# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9075 | 0 | 0.9946 | CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BACKGROUND: The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS: To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS: The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype . | 2023 | 37474912 |
| 5192 | 1 | 0.9944 | Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment. | 2024 | 38881048 |
| 5116 | 2 | 0.9942 | Prediction of Antimicrobial Resistance in Gram-Negative Bacteria From Whole-Genome Sequencing Data. BACKGROUND: Early detection of antimicrobial resistance in pathogens and prescription of more effective antibiotics is a fast-emerging need in clinical practice. High-throughput sequencing technology, such as whole genome sequencing (WGS), may have the capacity to rapidly guide the clinical decision-making process. The prediction of antimicrobial resistance in Gram-negative bacteria, often the cause of serious systemic infections, is more challenging as genotype-to-phenotype (drug resistance) relationship is more complex than for most Gram-positive organisms. METHODS AND FINDINGS: We have used NCBI BioSample database to train and cross-validate eight XGBoost-based machine learning models to predict drug resistance to cefepime, cefotaxime, ceftriaxone, ciprofloxacin, gentamicin, levofloxacin, meropenem, and tobramycin tested in Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae. The input is the WGS data in terms of the coverage of known antibiotic resistance genes by shotgun sequencing reads. Models demonstrate high performance and robustness to class imbalanced datasets. CONCLUSION: Whole genome sequencing enables the prediction of antimicrobial resistance in Gram-negative bacteria. We present a tool that provides an in silico antibiogram for eight drugs. Predictions are accompanied with a reliability index that may further facilitate the decision making process. The demo version of the tool with pre-processed samples is available at https://vancampn.shinyapps.io/wgs2amr/. The stand-alone version of the predictor is available at https://github.com/pieterjanvc/wgs2amr/. | 2020 | 32528441 |
| 5201 | 3 | 0.9942 | Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains. | 2020 | 32127921 |
| 9066 | 4 | 0.9942 | VRprofile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. VRprofile is a Web server that facilitates rapid investigation of virulence and antibiotic resistance genes, as well as extends these trait transfer-related genetic contexts, in newly sequenced pathogenic bacterial genomes. The used backend database MobilomeDB was firstly built on sets of known gene cluster loci of bacterial type III/IV/VI/VII secretion systems and mobile genetic elements, including integrative and conjugative elements, prophages, class I integrons, IS elements and pathogenicity/antibiotic resistance islands. VRprofile is thus able to co-localize the homologs of these conserved gene clusters using HMMer or BLASTp searches. With the integration of the homologous gene cluster search module with a sequence composition module, VRprofile has exhibited better performance for island-like region predictions than the other widely used methods. In addition, VRprofile also provides an integrated Web interface for aligning and visualizing identified gene clusters with MobilomeDB-archived gene clusters, or a variety set of bacterial genomes. VRprofile might contribute to meet the increasing demands of re-annotations of bacterial variable regions, and aid in the real-time definitions of disease-relevant gene clusters in pathogenic bacteria of interest. VRprofile is freely available at http://bioinfo-mml.sjtu.edu.cn/VRprofile. | 2018 | 28077405 |
| 4354 | 5 | 0.9941 | ARDB--Antibiotic Resistance Genes Database. The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database--the Antibiotic Resistance Genes Database (ARDB)--unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13,293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/. | 2009 | 18832362 |
| 5115 | 6 | 0.9940 | Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data. BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates. | 2015 | 26197475 |
| 5113 | 7 | 0.9940 | Identification of bacterial antibiotic resistance genes in next-generation sequencing data (review of literature). The spread of antibiotic-resistant human bacterial pathogens is a serious threat to modern medicine. Antibiotic susceptibility testing is essential for treatment regimens optimization and preventing dissemination of antibiotic resistance. Therefore, development of antibiotic susceptibility testing methods is a priority challenge of laboratory medicine. The aim of this review is to analyze the capabilities of the bioinformatics tools for bacterial whole genome sequence data processing. The PubMed database, Russian scientific electronic library eLIBRARY, information networks of World health organization and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) were used during the analysis. In this review, the platforms for whole genome sequencing, which are suitable for detection of bacterial genetic resistance determinants, are described. The classic step of genetic resistance determinants searching is an alignment between the query nucleotide/protein sequence and the subject (database) nucleotide/protein sequence, which is performed using the nucleotide and protein sequence databases. The most commonly used databases are Resfinder, CARD, Bacterial Antimicrobial Resistance Reference Gene Database. The results of the resistance determinants searching in genome assemblies is more correct in comparison to results of the searching in contigs. The new resistance genes searching bioinformatics tools, such as neural networks and machine learning, are discussed in the review. After critical appraisal of the current antibiotic resistance databases we designed a protocol for predicting antibiotic resistance using whole genome sequence data. The designed protocol can be used as a basis of the algorithm for qualitative and quantitative antimicrobial susceptibility testing based on whole genome sequence data. | 2021 | 34882354 |
| 9074 | 8 | 0.9940 | BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net. | 2021 | 34367079 |
| 5126 | 9 | 0.9939 | Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures. | 2024 | 38085058 |
| 5468 | 10 | 0.9939 | Whole-genome sequence of a putative pathogenic Bacillus sp. strain SD-4 isolated from cattle feed. OBJECTIVES: The present study describes the draft genome sequence of a novel Bacillus sp. strain SD-4 isolated from animal feed. The study aims to get a deeper insight into antimicrobial resistance and secondary metabolite biosynthetic gene clusters (BGCs) and the association between them. METHODS: The strain SD-4 was preliminarily evaluated for antibacterial activities, motility, biofilm formation, and enterotoxin production using in vitro assays. The genome of strain SD-4 was sequenced using the Illumina HiSeq 2500 platform with paired-end reads. The reads were assembled and annotated using SPAdes and PGAP, respectively. The genome was further analysed using several bioinformatics tools, including TYGS, AntiSMASH, RAST, PlasmidFinder, VFDB, VirulenceFinder, CARD, PathogenFinder, MobileElement finder, IslandViewer, and CRISPRFinder. RESULTS: In vitro assays showed that the strain is motile, synthesises biofilm, and produces an enterotoxin and antibacterial metabolites. The genome analysis revealed that the strain SD-4 carries antimicrobial resistance genes (ARGs), virulence factors, and beneficial secondary metabolite BGCs. Further genome analysis showed interesting genome architectures containing several mobile genetic elements, including two plasmid replicons (repUS22 and rep20), five prophages, and at least four genomic islands (GIs), including one Listeria pathogenicity island LIPI-1. Moreover, the strain SD-4 is identified as a putative human pathogen. CONCLUSION: The genome of strain SD-4 harbours several BGCs coding for biologically active metabolites. It also contains antimicrobial resistance genes and is identified as a potential human pathogen. These results can be used to better comprehend antibiotic resistance in environmental bacteria that are not influenced by human intervention. | 2022 | 35413450 |
| 5119 | 11 | 0.9939 | ROCker models for reliable detection and typing of short-read sequences carrying mcr, erm, mph, and lnu antibiotic resistance genes. Quantitative monitoring of emerging antimicrobial resistance genes (ARGs) using short-read sequences remains challenging due to the high frequency of amino acid functional domains and motifs shared with related but functionally distinct (non-target) proteins. To facilitate ARG monitoring efforts using unassembled short reads, we present novel ROCker models for mcr, mph, erm, and lnu ARG families, as well as models for variants of special public health concern within these families, including mcr-1, mphA, ermB, lnuF, lnuB, and lnuG genes. For this, we curated target gene sequence sets for model training and built these models using the recently updated ROCker V2 pipeline (Gerhardt et al., in review). To validate our models, we simulated reads from the whole genome of ARG-carrying isolates spanning a range of common read lengths and used them to challenge the filtering efficacy of ROCker versus common static filtering approaches, such as similarity searches using BLASTx with various e-value thresholds or hidden Markov models. ROCker models consistently showed F1 scores up to 10× higher (31% higher on average) and lower false-positive (by 30%, on average) and false-negative (by 16%, on average) rates based on 250 bp reads compared to alternative methods. The ROCker models and all related reference materials and data are freely available through http://enve-omics.ce.gatech.edu/rocker/models, further expanding the available model collection previously developed for other genes. Their application to short-read metagenomes, metatranscriptomes, and PCR amplicon data should facilitate more accurate classification and quantification of unassembled short-read sequences for these ARG families and specific genes.IMPORTANCEAntimicrobial resistance gene families encoding erm and mph genes confer resistance to the macrolide class of antimicrobials, which are used to treat a wide range of infections. Similarly, the mcr gene family confers resistance to polymyxin E (colistin), a drug of last resort for many serious drug-resistant bacterial infections, and the lnu gene family confers resistance to lincomycin, which is reserved for patients allergic to penicillin or where bacteria have developed resistance to other antimicrobials. Assessing the prevalence of these genes in clinical or environmental samples and monitoring their spread to new pathogens are thus important for quantifying the associated public health risk. However, detecting these and other resistance genes in short-read sequence data is technically challenging. Our ROCker bioinformatic pipeline achieves reliable detection and typing of broad-range target gene sequences in complex data sets, thus contributing toward solving an important problem in ongoing surveillance efforts of antimicrobial resistance. | 2025 | 41143534 |
| 5121 | 12 | 0.9939 | Rapid Nanopore Whole-Genome Sequencing for Anthrax Emergency Preparedness. Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response. | 2020 | 31961318 |
| 5464 | 13 | 0.9938 | Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BACKGROUND: Drug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data. RESULTS: Alcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and β-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3. CONCLUSIONS: The present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs. | 2022 | 35443609 |
| 5114 | 14 | 0.9938 | Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing. Whole genome sequencing (WGS) is a key tool in identifying and characterising disease-associated bacteria across clinical, agricultural, and environmental contexts. One increasingly common use of genomic and metagenomic sequencing is in identifying the type and range of antimicrobial resistance (AMR) genes present in bacterial isolates in order to make predictions regarding their AMR phenotype. However, there are a large number of alternative bioinformatics software and pipelines available, which can lead to dissimilar results. It is, therefore, vital that researchers carefully evaluate their genomic and metagenomic AMR analysis methods using a common dataset. To this end, as part of the Microbial Bioinformatics Hackathon and Workshop 2021, a 'gold standard' reference genomic and simulated metagenomic dataset was generated containing raw sequence reads mapped against their corresponding reference genome from a range of 174 potentially pathogenic bacteria. These datasets and their accompanying metadata are freely available for use in benchmarking studies of bacteria and their antimicrobial resistance genes and will help improve tool development for the identification of AMR genes in complex samples. | 2022 | 35705638 |
| 1789 | 15 | 0.9938 | Genomic and phylogenetic analysis of a multidrug-resistant Burkholderia contaminans strain isolated from a patient with ocular infection. OBJECTIVES: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail. METHODS: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools. RESULTS: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified. CONCLUSION: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus. | 2021 | 33965629 |
| 5148 | 16 | 0.9938 | Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. This study investigates the genomic features and probiotic potential of Lactiplantibacillus plantarum HMX2, isolated from Chinese Sauerkraut, using whole-genome sequencing (WGS) and bioinformatics for the first time. This study also aims to find genetic diversity, antibiotic resistance genes, and functional capabilities to help us better understand its food safety applications and potential as a probiotic. L. plantarum HMX2 was cultured, and DNA was extracted for WGS. Genomic analysis comprised average nucleotide identity (ANI) prediction, genome annotation, pangenome, and synteny analysis. Bioinformatics techniques were used to identify CoDing Sequences (CDSs), transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, and antibiotic resistance genes, as well as to conduct phylogenetic analysis to establish genetic diversity and evolution. The study found a significant genetic similarity (99.17% ANI) between L. plantarum HMX2 and the reference strain. Genome annotation revealed 3,242 coding sequences, 65 tRNA genes, and 16 rRNA genes. Significant genetic variety was found, including 25 antibiotic resistance genes. A phylogenetic study placed L. plantarum HMX2 among closely related bacteria, emphasizing its potential for probiotic and food safety applications. The genomic investigation of L. plantarum showed essential genes, including plnJK and plnEF, which contribute to antibacterial action against foodborne pathogens. Furthermore, genes such as MurA, Alr, and MprF improve food safety and probiotic potential by promoting bacterial survival under stress conditions in food and the gastrointestinal tract. This study introduces the new genomic features of L. plantarum HMX2 about specific genetics and its possibility of relevant uses in food security and technologies. These findings of specific genes involved in antimicrobial activity provide fresh possibilities for exploiting this strain in forming probiotic preparations and food preservation methods. The future research should focus on the experimental validation of antibiotic resistance genes, comparative genomics to investigate functional diversity, and the development of novel antimicrobial therapies that take advantage of L. plantarum's capabilities. | 2024 | 39611087 |
| 5206 | 17 | 0.9937 | Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus). OBJECTIVES: The incidence of multidrug-resistant bacteria in wildlife animals has been investigated to improve our knowledge of the spread of clinically relevant antimicrobial resistance genes. The aim of this study was to report the first draft genome sequence of an extensively drug-resistant (XDR) Pseudomonas aeruginosa ST644 isolate recovered from a Magellanic penguin with a footpad infection (bumblefoot) undergoing rehabilitation process. METHODS: The genome was sequenced on an Illumina NextSeq(®) platform using 150-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.10, and the whole genome sequence was evaluated using bioinformatics approaches from the Center of Genomic Epidemiology, whereas an in-house method (mapping of raw whole genome sequence reads) was used to identify chromosomal point mutations. RESULTS: The genome size was calculated at 6436450bp, with 6357 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracyclines, quinolones and fosfomycin; in addition, mutations in the genes gyrA (Thr83Ile), parC (Ser87Leu), phoQ (Arg61His) and pmrB (Tyr345His), conferring resistance to quinolones and polymyxins, respectively, were confirmed. CONCLUSION: This draft genome sequence can provide useful information for comparative genomic analysis regarding the dissemination of clinically significant antibiotic resistance genes and XDR bacterial species at the human-animal interface. | 2018 | 29277728 |
| 5110 | 18 | 0.9937 | Surveillance of carbapenem-resistant organisms using next-generation sequencing. The genomic data generated from next-generation sequencing (NGS) provides nucleotide-level resolution of bacterial genomes which is critical for disease surveillance and the implementation of prevention strategies to interrupt the spread of antimicrobial resistance (AMR) bacteria. Infection with AMR bacteria, including Gram-negative Carbapenem-Resistant Organisms (CRO), may be acute and recurrent-once they have colonized a patient, they are notoriously difficult to eradicate. Through phylogenetic tools that assess the single nucleotide polymorphisms (SNPs) within a pathogen genome dataset, public health scientists can estimate the genetic identity between isolates. This information is used as an epidemiologic proxy of a putative outbreak. Pathogens with minimal to no differences in SNPs are likely to be the same strain attributable to a common source or transmission between cases. These genomic comparisons enhance public health response by prompting targeted intervention and infection control measures. This methodology overview demonstrates the utility of phenotypic and molecular assays, antimicrobial susceptibility testing (AST), NGS, publicly available genomics databases, and open-source bioinformatics pipelines for a tiered workflow to detect resistance genes and potential clusters of illness. These methods, when used in combination, facilitate a genomic surveillance workflow for detecting potential AMR bacterial outbreaks to inform epidemiologic investigations. Use of this workflow helps to target and focus epidemiologic resources to the cases with the highest likelihood of being related. | 2023 | 37255756 |
| 9076 | 19 | 0.9937 | ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/. | 2021 | 33495705 |