# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 781 | 0 | 0.9944 | Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Pseudomonas aeruginosa is an opportunistic human pathogen exhibiting innate resistance to multiple antimicrobial agents. This intrinsic multidrug resistance is caused by synergy between a low-permeability outer membrane and expression of a number of broadly-specific multidrug efflux (Mex) systems, including MexAB-OprM and MexXY-OprM. In addition to this intrinsic resistance, these and three additional systems, MexCD-OprJ, MexEF-OprN and MexJK-OprM promote acquired multidrug resistance as a consequence of hyper-expression of the efflux genes by mutational events. In addition to antibiotics, these pumps export biocides, dyes, detergents, metabolic inhibitors, organic solvents and molecules involved in bacterial cell-cell communication. Homologues of the resistance-nodulation-division systems of P. aeruginosa have been found in Burkholderia cepacia, B. pseudomallei, Stenotrophomonas maltophilia, and the nonpathogen P. putida, where they play roles in resistance to antimicrobials and/or organic solvents. Despite intensive studies of these multidrug efflux systems over the past several years, their precise molecular architectures, their modes of regulation of expression and their natural functions remain largely unknown. | 2003 | 12917802 |
| 9115 | 1 | 0.9944 | RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. The rise of multi-drug-resistant (MDR) pathogenic bacteria presents a grave challenge to global public health, with antimicrobial resistance ranking as the third leading cause of mortality worldwide. Understanding the mechanisms underlying antibiotic resistance is crucial for developing effective treatments. Efflux pumps, particularly those of the resistance-nodulation-cell division (RND) superfamily, play a significant role in expelling molecules from bacterial cells, contributing to the emergence of multi-drug resistance. These are transmembrane transporters naturally produced by Gram-negative bacteria. This review provides comprehensive insights into the modulation of RND efflux pump expression in bacterial pathogens by numerous and common molecules (bile, biocides, pharmaceuticals, additives, plant extracts, etc.). The interplay between these molecules and efflux pump regulators underscores the complexity of antibiotic resistance mechanisms. The clinical implications of efflux pump induction by non-antibiotic compounds highlight the challenges posed to public health and the urgent need for further investigation. By addressing antibiotic resistance from multiple angles, we can mitigate its impact and preserve the efficacy of antimicrobial therapies. | 2024 | 38927168 |
| 9509 | 2 | 0.9943 | Efflux-mediated tolerance to cationic biocides, a cause for concern? AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored. | 2022 | 36748532 |
| 9500 | 3 | 0.9943 | Antibiotic and biocide resistance in bacteria: introduction. Drug resistance in bacteria is increasing and the pace at which new antibiotics are being produced is slowing. It is now almost commonplace to hear about methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multi-drug resistance in Mycobacterium tuberculosis (MDRTB) strains and multi-drug-resistant (MDR) Gram-negative bacteria. So-called new and emerging pathogens add to the gravity of the situation. Reduced susceptibility to biocides is also apparently increasing, but is more likely to be low level in nature and to concentrations well below those used in hospital, domestic an industrial practice. A particular problem, however, is found with bacteria and other micro-organisms present in biofilms, where a variety of factors can contribute to greater insusceptibility compared with cells in planktonic culture. Also of potential concern is the possibility that widespread usage of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. The basic mechanisms of action of, and bacterial resistance to, antibiotics are generally well documented, although data continue to accumulate about the nature and importance of efflux systems. In contrast, the modes of action of most biocides are poorly understood and consequently, detailed evaluation of bacterial resistance mechanisms is often disappointing. During this Symposium, the mechanisms of bacterial resistance to antibiotics and biocides are discussed at length. It is hoped that this knowledge will be used to develop newer, more effective drugs and biocides that can be better and perhaps, on occasion, more logically used to combat the increasing problem of bacterial resistance. | 2002 | 12000607 |
| 9499 | 4 | 0.9943 | Antibiotic and biocide resistance in bacteria: introduction. Drug resistance in bacteria is increasing and the pace at which new antibiotics are being produced is slowing. It is now almost commonplace to hear about methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), multi-drug resistance in Mycobacterium tuberculosis (MDRTB) strains and multi-drug-resistant (MDR) gram-negative bacteria. So-called new and emerging pathogens add to the gravity of the situation. Reduced susceptibility to biocides is also apparently increasing, but is more likely to be low level in nature and to concentrations well below those used in hospital, domestic an industrial practice. A particular problem, however, is found with bacteria and other micro-organisms present in biofilms, where a variety of factors can contribute to greater insusceptibility compared with cells in planktonic culture. Also of potential concern is the possibility that widespread usage of biocides is responsible for the selection and maintenance of antibiotic-resistant bacteria. The basic mechanisms of action of, and bacterial resistance to, antibiotics are generally well documented, although data continue to accumulate about the nature and importance of efflux systems. In contrast, the modes of action of most biocides are poorly understood and consequently, detailed evaluation of bacterial resistance mechanisms is often disappointing. During this Symposium, the mechanisms of bacterial resistance to antibiotics and biocides are discussed at length. It is hoped that this knowledge will be used to develop newer, more effective drugs and biocides that can be better and perhaps, on occasion, more logically used to combat the increasing problem of bacterial resistance. | 2002 | 12481823 |
| 8622 | 5 | 0.9942 | Antipsychotic quetiapine alters the mouse fecal resistome by impacting antibiotic efflux, cell membrane, and cell wall synthesis genes. This study significantly contributes to our understanding of how certain medications can unintentionally contribute to a major global health issue, i.e., antibiotic resistance. Quetiapine, a widely used antipsychotic medication, was found to increase key resistance mechanisms of gut bacteria to antibiotics in mice. Specifically, these data suggest that quetiapine may target elements of the bacterial cell membrane. If similar effects are found in humans, this medicine could unexpectedly make it harder to treat certain infections. This research emphasizes the importance of being mindful about not just antibiotics themselves, but also about other medications that could inadvertently contribute to this problem. Ultimately, these findings underline the necessity for more in-depth research on the broader impact of pharmaceuticals. | 2024 | 38099619 |
| 9501 | 6 | 0.9942 | Resistance Toward Chlorhexidine in Oral Bacteria - Is There Cause for Concern? The threat of antibiotic resistance has attracted strong interest during the last two decades, thus stimulating stewardship programs and research on alternative antimicrobial therapies. Conversely, much less attention has been given to the directly related problem of resistance toward antiseptics and biocides. While bacterial resistances toward triclosan or quaternary ammonium compounds have been considered in this context, the bis-biguanide chlorhexidine (CHX) has been put into focus only very recently when its use was associated with emergence of stable resistance to the last-resort antibiotic colistin. The antimicrobial effect of CHX is based on damaging the bacterial cytoplasmic membrane and subsequent leakage of cytoplasmic material. Consequently, mechanisms conferring resistance toward CHX include multidrug efflux pumps and cell membrane changes. For instance, in staphylococci it has been shown that plasmid-borne qac ("quaternary ammonium compound") genes encode Qac efflux proteins that recognize cationic antiseptics as substrates. In Pseudomonas stutzeri, changes in the outer membrane protein and lipopolysaccharide profiles have been implicated in CHX resistance. However, little is known about the risk of resistance toward CHX in oral bacteria and potential mechanisms conferring this resistance or even cross-resistances toward antibiotics. Interestingly, there is also little awareness about the risk of CHX resistance in the dental community even though CHX has been widely used in dental practice as the gold-standard antiseptic for more than 40 years and is also included in a wide range of oral care consumer products. This review provides an overview of general resistance mechanisms toward CHX and the evidence for CHX resistance in oral bacteria. Furthermore, this work aims to raise awareness among the dental community about the risk of resistance toward CHX and accompanying cross-resistance to antibiotics. We propose new research directions related to the effects of CHX on bacteria in oral biofilms. | 2019 | 30967854 |
| 9028 | 7 | 0.9942 | Efflux Pumps in Chromobacterium Species Increase Antibiotic Resistance and Promote Survival in a Coculture Competition Model. Members of the Chromobacterium genus include opportunistic but often-fatal pathogens and soil saprophytes with highly versatile metabolic capabilities. In previous studies of Chromobacterium subtsugae (formerly C. violaceum) strain CV017, we identified a resistance nodulation division (RND)-family efflux pump (CdeAB-OprM) that confers resistance to several antibiotics, including the bactobolin antibiotic produced by the soil saprophyte Burkholderia thailandensis Here, we show the cdeAB-oprM genes increase C. subtsugae survival in a laboratory competition model with B. thailandensis We also demonstrate that adding sublethal bactobolin concentrations to the coculture increases C. subtsugae survival, but this effect is not through CdeAB-OprM. Instead, the increased survival requires a second, previously unreported pump we call CseAB-OprN. We show that in cells exposed to sublethal bactobolin concentrations, the cseAB-oprN genes are transcriptionally induced, and this corresponds to an increase in bactobolin resistance. Induction of this pump is highly specific and sensitive to bactobolin, while CdeAB-OprM appears to have a broader range of antibiotic recognition. We examine the distribution of cseAB-oprN and cdeAB-oprM gene clusters in members of the Chromobacterium genus and find the cseAB-oprN genes are limited to the nonpathogenic C. subtsugae strains, whereas the cdeAB-oprM genes are more widely distributed among members of the Chromobacterium genus. Our results provide new information on the antibiotic resistance mechanisms of Chromobacterium species and highlight the importance of efflux pumps for saprophytic bacteria existing in multispecies communities.IMPORTANCE Antibiotic efflux pumps are best known for increasing antibiotic resistance of pathogens; however, the role of these pumps in saprophytes is much less well defined. This study describes two predicted efflux pump gene clusters in the Chromobacterium genus, which is comprised of both nonpathogenic saprophytes and species that cause highly fatal human infections. One of the predicted efflux pump clusters is present in every member of the Chromobacterium genus and increases resistance to a broad range of antibiotics. The other gene cluster has more narrow antibiotic specificity and is found only in Chromobacterium subtsugae, a subset of entirely nonpathogenic species. We demonstrate the role of both pumps in increasing antibiotic resistance and demonstrate the importance of efflux-dependent resistance induction for C. subtsugae survival in a dual-species competition model. These results have implications for managing antibiotic-resistant Chromobacterium infections and for understanding the evolution of efflux pumps outside the host. | 2019 | 31324628 |
| 9116 | 8 | 0.9942 | Photosensitizer associated with efflux pump inhibitors as a strategy for photodynamic therapy against bacterial resistance. Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments. However, some efflux pumps can expel diverse substrates from inside the cell, including photosensitizers used in aPDT, contributing to multidrug-resistance mechanisms. Efflux Pump Inhibitors are potential solutions to combat resistance mediated by these pumps and can play a crucial role in enhancing aPDT's effectiveness against multidrug-resistant bacteria. Therefore, combining efflux pumps inhibitors with photosensitizers can possible to eliminate the pathogen more efficiently. This review summarizes the mechanisms in which bacteria resist conventional antibiotic treatment, with a particular emphasis on efflux pump-mediated resistance, and present aPDT as a promising strategy to combat antibiotic resistance. Additionally, we highlighted several molecules of photosensitizer associated with efflux pump inhibitors as potential strategies to optimize aPDT, aiming to offer a perspective on future research directions on aPDT for overcoming the limitations of antibiotic resistance. | 2025 | 39731789 |
| 786 | 9 | 0.9942 | The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells. Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes. | 2019 | 31443538 |
| 4400 | 10 | 0.9941 | Efflux-mediated antimicrobial resistance. Antibiotic resistance continues to plague antimicrobial chemotherapy of infectious disease. And while true biocide resistance is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are common and the history of antibiotic resistance should not be ignored in the development and use of biocidal agents. Efflux mechanisms of resistance, both drug specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials, with some accommodating both antibiotics and biocides. This latter raises the spectre (as yet generally unrealized) of biocide selection of multiple antibiotic-resistant organisms. Multidrug efflux mechanisms are broadly conserved in bacteria, are almost invariably chromosome-encoded and their expression in many instances results from mutations in regulatory genes. In contrast, drug-specific efflux mechanisms are generally encoded by plasmids and/or other mobile genetic elements (transposons, integrons) that carry additional resistance genes, and so their ready acquisition is compounded by their association with multidrug resistance. While there is some support for the latter efflux systems arising from efflux determinants of self-protection in antibiotic-producing Streptomyces spp. and, thus, intended as drug exporters, increasingly, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, appear not to be intended as drug exporters but as exporters with, perhaps, a variety of other roles in bacterial cells. Still, given the clinical significance of multidrug (and drug-specific) exporters, efflux must be considered in formulating strategies/approaches to treating drug-resistant infections, both in the development of new agents, for example, less impacted by efflux and in targeting efflux directly with efflux inhibitors. | 2005 | 15914491 |
| 792 | 11 | 0.9941 | Multiple antibiotic resistance and efflux. Multiple antibiotic resistance in bacteria was at first thought to be caused exclusively by the combination of several resistance genes, each coding for resistance to a single drug. More recently, it became clear that such phenotypes are often achieved by the activity of drug efflux pumps. Some of these efflux pumps exhibit an extremely wide specificity covering practically all antibiotics, chemotherapeutic agents, detergents, dyes, and other inhibitors, the exception perhaps being very hydrophilic compounds. Such efflux pumps work with exceptional efficiency in Gram-negative bacteria through their synergistic interaction with the outer membrane barrier. It is disturbing that the antibacterial agents of the most advanced type, which are unaffected by common resistance mechanisms, are precisely the compounds whose use appears to select for multidrug-resistant mutants that overproduce these efflux pumps of wide specificity. | 1998 | 10066525 |
| 9120 | 12 | 0.9941 | The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Efflux pumps function as an advanced defense system against antimicrobials by reducing the concentration of drugs inside the bacteria and extruding the substances outside. Various extraneous substances, including antimicrobials, toxic heavy metals, dyes, and detergents, have been removed by this protective barrier composed of diverse transporter proteins found in between the cell membrane and the periplasm within the bacterial cell. In this review, multiple efflux pump families have been analytically and widely outlined, and their potential applications have been discussed in detail. Additionally, this review also discusses a variety of biological functions of efflux pumps, including their role in the formation of biofilms, quorum sensing, their survivability, and the virulence in bacteria, and the genes/proteins associated with efflux pumps have also been explored for their potential relevance to antimicrobial resistance and antibiotic residue detection. A final discussion centers around efflux pump inhibitors, particularly those derived from plants. | 2023 | 37138605 |
| 9117 | 13 | 0.9941 | Antimicrobial Resistance and the Alternative Resources with Special Emphasis on Plant-Based Antimicrobials-A Review. Indiscriminate and irrational use of antibiotics has created an unprecedented challenge for human civilization due to microbe's development of antimicrobial resistance. It is difficult to treat bacterial infection due to bacteria's ability to develop resistance against antimicrobial agents. Antimicrobial agents are categorized according to their mechanism of action, i.e., interference with cell wall synthesis, DNA and RNA synthesis, lysis of the bacterial membrane, inhibition of protein synthesis, inhibition of metabolic pathways, etc. Bacteria may become resistant by antibiotic inactivation, target modification, efflux pump and plasmidic efflux. Currently, the clinically available treatment is not effective against the antibiotic resistance developed by some bacterial species. However, plant-based antimicrobials have immense potential to combat bacterial, fungal, protozoal and viral diseases without any known side effects. Such plant metabolites include quinines, alkaloids, lectins, polypeptides, flavones, flavonoids, flavonols, coumarin, terpenoids, essential oils and tannins. The present review focuses on antibiotic resistance, the resistance mechanism in bacteria against antibiotics and the role of plant-active secondary metabolites against microorganisms, which might be useful as an alternative and effective strategy to break the resistance among microbes. | 2017 | 28394295 |
| 9515 | 14 | 0.9940 | Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Quaternary ammonium compounds (QACs) are widely used biocides that possess antimicrobial effect against a broad range of microorganisms. These compounds are used for numerous industrial purposes, water treatment, antifungal treatment in horticulture, as well as in pharmaceutical and everyday consumer products as preserving agents, foam boosters, and detergents. Resistance toward QACs is widespread among a diverse range of microorganisms and is facilitated by several mechanisms such as modifications in the membrane composition, expression of stress response and repair systems, or expression of efflux pump genes. Development of resistance in both pathogenic and nonpathogenic bacteria has been related to application in human medicine and the food industry. QACs in cosmetic products will inevitably come into intimate contact with the skin or mucosal linings in the mouth and thus are likely to add to the selection pressure toward more QAC-resistant microorganisms among the skin or mouth flora. There is increasing evidence of coresistance and cross-resistance between QACs and a range of other clinically important antibiotics and disinfectants. Use of QACs may have driven the fixation and spread of certain resistance cassette collectors (class 1 integrons), currently responsible for a major part of antimicrobial resistance in gram-negative bacteria. More indiscriminate use of QACs such as in cosmetic products may drive the selection of further new genetic elements that will aid in the persistence and spread of antimicrobial resistance and thus in limiting our treatment options for microbial infections. | 2010 | 20370507 |
| 9762 | 15 | 0.9940 | AcrAB-TolC, a major efflux pump in Gram negative bacteria: toward understanding its operation mechanism. Antibiotic resistance (AR) is a silent pandemic that kills millions worldwide. Although the development of new therapeutic agents against antibiotic resistance is in urgent demand, this has presented a great challenge, especially for Gram-negative bacteria that have inherent drug-resistance mediated by impermeable outer membranes and multidrug efflux pumps that actively extrude various drugs from the bacteria. For the last two decades, multidrug efflux pumps, including AcrAB-TolC, the most clinically important efflux pump in Gram-negative bacteria, have drawn great attention as strategic targets for re-sensitizing bacteria to the existing antibiotics. This article aims to provide a concise overview of the AcrAB-TolC operational mechanism, reviewing its architecture and substrate specificity, as well as the recent development of AcrAB-TolC inhibitors. [BMB Reports 2023; 56(6): 326-334]. | 2023 | 37254571 |
| 4401 | 16 | 0.9940 | Efflux pumps as antimicrobial resistance mechanisms. Antibiotic resistance continues to hamper antimicrobial chemotherapy of infectious disease, and while biocide resistance outside of the laboratory is as yet unrealized, in vitro and in vivo episodes of reduced biocide susceptibility are not uncommon. Efflux mechanisms, both drug-specific and multidrug, are important determinants of intrinsic and/or acquired resistance to these antimicrobials in important human pathogens. Multidrug efflux mechanisms are generally chromosome-encoded, with their expression typically resultant from mutations in regulatory genes, while drug-specific efflux mechanisms are encoded by mobile genetic elements whose acquisition is sufficient for resistance. While it has been suggested that drug-specific efflux systems originated from efflux determinants of self-protection in antibiotic-producing Actinomycetes, chromosomal multidrug efflux determinants, at least in Gram-negative bacteria, are appreciated as having an intended housekeeping function unrelated to drug export and resistance. Thus, it will be important to elucidate the intended natural function of these efflux mechanisms in order, for example, to anticipate environmental conditions or circumstances that might promote their expression and, so, compromise antimicrobial chemotherapy. Given the clinical significance of antimicrobial exporters, it is clear that efflux must be considered in formulating strategies for treatment of drug-resistant infections, both in the development of new agents, for example, less impacted by efflux or in targeting efflux directly with efflux inhibitors. | 2007 | 17457715 |
| 9129 | 17 | 0.9940 | Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance. | 2020 | 32961699 |
| 9544 | 18 | 0.9940 | Nano-Strategies to Fight Multidrug Resistant Bacteria-"A Battle of the Titans". Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria. | 2018 | 30013539 |
| 785 | 19 | 0.9940 | Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance. | 2023 | 37370284 |