bacteroidetes, and Actinobacteria are potential hosts of ARGs. Opportunistic pathogens detected in both paddy soil and field ponding water showed robust correlations with ARGs. Network co-occurrence analysis showed that mobile genetic elements (MGEs) were strongly correlated with ARGs. Our findings highlight that manure-borne ARGs and antibiotic-resistant bacteria in paddy fields can conveniently disseminate to the surrounding waterbodies through field ponding water, posing a threat to public health. This study provides a new perspective for comprehensively assessing the risk posed by ARGs in paddy ecosystems.202337007487
716730.9921Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.202438782270
680240.9921Distinct species turnover patterns shaped the richness of antibiotic resistance genes on eight different microplastic polymers. Elucidating the formation mechanism of plastisphere antibiotic resistance genes (ARGs) on different polymers is necessary to understand the ecological risks of plastisphere ARGs. Here, we explored the turnover and assembly mechanism of plastisphere ARGs on 8 different microplastic polymers (4 biodegradable (bMPs) and 4 non-biodegradable microplastics (nMPs)) by metagenomic sequencing. Our study revealed the presence of 479 ARGs with abundance ranging from 41.37 to 58.17 copies/16S rRNA gene in all plastispheres. These ARGs were predominantly multidrug resistance genes. The richness of plastisphere ARGs on different polymers had a significant correlation with the contribution of species turnover to plastisphere ARGs β diversity. Furthermore, polymer type was the most critical factor affecting the composition of plastisphere ARGs. More opportunistic pathogens carrying diverse ARGs on BMPs (PBAT, PBS, and PHA) with higher horizontal gene transfer potential may further magnify the ecological risks and human health threats. For example, the opportunistic pathogens Riemerella anatipestifer, Vibrio campbellii, and Vibrio cholerae are closely related to human production and life, which were the important potential hosts of many plastisphere ARGs and mobile genetic elements on BMPs. Thus, we emphasize the urgency of developing the formation mechanism of plastisphere ARGs and the necessity of controlling BMPs and ARG pollution, especially BMPs, with ever-increasing usage in daily life.202438971360
716650.9920Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. Foaming is a common operational problem that occurs in activated sludge (AS) from many wastewater treatment plants (WWTPs), but the characteristic of antibiotic resistance genes (ARGs) and human pathogenic bacteria (HPB) in foams is generally lacking. Here, we used a metagenomic approach to characterize the profile of ARGs and HPB in foams and AS from full-scale WWTPs receiving pesticide wastewater. No significant difference in the microbial communities was noted between the AS and foam samples. The diversity and abundance of ARGs in the foams were similar to those in the pertinent AS samples. Procrustes analysis suggested that the bacterial community is the major driver of ARGs. Metagenomic assembly also indicated that most ARGs (e.g., multidrug, rifamycin, peptides, macrolide-lincosamide-streptogramin, tetracycline, fluoroquinolone, and beta-lactam resistance genes) were carried by chromosomes rather than mobile genetic elements. Moreover, the relative abundances of HPB, Pseudomonas putida and Mycobacterium smegmatis, were enriched in the foam samples. Nine HPB were identified as carriers of 21 ARG subtypes, of which Pseudomonas aeruginosa could carry 12 ARG subtypes. Overall, this study indicates the prevalence of ARGs, HPB, and ARG-carrying HPB in foams, which highlights the potential risk of foams in spreading ARGs and HPB into the surrounding environments.202133373956
317860.9920Metagenomic analysis reveals the diversity, transmission and potential ecological risks of yak nasal bacteria-carried antibiotic resistance genes in the Sichuan region of Qinghai-Tibet plateau. The Qinghai-Tibet Plateau (QTP) and yaks play respectively vital roles in global and plateau ecosystems. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants. However, few studies have investigated the abundance and diversity of ARGs and mobile genetic elements (MGEs) in the yak upper respiratory tract and their surrounding pastures. Moreover, the possible pathways for ARG transmission within these ecosystems have not yet been elucidated. Therefore, we investigated the ARG profiles, MGE profiles, and ARG-carrying host bacteria in yaks and their pasture collected from Ganzi and Aba region in Sichuan Province. Metagenomic analyses showed that 22 ARG types and 5 MGEs types were identified in 18 samples. Multidrug resistance gene (mexT) and bacitracin resistance gene (bacA) was identiffed as hotspots, which may compromise medical treatment options. Co-occurrence network analysis revealed that 12 bacterial genera may be potential hosts at the genus level. The enrich of ARGs and MGEs diversity were observed in QTP (Sichuan province) pasture ecosystems which demands evidence-based interventions to mitigate ARGs transmission risks.202540373403
349970.9920Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10(7)-6.88 × 10(8) copies per g sediment (1.27 × 10(-2)-3.39 × 10(-2) copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem.202133652188
713880.9920Accumulation and translocation of antibiotic resistance genes in plants cultivated in hydroponic systems with nitrified biogas slurry. Hydroponic cultivation with biogas slurry supports nutrient recycling but raises biosafety concerns due to the dissemination of antibiotic resistance genes (ARGs). This study established a hydroponic system using nitrified biogas slurry to grow lettuce and cherry radish, and systematically investigated the accumulation of ARGs, mobile genetic elements (MGEs), high-priority human pathogenic bacteria (HPBs), and virulence factors (VFs) in plant tissues. ARGs predominantly accumulated in roots (0.16 ∼ 0.23 copies/16S rRNA), significantly higher than in leaves (0.01 ∼ 0.11 copies/16S rRNA), with sul1 consistently enriched in the rhizosphere. Filtration pretreatment significantly reduced ARG and MGE levels in cherry radish roots by 30.78 % and 39.43 %, respectively (p < 0.05). ARGs strongly correlated with MGEs (R² = 0.97, p < 0.0001), indicating horizontal gene transfer as the key dissemination pathway. Co-occurrence network analysis revealed synergistic enrichment of ARGs and MGEs with HPBs and VFs, highlighting Acinetobacter baumannii and Streptococcus pneumoniae as potential core hosts. These findings demonstrate that ARG accumulation and spread in plants are affected by slurry treatment, plant species, and tissue specificity. While filtration mitigates risks, persistent ARGs in roots necessitate further monitoring. This study informs safe reuse strategies for biogas slurry in agriculture.202541076908
348890.9920Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3')-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS's antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.202135273579
7174100.9920Metagenomic analysis deciphers airborne pathogens with enhanced antimicrobial resistance and virulence factors in composting facilities. The composting process has been shown to effectively reduce antimicrobial resistance (AMR) in animal manure, but its influence on surrounding airborne AMR remains unknown, particularly with regard to human-pathogenic antibiotic-resistant bacteria (HPARB). In this study, air and paired compost samples were collected from a full-scale composting facility, and the antibiotic resistome, microbiome, and HPARB were systematically analyzed in both two habitats using metagenomic analysis. Current result uncovered the profiles of HPARB in air, showing that significantly more airborne HPARB were assembled than that in compost samples. Airborne pathogens harboredan increased abundance and diversity of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) in comparison with compost-borne HPARB. The core antibiotic resistome represents 18.58% of overall ARG subtypes, contributing to 86.31% of ARG abundance. A higher number of enriched core ARGs (2.16- to 13.36-times higher), including mexF, tetW, and vanS, were observed in air samples compared to compost samples. As an important human pathogen, Mycobacterium tuberculosis was prevalent in the air and carried more ARG (6) and VFG (130) subtypes than those in compost. A significantly higher risk score was detected for airborne AMR in the composting facility compared to that in hospital and urban environments. This study revealed the enhanced airborne HPARB through comparative experiments between air and composting habitats. It highlighted the unrecognized AMR risks associated with air in composting site and provided a scientific basis for accurately assessing health outcomes caused by occupational exposure.202540472755
7158110.9920Antibiotic resistome, potential pathogenic bacteria and associated health risk in geogenic chromium groundwater. Geogenic chromium (Cr) contamination in groundwater poses a global environmental challenge. However, with antibiotic resistance remaining a public health threat, the occurrence and associated health risks of antibiotic resistomes in Cr contaminated groundwater and their linkages to geogenic Cr are poorly understood. Here, we assessed the groundwater microbiome, potential pathogenic bacteria, and antibiotic resistomes with associated health risks in geogenic Cr impacted groundwater across shallow (<100 m) and deep (>100 m) aquifers in a plateau from Northwestern China. A total of 174 antibiotic resistance genes (ARGs) were detected with absolute abundances reaching 1.28 × 10(8) copies/L. Shallow and deep groundwater harbored distinct ARG profiles with significantly higher abundance and associated health risks presented in shallow groundwater (p < 0.01). A total of 332 potential pathogenic bacteria were identified, abundances of which 53.9 % were strongly correlated to the prevalent ARGs. Toxic Cr(VI) as a potential co-selective agent was positively associated with elevated ARG-linked potential pathogenic bacteria and mobile genetic elements (MGEs). Our findings collectively revealed the geogenic Cr contaminated groundwater as a significant reservoir of ARGs and potential pathogens, highlighting the dual risks of geogenic Cr as both a toxicant and promoter for accelerating ARGs within aquifers.202541072644
3271120.9919Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Mass transit systems, including subways and buses, are useful environments for studying the urban microbiome, as the vast majority of populations in urban areas use public transportation. Microbial communities in urban environments include both human- and environment-associated bacteria that play roles in health and pathogen transmission. In this study, we used shotgun metagenomic sequencing to profile microbial communities sampled from various surfaces found in subway stations and bus stops within the Seoul mass transit system. The metagenomic approach and network analysis were used to investigate broad-spectrum antibiotic resistance genes (ARGs) and their co-occurrence patterns. We uncovered 598 bacterial species in 76 samples collected from various surfaces within the Seoul mass transit system. All samples were dominated by the potential human pathogen Salmonella enterica (40 %) and the human skin bacterium Cutibacterium acnes (19 %). Significantly abundant biomarkers detected in subway station samples were associated with bacteria typically found in the human oral cavity and respiratory tract, whereas biomarkers detected in bus stop samples were associated with bacteria commonly found in soil, water, and plants. Temperature and location had significant effects on microbial community structure and diversity. In total, 41 unique ARG subtypes were identified, associated with single-drug or multidrug resistance to clinically important and extensively used antibiotics, including aminoglycosides, carbapenem, glycopeptide, and sulfonamides. We revealed that Seoul subway stations and bus stops possess unique microbiomes containing potential human pathogens and ARGs. These findings provide insights for refining location-specific responses to reduce exposure to potentially causative agents of infectious diseases, improving public health.202236257123
6860130.9919Impact of coastal deoxygenation on antibiotic resistance gene profiles in size-fractionated bacterial communities. Oxygen loss disrupts marine ecosystems, threatening biodiversity and causing mass mortality of marine life. Antibiotic resistance genes (ARGs) pose a significant threat to human health by promoting the spread of resistant pathogens, making infections harder to treat and increasing mortality risks. However, the interplay between deoxygenation and ARG dynamics remains poorly understood. In this study, we employed time-series metagenomics to investigate the responses of ARG profiles in free-living (FL) and particle-associated (PA) fraction to oxygen loss during a 22-day summer deoxygenation event in the East China Sea. In total, we identified 1,186 ARG subtypes and 2,279 mobile genetic element (MGE) subtypes. The most dominant resistance classes of antibiotics were multidrug (23.5%), followed by tetracycline (15%), macrolide-lincosamide-streptogramin (13.4%), peptide (10.3%), glycopeptide (8.7%), aminoglycoside (7.3%), and beta-lactam (4.9%). We found that ARG richness in FL fraction increased with declining oxygen levels, particularly for beta-lactam and multidrug class, while no significant relationship was observed in the PA fraction. Although the total relative abundance of ARGs in both fraction showed no significant oxygen dependence, beta-lactam and multidrug resistance genes in FL fraction significantly increased with oxygen loss. Co-occurrence network analysis revealed stronger positive associations between ARGs and MGEs in the FL fraction, suggesting enhanced gene transfer among environmental bacteria. Furthermore, neutral community model analysis indicated that stochastic processes also played an interactive role in shaping ARG composition dynamics in both bacterial fractions. Our findings provide evidence that coastal deoxygenation preferentially enriches high-risk ARGs (e.g., beta-lactamase genes) in FL bacteria through MGE-mediated transfer, highlighting escalating antibiotic resistance risks that threaten both ecosystem and human health under climate warming. This study offers a framework for size-fractionated ARG monitoring and targeted mitigation strategies in coastal ecosystems.202540669246
3173140.9919Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health.202540633655
7004150.9919Sheep and rapeseed cake manure promote antibiotic resistome in agricultural soil. The application of manure in agriculture caused the emergence and spread of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in soil environments. However, the co-occurrence pattern and host diversity of ARGs and MGEs in soils amended with animal and green manures remains unclear. In this study, metagenomic assembly and binning techniques were employed to comprehensively explore the effects of sheep manure and green manure on soil microbiome, antibiotic resistomes, and ARG hosts. Both rapeseed cake manure and sheep manure increased the abundance and diversity of ARGs, with sheep manure particularly enhancing the abundance of ARGs conferring resistant to multidrug, quinolone, rifampicin, and macrolide-lincosamide-streptogramin (MLSB). Mobile genetic elements (MGEs), such as plasmids, transposases, and integrases, preferentially enhanced the potential mobility of some ARGs subtypes (i.e. sul2, aadA, qacH, and folp), facilitating the spread of ARGs. Additionally, sheep manure reshaped the bacterial community structure and composition as well as ARG hosts, some opportunistic pathogens (i.e. Staphylococcus, Streptococcus, and Pantoea) acquired antibiotic resistance and remained recalcitrant. It is concluded that rapeseed cake manure and sheep manure increased the co-occurrence of ARGs and MGEs, enriched the potential ARG hosts, and promoted the dissemination of ARGs in agricultural soils.202540633350
7171160.9918Household waste-specific ambient air shows greater inhalable antimicrobial resistance risks in densely populated communities. Household waste is a hotspot of antibiotic resistance, which can be readily emitted to the ambient airborne inhalable particulate matters (PM(10)) during the day-long storage in communities. Nevertheless, whether these waste-specific inhalable antibiotic resistance genes (ARGs) are associated with pathogenic bacteria or pose hazards to local residents have yet to be explored. By high-throughput metagenomic sequencing and culture-based antibiotic resistance validation, we analyzed 108 airborne PM(10) and nearby environmental samples collected across different types of residential communities in Shanghai, the most populous city in China. Compared to the cold-dry period, the warm-humid season had significantly larger PM(10)-associated antibiotic resistomes in all types of residential communities (T-test, P < 0.001), most of airborne ARGs in which were estimatedly originated from disposed household waste (∼ 30 %). In addition, the airborne bacteria were assembled in a deterministic approach (iCAMP, P < 0.01), where the waste-specific bacteria taxa including Acinetobacter, Pseudomonas, Rhodococcus, and Kocuria had the predominant niches in the airborne microbial assemblages. Notably, these waste-sourced bacteria were also identified as the primary airborne hosts of ARGs encoding the aminoglycoside resistances. Among them, some antibiotic resistant human pathogens, such as Pseudomonas aeruginosa and Acinetobacter baumannii, not only exhibited higher ARG horizontal gene transfer (HGT) potential across the microbial assemblages, but also imposed direct infection risks on the local residents by 2 min inhalation exposure per day. When the daily exposure duration increased to 11 min, the infection-induced illness burden became unignorably high, especially in densely populated urban communities, being twofold greater than rural areas.202539862584
6804170.9918Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.202438636860
6834180.9918Landscape of antibiotic resistance genes and bacterial communities in groundwater on the Tibetan Plateau, and distinguishing their difference with low-altitude counterparts. Groundwater is a vital source of drinking water for Tibetans. Antibiotic resistance genes (ARGs) and bacterial communities in groundwater on the Tibetan Plateau remain unclear. Furthermore, the characterization of their differences between high-altitude and low-altitude groundwater is still unrevealed. Herein, 32 groundwater samples were collected on the plateau, and intra- and extracellular ARGs (iARGs and eARGs), and bacterial communities were characterised through qPCR assays to 19 ARGs and 16S rRNA sequencing. It showed top four abundant intra- and extracellular last-resort ARGs (LARGs) were bla(OXA-48), mcr-1, vanA, and vanB, whereas dominant common ARGs (CARGs) were tetA and ermB, respectively. CARGs had higher abundances than LARGs, and iARGs were more frequently detected than eARGs. Proteobacteria, an invasive resident phylum, and Firmicutes dominated eDNA release. Network analysis revealed all observed LARGs co-occurred with pathogenic and non-pathogenic bacteria. Community diversity was significantly associated with longitude and elevation, while nitrate correlated with ARGs. Comparative analysis demonstrated eARG frequencies and abundances were higher at high altitudes than at low altitudes. Additionally, Acinetobacter and Pseudomonas specifically dominated at high altitudes. This study reveals the widespread prevalence of ARGs, particularly LARGs, in groundwater on the less-disturbed Tibetan Plateau and underlines the potential risks associated with the LARG-carrying bacteria. ENVIRONMENTAL IMPLICATION: Antibiotic resistance genes (ARGs), which are defined as emerging environmental contaminants, are becoming a global concern due to their ability to confer antibiotic resistance to pathogens. Our findings highlight the prevalence of ARGs, particularly LARGs, in groundwater on the Tibetan Plateau, and the possibility that naturally-occurring pathogenic and non-pathogenic bacteria carry multiple LARGs. In addition, we further reveal differences in the distribution of ARGs and bacterial community between high-altitude and low-altitude groundwater. Collectively, our findings offer an important insight into the potential public risks related to groundwater on the Tibetan Plateau.202337595466
6941190.9918Tertiary Wastewater Treatment Processes Can Be a Double-Edged Sword for Water Quality Improvement in View of Mitigating Antimicrobial Resistance and Pathogenicity. Despite the high removal efficiency for chemical pollutants by tertiary wastewater treatment processes (TWTPs), there is no definite conclusion in terms of microbial risk mitigation yet. This study utilized metagenomic approaches to reveal the alterations of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), their co-occurrence, and potential hosts during multiple TWTPs. Results showed that the TWTPs reduced chemical pollutants in wastewater, but the denitrifying biofilter (DB) significantly increased the absolute abundances of selected antibiotic-resistant bacteria and ARGs, and simultaneously elevated the relative abundances of ARGs and VFGs through the enrichment of multidrug resistance and offensive genes, respectively. Moreover, the co-occurrence of ARGs and VFGs (e.g., bacA-tapW, mexF-adeG) was only identified after the DB treatment and all carried by Pseudomonas. Then, the ultraviolet and constructed wetland treatment showed good complementarity for microbial risk reduction through mitigating antibiotic resistance and pathogenicity. Network and binning analyses showed that the shift of key operational taxonomic units affiliating to Pseudomonas and Acinetobacter may contribute to the dynamic changes of ARGs and VFGs during the TWTPs. Overall, this study sheds new light on how the TWTPs affect the antibiotic resistome and VFG profiles and what TWTPs should be selected for microbial risk mitigation.202336538014