BI - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
787000.9873Hierarchical Bi(2)O(2)CO(3) wrapped with modified graphene oxide for adsorption-enhanced photocatalytic inactivation of antibiotic resistant bacteria and resistance genes. There is growing pressure for wastewater treatment plants to mitigate the discharge of antibiotic resistant bacteria (ARB) and extracellular resistance genes (eARGs), which requires technological innovation. Here, hierarchical Bi(2)O(2)CO(3) microspheres were wrapped with nitrogen-doped, reduced graphene oxide (NRGO) for enhanced inactivation of multidrug-resistant E. coli NDM-1 and degradation of the plasmid-encoded ARG (bla(NDM-1)) in secondary effluent. The NRGO shell enhanced reactive oxygen species (ROS) generation (•OH and H(2)O(2)) by about three-fold, which was ascribed to broadened light absorption region (red-shifted up to 459 nm) and decreased electron-transfer time (from 55.3 to 19.8 ns). Wrapping enhanced E. coli adsorption near photocatalytic sites to minimize ROS scavenging by background constituents, which contributed to the NRGO-wrapped microspheres significantly outperforming commercial TiO(2) photocatalyst. ROS scavenger tests indicated that wrapping also changed the primary inactivation pathway, with photogenerated electron holes and surface-attached hydroxyl radicals becoming the predominant oxidizing species with wrapped microspheres, versus free ROS (e.g., •OH, H(2)O(2) and •O(2)(-)) for bare microspheres. Formation of resistance plasmid-composited microsphere complexes, primary due to the π-π stacking and hydrogen bonding between the shell and nucleotides, also minimized ROS scavenging and kept free plasmid concentrations below 10(2) copies/mL. As proof-of-concept, this work offers promising insight into the utilization of NRGO-wrapped microspheres for mitigating antibiotic resistance propagation in the environment.202032679343
843210.9866A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria. Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi(4)MoO(9)/two-dimensional (2D) Bi(2)MoO(6), MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.202337531599
785620.9844Boosting Low-Dose Ferrate(VI) Activation by Layered FeOCl for the Efficient Removal of Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes via Enhancing Fe(IV)/Fe(V) Generation. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in aquatic environments pose threats to ecosystem safety and human health, which could not be efficiently removed by conventional disinfection techniques. Herein, layered FeOCl with coordinatively unsaturated Fe sites were fabricated and used to activate Fe(VI) for the efficient ARB/ARG removal in the present study. We found that highly reactive Fe(IV)/Fe(V) intermediates were generated in the FeOCl/Fe(VI) system, rapidly disinfecting 1 × 10(7) CFU mL(-1) ARB to below the limit of detection within only 6 min. Via the combination of in situ characterization and theoretical calculations, we revealed that Fe(VI) was preferentially adsorbed onto Fe sites on the (010) plane of FeOCl and subsequently activated to produce reactive Fe(IV)/Fe(V) through direct electron transfer. Meanwhile, O(2)(•-) generated from O(2) activation on the FeOCl surface enhanced Fe(VI) conversion to Fe(IV)/Fe(V). During the disinfection process, intracellular/extracellular ARGs and DNA bases were simultaneously degraded, inhibiting the potential horizontal gene transfer process. The FeOCl/Fe(VI) system could effectively disinfect ARB under complex water matrices and in real water samples including tap water, lake water, and groundwater. When integrated into a continuous-flow reactor, the FeOCl/Fe(VI) system with excellent stability successively disinfected ARB. Overall, the FeOCl/Fe(VI) system showed great promise for eliminating ARB/ARGs from water.202540739812
785530.9844Combat against antibiotic resistance genes during photo-treatment of magnetic Zr-MOFs@Layered double hydroxide heterojunction: Conjugative transfer risk mitigating and bacterial inactivation. The dissemination of antimicrobial resistance (AMR) in wastewater treatment poses a severe threat to the global ecological environment. This study explored the effectiveness of photocatalysis in inactivating antibiotic resistant bacteria (ARB) and quantitatively clarified the inhibiting rate of the transfer of antibiotics resistance genes (ARGs). Herein, the magnetic heterojunction as UiO-66-NH(2)@CuFe LDH-Fe(3)O(4) (UN-66@LDH-Fe) effectively facilitated the electron-hole separation and accelerated the photogenerated charge transfer, thereby guaranteeing the stable practical application in aeration tanks. Notably, the internal electric field of heterogeneous photocatalyst resulted in significant increase of ARGs inactivation, achieving 5.63 log of ARB, 3.66 log of tetA and 3.57 log of Ampr genes were photodegraded under optimal reaction conditions within 6 h. Based on the complex microbial and molecular mechanism of multiple-ARB communities inactivation in photo-treatment, the photogenerated reactive oxygen species (ROSs, ·OH and ·O(2)(-)) effectively destroyed bacterial membrane protein, thereby the intracellular ROSs and redox cycles further induced oxidative stress, attributing to the abundance reduction of ARGs and their host bacteria. Moreover, long-term (7 days) continuous operation preliminarily verified the practical potential in reducing AMR spread and developing wastewater treatment efficacy. Overall, this study presented an advantageous synergistic strategy for mitigating the AMR-associated environmental risk in wastewater treatment.202540188541
783340.9841Defect-Rich Cu(2)O Nanospheres as a Fenton-Like Catalyst for Cu(III) Generation: Enhanced Inactivation of Antibiotic-Resistant Bacteria and Genes. Cupryl species (Cu(III)) are promising oxidants for degrading recalcitrant organic contaminants and harmful microorganisms in water. In this study, defect-rich cuprous oxide (D-Cu(2)O) nanospheres (NSs) are introduced as a Fenton-like catalyst to generate Cu(III) for the inactivation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). D-Cu(2)O, in the presence of H(2)O(2), achieved inactivation efficiencies 3.2, 3.0, and 2.4 times higher than those of control Cu(2)O for ARB, extracellular ARGs (e-ARGs), and intracellular ARGs (i-ARGs), respectively. Experimental evidence from oxidant scavenging tests, Cu(III)-periodate complexation assays, electron paramagnetic resonance (EPR), and in situ Raman spectroscopy confirmed that D-Cu(2)O significantly enhanced Cu(III) generation when reacting with H(2)O(2) compared to control Cu(2)O. Density functional theory (DFT) calculations further revealed that unsaturated copper atoms in D-Cu(2)O enhance H(2)O(2) adsorption by improving the structural accessibility of adjacent oxygen atoms. This facilitates electron transfer processes and promotes subsequent Cu(III) generation. The D-Cu(2)O/H(2)O(2) system demonstrated excellent reusability, maintaining a 4-log reduction of ARB over five cycles, and proved effective across various water matrices and microbial species. These findings highlight the potential of the D-Cu(2)O/H(2)O(2) system, driven by defect engineering, as a robust platform for enhancing water safety and advancing sustainable disinfection technologies.202540795282
783150.9840Integration of nanowire-confined electroporation of antibiotic-resistant bacteria and electroactivation of peracetic acid for eliminating intracellular resistance genes. Antimicrobial resistance is one of the most substantial challenges for global public health. To address the inefficient elimination of intracellular resistance genes (i-ARGs) in antibiotic-resistant bacteria (ARB) by peracetic acid (PAA) oxidation, we developed an integration strategy (NW-EP/EA) of nanowire-confined electroporation (NW-EP) of ARB cells and nanowire-confined electroactivation (NW-EA) of PAA with a sequential oxidation-reduction process. The locally enhanced electric field and electrocatalytic activity over NW tips prompted the formation of electroporation pores on ARB cells and the generation of reactive ⋅OH and RO⋅ radicals by PAA electroactivation. The NW-EP/EA with Pd-coated TiO(2)NW cathode with atomic H* evolution exhibited 0.6 -2.8-log higher i-ARG removal than the pristine TiO(2)NW cathode, especially achieving ∼5.0-log i-ARG removal (99.999 %) at 4.0 V and 2.0 mM PAA with ∼4.1-log synergistic effect and ∼10 times lower energy consumption as compared with the individual NW-EP (∼0.32-log and 52.1 %) and PAA (∼0.56-log and 74.4 %). For the sequential oxidation-reduction process, the electrooxidative activation of PAA on TiO(2)NW anode produced H(+) ions, ⋅OH and RO⋅ radicals for enlarging electroporation pores, and the generated H(+) ions promoted the evolution of atomic H* and electroreduction of PAA on subsequent Pd-TiO(2)NW cathode for further facilitating ARB cell damages, i-ARG leakage and degradation. The effective i-ARGs removal and HGT inhibition in tap water suggested the great application potentials of NW-EP/EA in the control of ARGs dissemination risks in drinking water.202540907311
785060.9839Simultaneous removal of antibiotic resistant bacteria, antibiotic resistance genes, and micropollutants by a modified photo-Fenton process. Although photo-driven advanced oxidation processes (AOPs) have been developed to treat wastewater, few studies have investigated the feasibility of AOPs to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and micropollutants (MPs). This study employed a modified photo-Fenton process using ethylenediamine-N,N'-disuccinic acid (EDDS) to chelate iron(III), thus maintaining the reaction pH in a neutral range. Simultaneous removal of ARB and associated extracellular (e-ARGs) and intracellular ARGs (i-ARGs), was assessed by bacterial cell culture, qPCR and atomic force microscopy. The removal of five MPs was also evaluated by liquid chromatography coupled with mass spectrometry. A low dose comprising 0.1 mM Fe(III), 0.2 mM EDDS, and 0.3 mM hydrogen peroxide (H(2)O(2)) was found to be effective for decreasing ARB by 6-log within 30 min, and e-ARGs by 6-log within 10 min. No ARB regrowth occurred after 48-h, suggesting that the proposed process is an effective disinfectant against ARB. Moreover, five recalcitrant MPs (carbamazepine, diclofenac, sulfamethoxazole, mecoprop and benzotriazole at an initial concentration of 10 μg/L each) were >99% removed after 30 min treatment in ultrapure water. The modified photo-Fenton process was also validated using synthetic wastewater and real secondary wastewater effluent as matrices, and results suggest the dosage should be doubled to ensure equivalent removal performance. Collectively, this study demonstrated that the modified process is an optimistic 'one-stop' solution to simultaneously mitigate both chemical and biological hazards.202133819660
785470.9837Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment.202336738938
2280.9837A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.202236438094
784890.9837Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants.202235759741
7853100.9836Natural pyrite and ascorbic acid co-enhance periodate activation for inactivation of antibiotic resistant bacteria and inhibition of resistance genes transmission: A green disinfection process dominated by singlet oxygen. The transmission of antibiotic resistance genes (ARGs) and the propagation of antibiotic resistant bacteria (ARB) threaten public health security and human health, and greener and more efficient disinfection technologies are expected to be discovered for wastewater treatment. In this study, natural pyrite and ascorbic acid (AA) were proposed as environmental-friendly activator and reductant for periodate (PI) activation to inactivate ARB. The disinfection treatment of PI/pyrite/AA system could inactivate 5.62 log ARB within 30 min, and the lower pH and higher PI and natural pyrite dosage could further boost the disinfection efficiency. The (1)O(2) and SO(4)(•-) were demonstrated to be crucial for the inactivation of ARB in PI/pyrite/AA system. The disinfection process destroyed the morphological structure of ARB, inducing oxidative stress and stimulating the antioxidant system. The PI/pyrite/AA system effectively reduced the intracellular and extracellular DNA concentration and ARGs abundance, inhibiting the propagation of ARGs. The presence of AA facilitated the activation of PI with natural pyrite and significantly increased the concentration of Fe(2+) in solution. The reusability of natural pyrite, the safety of the disinfection by-products and the inhibition of ARB regeneration indicated the application potential of PI/pyrite/AA system in wastewater disinfection.202439038380
9092110.9836Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.202438647392
7858120.9836Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment.201829984583
7834130.9833Elimination of representative antibiotic-resistant bacteria, antibiotic resistance genes and ciprofloxacin from water via photoactivation of periodate using FeS(2). The propagation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) induced by the release of antibiotics poses great threats to ecological safety and human health. In this study, periodate (PI)/FeS(2)/simulated sunlight (SSL) system was employed to remove representative ARB, ARGs and antibiotics in water. 1 × 10(7) CFU mL(-1) of gentamycin-resistant Escherichia coli was effectively disinfected below limit of detection in PI/FeS(2)/SSL system under different water matrix and in real water samples. Sulfadiazine-resistant Pseudomonas and Gram-positive Bacillus subtilis could also be efficiently sterilized. Theoretical calculation showed that (110) facet was the most reactive facet on FeS(2) to activate PI for the generation of reactive species (·OH, ·O(2)(-), h(+) and Fe(IV)=O) to damage cell membrane and intracellular enzyme defense system. Both intracellular and extracellular ARGs could be degraded and the expression levels of multidrug resistance-related genes were downregulated during the disinfection process. Thus, horizontal gene transfer (HGT) of ARB was inhibited. Moreover, PI/FeS(2)/SSL system could disinfect ARB in a continuous flow reactor and in an enlarged reactor under natural sunlight irradiation. PI/FeS(2)/SSL system could also effectively degrade the HGT-promoting antibiotic (ciprofloxacin) via hydroxylation and ring cleavage process. Overall, PI/FeS(2)/SSL exhibited great promise for the elimination of antibiotic resistance from water.202438917629
8790140.9832Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 10(4) and 10(8) cfu(⋅)mL(-1). The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.202133936131
7849150.9832Efficient removal of antibiotic-resistant bacteria and intracellular antibiotic resistance genes by heterogeneous activation of peroxymonosulfate on hierarchical macro-mesoporous Co(3)O(4)-SiO(2) with enhanced photogenerated charges. Antibiotic resistance genes (ARGs) and their host antibiotic-resistant bacteria (ARB) are widely detected in the environment and pose a threat to human health. Traditional disinfection in water treatment plants cannot effectively remove ARGs and ARB. This study explored the potential of a heterogeneous photo-Fenton-like process utilizing a hierarchical macro-mesoporous Co(3)O(4)-SiO(2) (MM CS) catalyst for activation of peroxymonosulfate (PMS) to inactivate ARB and degrade the intracellular ARGs. A typical gram-negative antibiotic-resistant bacteria called Pseudomonas sp. HLS-6 was used as a model ARB. A completed inactivation of ARB at ∼10(7) CFU/mL was achieved in 30 s, and an efficient removal rate of more than 4.0 log for specific ARGs (sul1 and intI1) was achieved within 60 min by the MM CS-based heterogeneous photo-Fenton-like process under visible light and neutral pH conditions. Mechanism investigation revealed that •O(2)(-) and (1)O(2) were the vital reactive species for ARB inactivation and ARG degradation. The formation and transformation of the active species were proposed. Furthermore, the hierarchical macro-mesoporous structure of MM CS provided excellent optical and photoelectrochemical properties that promoted the cycle of Co(3+)/Co(2+) and the effective utilization of PMS. This process was validated to be effective in various water matrices, including deionized water, underground water, source water, and secondary effluent wastewater. Collectively, this work demonstrated that the MM CS-based heterogeneous photo-Fenton-like process is a promising technology for controlling the spread of antibiotic resistance in aquatic environments.202235149504
8552160.9832Sustainable material platforms for multi-log removal of antibiotic-resistant bacteria and genes from wastewater: A review. Antibiotic-resistant bacteria (ARB) and the associated resistance genes (ARGs) are now recognized as emerging contaminants that can disseminate via wastewater streams, posing significant risks to both human and ecosystem health. Conventional physicochemical treatment approaches (e.g., chlorination, ozonation, advanced oxidation processes) typically suppress these contaminants but may also result in the formation of hazardous by-products. This critical review comprehensibly evaluates bio-based and other sustainable materials designed for the removal of ARB and ARGs from aqueous environments. The materials are systematically categorized into (i) biopolymers and their composites (chitosan, alginate, cellulose), (ii) carbon-rich adsorbents and (photo-)catalysts (biochar, activated carbon, graphene), (iii) metal- and semiconductor-based nanomaterials, and (iv) nature-based treatment solutions (constructed wetlands, soil-aquifer treatment, clay sorbents). Observed log-reduction value range from 2 to 7 for ARB with platforms such as zinc oxide/activated-carbon alginate beads, Fe/N-doped biochars, and graphene-supramolecular-porphyrin hybrids demonstrating high multifunctional efficacy. Mechanistic studies reveal that removal involves synergistic adsorption, photodynamic or Fenton-like oxidation, cell-membrane disruption, and inhibition of horizontal gene transfer. This review emphasizes the advancing potential of sustainable material solutions for mitigating antibiotic resistance and highlights the urgent need to develop scalable, environmentally sustainable treatment methods for protecting water resources and public health.202540763861
7857170.9831Electroactive Ultrafiltration Membrane for Simultaneous Removal of Antibiotic, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes from Wastewater Effluent. To combat the spread of antibiotic resistance into the environment, we should adequately manage wastewater effluent treatment to achieve simultaneous removal of antibiotics, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs). Herein, we fabricate a multifunctional electroactive poly(vinylidene fluoride) ultrafiltration membrane (C/PVDF) by phase inversion on conductive carbon cloth. The membrane possesses not only excellent retention toward ARB and ARGs but also exhibits high oxidation capacity as an electrode. Notably, sulfamethoxazole degradation involving hydroxylation and hydrolysis by the anode membrane is predominant, and the degradation efficiency is up to 81.5% at +4 V. Both electro-filtration processes exhibit significant ARB inactivation, anode filtration is superior to cathode filtration. Moreover, the degradation of intracellular ARGs (iARGs) located in the genome is more efficient than those located in the plasmid, and these degradation efficiencies at -2 V are higher than +2 V. The degradation efficiencies of extracellular ARGs (eARGs) are opposite and are lower than iARGs. Compared with regular filtration, the normalized flux of electroactive ultrafiltration membrane is improved by 18.0% at -2 V, 15.9% at +2 V, and 30.4% at +4 V during treating wastewater effluent, confirming its antifouling properties and feasibility for practical application.202235613365
7821180.9831Efficient inactivation of antibiotic resistant bacteria and antibiotic resistance genes by photo-Fenton process under visible LED light and neutral pH. Antibiotic resistance has been recognized as a major threat to public health worldwide. Inactivation of antibiotic resistant bacteria (ARB) and degradation of antibiotic resistance genes (ARGs) are critical to prevent the spread of antibiotic resistance in the environment. Conventional disinfection processes are effective to inactivate water-borne pathogens, yet they are unable to completely eliminate the antibiotic resistance risk. This study explored the potential of the photo-Fenton process to inactivate ARB, and to degrade both extracellular and intracellular ARGs (e-ARGs and i-ARGs, respectively). Using Escherichia coli DH5α with two plasmid-encoded ARGs (tetA and bla(TEM)(-1)) as a model ARB, a 6.17 log ARB removal was achieved within 30 min of applying photo-Fenton under visible LED and neutral pH conditions. In addition, no ARB regrowth occurred after 48-h, demonstrating that this process is very effective to induce permanent disinfection on ARB. The photo-Fenton process was validated under various water matrices, including ultrapure water (UPW), simulated wastewater (SWW) and phosphate buffer (PBS). The higher inactivation efficiency was observed in SWW as compared to other matrices. The photo-Fenton process also caused a 6.75 to 8.56-log reduction in eARGs based on quantitative real-time PCR of both short- and long amplicons. Atomic force microscopy (AFM) further confirmed that the extracellular DNA was sheared into short DNA fragments, thus eliminating the risk of the transmission of antibiotic resistance. As compared with e-ARGs, a higher dosage of Fenton reagent was required to damage i-ARGs. In addition, the tetA gene was more easily degraded than the bla(TEM)(-1) gene. Collectively, our results demonstrate the photo-Fenton process is a promising technology for disinfecting water to prevent the spread of antibiotic resistance.202032417561
8537190.9830Auxin inhibited colonization of antibiotic resistant bacteria in soybean sprouts and spread of resistance genes to endophytic bacteria: Highlighting energy metabolism and immunity mechanism. Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are widely in vegetables, posing health risk. Plant auxins are commonly used to enhance vegetable yield, yet the regulatory mechanisms governing their impact on ARGs transmission to endophytic bacteria remain poorly understood. This study tracked ARB colonization and ARGs spread into endophytic bacteria in soybean sprouts exposed to gibberellin (GA) and 6-benzyladenine (BA). The application of GA and BA during the imbibition, sprouting, and germination periods of soybean sprouts all inhibited the transfer of ARB and ARGs. The enrichment of ARB and ARGs in different tissues of soybean sprouts was ranked as seed coat > hypocotyl > cotyledon. BA and GA enhanced the stability of plant cell wall-cell membrane system, promoted energy metabolism in plants, and activated the immunity mechanism. Especially, the plant hormone signal transduction pathway under GA exposure explained 44.8 % and 96.7 % of inhibition on ARB colonization and ARGs transfer, respectively; the plant-pathogen interaction pathway dominated the inhibition of antibiotic resistance under BA exposure, which explained 51 % and 65.9 % of inhibition on ARB colonization and ARGs transfer. These findings provide new insights into ARB colonization in soybean sprouts and the transmission of ARGs to endophytic bacteria under auxin stress.202540252322