# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7477 | 0 | 0.9988 | Importance of mobile genetic elements for dissemination of antimicrobial resistance in metagenomic sewage samples across the world. We are facing an ever-growing threat from increasing antimicrobial resistance (AMR) in bacteria. To mitigate this, we need a better understanding of the global spread of antimicrobial resistance genes (ARGs). ARGs are often spread among bacteria by horizontal gene transfer facilitated by mobile genetic elements (MGE). Here we use a dataset consisting of 677 metagenomic sequenced sewage samples from 97 countries or regions to study how MGEs are geographically distributed and how they disseminate ARGs worldwide. The ARGs, MGEs, and bacterial abundance were calculated by reference-based read mapping. We found systematic differences in the abundance of MGEs and ARGs, where some elements were prevalent on all continents while others had higher abundance in separate geographic areas. Different MGEs tended to be localized to temperate or tropical climate zones, while different ARGs tended to separate according to continents. This suggests that the climate is an important factor influencing the local flora of MGEs. MGEs were also found to be more geographically confined than ARGs. We identified several integrated MGEs whose abundance correlated with the abundance of ARGs and bacterial genera, indicating the ability to mobilize and disseminate these genes. Some MGEs seemed to be more able to mobilize ARGs and spread to more bacterial species. The host ranges of MGEs seemed to differ between elements, where most were associated with bacteria of the same family. We believe that our method could be used to investigate the population dynamics of MGEs in complex bacterial populations. | 2023 | 37856515 |
| 3249 | 1 | 0.9987 | Department-specific patterns of bacterial communities and antibiotic resistance in hospital indoor environments. The hospital indoor environment has a crucial impact on the microbial exposures that humans encounter. Resistance to antibiotics is a mechanism used by bacteria to develop resilience in indoor environments, and the widespread use of antibiotics has led to changes in the ecological function of resistance genes and their acquisition by pathogens. By integrating the 16S rRNA Illumina sequencing and high-throughput-quantitative PCR approaches with water and air dust samples across seven departments in Peking University Shenzhen Hospital, China, this study yields intriguing findings regarding the department-specific variations, correlations and source tracing of bacteria, antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) within the hospital indoor environment. A notable observation was the pivotal role played by seasonal variations in shaping the bacterial composition across the entire hospital indoor environment. Another department-specific finding was the correlation between ARGs and MGEs abundance, which was evident in the overall hospital indoor environment, but not found in the blood test room, ophthalmology, and gynecology departments. Notably, as an important source of bacteria and ARGs/MGEs for the blood test room, the gynecology department also presented a close link between bacterial communities and the presence of ARGs/MGEs. Additionally, the results reiterate the importance of surveillance and monitoring of antibiotic resistance, specifically in Legionella spp. in man-made water systems, and highlight the significance of understanding genetic elements like Tp614 involved in gene transfer and recombination, and their impact on antimicrobial treatment efficacy. KEY POINTS: • The department-specific variations, correlations and source tracing of bacteria, ARGs, and MGEs were uncovered in the hospital's indoor environment. • Although each department exhibited consistent seasonal impacts on bacterial compositions, the co-occurrence between the presence of ARGs and MGEs was exclusively evident in the emergency, surgery, pneumology and otolaryngology departments. • The gynecology department emerged as a crucial source of bacteria, ARGs and MGEs within the hospital. Additionally, it was found to exhibit a significant correlation between bacterial communities and the presence of ARGs and MGEs. | 2024 | 39412549 |
| 3865 | 2 | 0.9987 | Assessing Transmission of Antimicrobial-Resistant Escherichia coli in Wild Giraffe Contact Networks. There is growing evidence that anthropogenic sources of antibiotics and antimicrobial-resistant bacteria can spill over into natural ecosystems, raising questions about the role wild animals play in the emergence, maintenance, and dispersal of antibiotic resistance genes. In particular, we lack an understanding of how resistance genes circulate within wild animal populations, including whether specific host characteristics, such as social associations, promote interhost transmission of these genes. In this study, we used social network analysis to explore the forces shaping population-level patterns of resistant Escherichia coli in wild giraffe (Giraffa camelopardalis) and assess the relative importance of social contact for the dissemination of resistant E. coli between giraffe. Of 195 giraffe sampled, only 5.1% harbored E. coli isolates resistant to one or more tested antibiotics. Whole-genome sequencing on a subset of resistant isolates revealed a number of acquired resistance genes with linkages to mobile genetic elements. However, we found no evidence that the spread of resistance genes among giraffe was facilitated by interhost associations. Giraffe with lower social degree were more likely to harbor resistant E. coli, but this relationship was likely driven by a correlation between an individual's social connectedness and age. Indeed, resistant E. coli was most frequently detected in socially isolated neonates, indicating that resistant E. coli may have a selective advantage in the gastrointestinal tracts of neonates compared to other age classes. Taken together, these results suggest that the maintenance of antimicrobial-resistant bacteria in wild populations may, in part, be determined by host traits and microbial competition dynamics within the host.IMPORTANCE Antimicrobial resistance represents a significant threat to human health, food security, and the global economy. To fully understand the evolution and dissemination of resistance genes, a complete picture of antimicrobial resistance in all biological compartments, including natural ecosystems, is required. The environment and wild animals may act as reservoirs for anthropogenically derived resistance genes that could be transferrable to clinically relevant bacteria of humans and domestic animals. Our study investigated the possible transmission mechanisms for antimicrobial-resistant bacteria within a wild animal population and, more broadly, contributes to our understanding of how resistance genes are spread and maintained in natural ecosystems. | 2019 | 30413480 |
| 3779 | 3 | 0.9987 | The transfer of antibiotic resistance genes between evolutionarily distant bacteria. Infections from antibiotic-resistant bacteria threaten human health globally. Resistance is often caused by mobile antibiotic resistance genes (ARGs) shared horizontally between bacterial genomes. Many ARGs originate from environmental and commensal bacteria and are transferred between divergent bacterial hosts before they reach pathogens. This process remains, however, poorly understood, which complicates the development of countermeasures that reduce the spread of ARGs. In this study, we aimed to systematically analyze the ARGs transferred between the most evolutionarily distant bacteria, defined here based on their phylum. We implemented an algorithm that identified inter-phylum transfers (IPTs) by combining ARG-specific phylogenetic trees with the taxonomy of the bacterial hosts. From the analysis of almost 1 million ARGs identified in >400,000 bacterial genomes, we identified 661 IPTs, which included transfers between all major bacterial phyla. The frequency of IPTs varies substantially between ARG classes and was highest for the aminoglycoside resistance gene AAC(3), while the levels for beta-lactamases were generally lower. ARGs involved in IPTs also differed between phyla, where, for example, tetracycline ARGs were commonly transferred between Firmicutes and Proteobacteria, but rarely between Actinobacteria and Proteobacteria. The results, furthermore, show that conjugative systems are seldom shared between bacterial phyla, suggesting that other mechanisms drive the dissemination of ARGs between divergent hosts. We also show that bacterial genomes involved in IPTs of ARGs are either over- or underrepresented in specific environments. These IPTs were also found to be more recent compared to transfers associated with bacteria isolated from water, soil, and sediment. While macrolide and tetracycline ARGs involved in IPTs almost always were >95% identical between phyla, corresponding β-lactamases showed a median identity of <60%. We conclude that inter-phylum transfer is recurrent, and our results offer new insights into how ARGs are disseminated between evolutionarily distant bacteria. IMPORTANCE: Antibiotic-resistant infections pose a growing threat to global health. This study reveals how genes conferring antibiotic resistance can move between bacteria that belong to different phyla lineages previously thought to be too evolutionarily distant for frequent gene exchange. By analyzing nearly 1 million resistance genes from over 400,000 bacterial genomes, the researchers uncovered hundreds of inter-phylum transfer events, exposing surprising patterns in how different classes of resistance genes spread. The findings highlight that conjugative systems are less common than expected in cross-phyla transfers and suggest that alternative mechanisms may play key roles. This new understanding of how resistance genes leap between vastly different bacterial groups can inform strategies to slow the emergence of drug-resistant infections, aiding in the development of more effective public health interventions. | 2025 | 40459279 |
| 7467 | 4 | 0.9987 | Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. The high frequency of antibiotic resistance is a global public health concern. More seriously, widespread metal pressure in the environment may facilitate the proliferation of antibiotic resistance via coselection of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs). Given the lack of comprehensive understanding of the ARG and MRG coselection, in this study both abundance relationship and genetic linkage between ARGs and MRGs were rigorously investigated by performing a genomic analysis of a large complete genome collection. Many more ARGs were enriched in human-associated bacteria compared with those subjected to less anthropogenic interference. The signatures of ARG and MRG co-occurrence were much more frequent and the distance linkages between ARGs and MRGs were much more intimate in human pathogens than those less human-associated bacteria. Moreover, the co-occurrence structures in the habitat divisions were significantly different, which could be attributed to their distinct gene transfer potentials. More exogenous ARGs and MRGs on the genomes of human pathogens indicated the importance of recent resistance acquisition in resistome development of human commensal flora. Overall, the study emphasizes the potential risk associated with ARG and MRG coselection of both environmental and medical relevance. | 2017 | 27959344 |
| 3449 | 5 | 0.9987 | Investigation of mobile genetic elements and their association with antibiotic resistance genes in clinical pathogens worldwide. OBJECTIVES: Antimicrobial-resistant bacteria are a major global health threat. Mobile genetic elements (MGEs) have been crucial for spreading resistance to new bacterial species, including human pathogens. Understanding how MGEs promote resistance could be essential for prevention. Here we present an investigation of MGEs and their association with resistance genes in pathogenic bacteria collected from 59 diagnostic units during 2020, representing a snapshot of clinical infections from 35 counties worldwide. METHODS: We analysed 3,095 whole-genome sequenced clinical bacterial isolates from over 100 species to study the relationship between resistance genes and MGEs. The mobiliome of Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Klebsiella pneumoniae were further examined for geographic differences, as these species were prevalent in all countries. Genes potentially mobilized by MGEs were identified by finding DNA segments containing MGEs and ARGs preserved in multiple species. Network analysis was used to investigate potential MGE interactions, host range, and transmission pathways. RESULTS: The prevalence and diversity of MGEs and resistance genes varied among species, with E. coli and S. aureus carrying more diverse elements. MGE composition differed between bacterial lineages, indicating strong vertical inheritance. 102 MGEs associated with resistance were found in multiple species, and four of these elements seemed to be highly transmissible as they were found in different phyla. We identified 21 genomic regions containing resistance genes potentially mobilized by MGEs, highlighting their importance in transmitting genes to clinically significant bacteria. CONCLUSION: Resistance genes are spread through various MGEs, including plasmids and transposons. Our findings suggest that multiple factors influence MGE prevalence and their transposability, thereby shaping the MGE population and transmission pathways. Some MGEs have a wider host range, which could make them more important for mobilizing genes. We also identified 103 resistance genes potentially mobilised by MGEs, which could increase their transmissibility to unrelated bacteria. | 2025 | 40824964 |
| 3675 | 6 | 0.9986 | Evidence for Environmental Dissemination of Antibiotic Resistance Mediated by Wild Birds. The aquatic bird, egret, could carry antibiotic resistance (AR) from a contaminated waterway (Jin River, Chengdu, China) into the surrounding environment (Wangjianglou Park). A systematic study was carried out on the unique environmental dissemination mode of AR mediated by birds. The minimum inhibitory concentrations of various antibiotics against the environmental Escherichia coli isolates were used to evaluate the bacterial AR at the environmental locations where these isolates were recovered, i.e., the Jin River water, the egret feces, the park soil, and the campus soil. The level of AR in the park soil was significantly higher than that in the campus soil that was seldom affected by the egrets, which suggested that the egrets mediated the transportation of AR from the polluted waterway to the park. Genotyping of the resistant E. coli isolates via repetitive-element PCR gave no strong correlation between the genotypes and the AR patterns of the bacteria. So, the transfer of resistant strains should not be the main mode of AR transportation in this process. The results of real-time PCR revealed that the abundance of antibiotic resistance genes (ARGs) and mobile genetic element (MGE) sequences (transposase and integrase genes) declined along the putative transportation route. The transportation of ARGs could be due to their linkage with MGE sequences, and horizontal gene transfer should have contributed to the process. The movable colistin-resistance gene mcr-1 was detected among the colistin-resistant E. coli strains isolated from the river water and the egret feces, which indicated the possibility of the environmental dissemination of this gene. Birds, especially the migratory birds, for the role they played on the dissemination of environmental AR, should be considered when studying the ecology of AR. | 2018 | 29731740 |
| 3239 | 7 | 0.9986 | Antibiotic resistomes of healthy pig faecal metagenomes. Antibiotic resistance reservoirs within food-producing animals are thought to be a risk to animal and human health. This study describes the minimum natural resistome of pig faeces as the bacteria are under no direct antibiotic selective pressure. The faecal resistome of 257 different genes comprised 56 core and 201 accessory resistance genes. The genes present at the highest relative abundances across all samples were tetW, tetQ, tet44, tet37, tet40, mefA, aadE, ant(9)-1, ermB and cfxA2. This study characterized the baseline resistome, the microbiome composition and the metabolic components described by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in healthy pig faeces, without antibiotic selective pressures. The microbiome hierarchical analysis resulted in a cluster tree with a highly similar pattern to that of the accessory resistome cluster tree. Functional capacity profiling identified genes associated with horizontal gene transfer. We identified a statistically significant positive correlation between the total antibiotic resistome and suggested indicator genes, which agree with using these genes as indicators of the total resistomes. The correlation between total resistome and total microbiome in this study was positive and statistically significant. Therefore, the microbiome composition influenced the resistome composition. This study identified a core and accessory resistome present in a cohort of healthy pigs, in the same conditions without antibiotics. It highlights the presence of antibiotic resistance in the absence of antibiotic selective pressure and the variability between animals even under the same housing, food and living conditions. Antibiotic resistance will remain in the healthy pig gut even when antibiotics are not used. Therefore, the risk of antibiotic resistance transfer from animal faeces to human pathogens or the environment will remain in the absence of antibiotics. | 2019 | 31091181 |
| 3251 | 8 | 0.9986 | Coexistence of Antibiotic Resistance Genes and Virulence Factors Deciphered by Large-Scale Complete Genome Analysis. Widespread use of antibiotics has enhanced the evolution of highly resilient pathogens and poses a severe risk to human health via coselection of antibiotic resistance genes (ARGs) and virulence factors (VFs). In this study, we rigorously evaluate the abundance relationship and physical linkage between ARGs and VFs by performing a comprehensive analysis of 9,070 bacterial genomes isolated from multiple species and hosts. The coexistence of ARGs and VFs was observed in bacteria across distinct phyla, pathogenicities, and habitats, especially among human-associated pathogens. The coexistence patterns of gene elements in different habitats and pathogenicity groups were similar, presumably due to frequent gene transfer. A shorter intergenic distance between mobile genetic elements and ARGs/VFs was detected in human/animal-associated bacteria, indicating a higher transfer potential. Increased accumulation of exogenous ARGs/VFs in human pathogens highlights the importance of gene acquisition in the evolution of human commensal bacteria. Overall, the findings provide insights into the genic features of combinations of ARG-VF and expand our understanding of ARG-VF coexistence in bacteria.IMPORTANCE Antibiotic resistance has become a serious global health concern. Despite numerous case studies, a comprehensive analysis of ARG and VF coexistence in bacteria is lacking. In this study, we explore the coexistence profiles of ARGs and VFs in diverse categories of bacteria by using a high-resolution bioinformatics approach. We also provide compelling evidence of unique ARG-VF gene pairs coexisting in specific bacterial genomes and reveal the potential risk associated with the coexistence of ARGs and VFs in organisms in both clinical settings and environments. | 2020 | 32487745 |
| 3341 | 9 | 0.9986 | The shared resistome of human and pig microbiota is mobilized by distinct genetic elements. The extensive use of antibiotics in hospitals and in the animal breeding industry has promoted antibiotic resistance in bacteria, which resulted in the emergence of a large number of antibiotic resistance genes in the intestinal tract of human and farmed animals. Genetic exchange of resistance genes between the two ecosystems is now well documented for pathogenic bacteria, but the repertoire of shared resistance genes in the commensal bacterial community and by which genetic modules they are disseminated are still unclear. By analyzing metagenomics data of human and pig intestinal samples both collected in Shenzhen, China, a set of 27 highly prevalent antibiotic resistance genes was found to be shared between human and pig intestinal microbiota. The mobile genetic context for 11 of these core antibiotic resistance genes could be identified by mining their carrying scaffolds constructed from the two datasets, leading to the detection of seven integrative and conjugative/mobilizable elements and two IS-related transposons. The comparison of the relative abundances between these detected mobile genetic elements and their associated antibiotic resistance genes revealed that for many genes, the estimated contribution of the mobile elements to the gene abundance differs strikingly depending on the host. These findings indicate that although some antibiotic resistance genes are ubiquitous across microbiota of human and pig populations, they probably relied on different genetic elements for their dissemination within each population.IMPORTANCE There is growing concern that antibiotic resistance genes could spread from the husbandry environment to human pathogens through dissemination mediated by mobile genetic elements. In this study, we investigated the contribution of mobile genetic elements to the abundance of highly prevalent antibiotic resistance genes found in commensal bacteria of both human and pig intestinal microbiota originating from the same region. Our results reveal that for most of these antibiotic resistance genes, the abundance is not explained by the same mobile genetic element in each host, suggesting that the human and pig microbial communities promoted a different set of mobile genetic carriers for the same antibiotic resistance genes. These results deepen our understanding of the dissemination of antibiotic resistance genes among and between human and pig gut microbiota. | 2021 | 33310720 |
| 3340 | 10 | 0.9986 | Viruses as key reservoirs of antibiotic resistance genes in the environment. Antibiotic resistance is a rapidly growing health care problem globally and causes many illnesses and deaths. Bacteria can acquire antibiotic resistance genes (ARGs) by horizontal transfer mediated by mobile genetic elements, where the role of phages in their dissemination in natural environments has not yet been clearly resolved. From metagenomic studies, we showed that the mean proportion of predicted ARGs found in prophages (0-0.0028%) was lower than those present in the free viruses (0.001-0.1%). Beta-lactamase, from viruses in the swine gut, represented 0.10 % of the predicted genes. Overall, in the environment, the ARG distribution associated with viruses was strongly linked to human activity, and the low dN/dS ratio observed advocated for a negative selection of the ARGs harbored by the viruses. Our network approach showed that viruses were linked to putative pathogens (Enterobacterales and vibrionaceae) and were considered key vehicles in ARG transfer, similar to plasmids. Therefore, these ARGs could then be disseminated at larger temporal and spatial scales than those included in the bacterial genomes, allowing for time-delayed genetic exchanges. | 2019 | 31358910 |
| 7478 | 11 | 0.9986 | Global analysis of the metaplasmidome: ecological drivers and spread of antibiotic resistance genes across ecosystems. BACKGROUND: Plasmids act as vehicles for the rapid spread of antibiotic resistance genes (ARGs). However, few studies of the resistome at the community level distinguish between ARGs carried by mobile genetic elements and those carried by chromosomes, and these studies have been limited to a few ecosystems. This is the first study to focus on ARGs carried by the metaplasmidome on a global scale. RESULTS: This study shows that only a small fraction of the plasmids reconstructed from 27 ecosystems representing 9 biomes are catalogued in public databases. The abundance of ARGs harboured by the metaplasmidome was significantly explained by bacterial richness. Few plasmids with or without ARGs were shared between ecosystems or biomes, suggesting that plasmid distribution on a global scale is mainly driven by ecology rather than geography. The network linking plasmids to their hosts shows that these mobile elements have thus been shared between bacteria across geographically distant environmental niches. However, certain plasmids carrying ARGs involved in human health were identified as being shared between multiple ecosystems and hosted by a wide variety of hosts. Some of these mobile elements, identified as keystone plasmids, were characterised by an enrichment in antibiotic resistance genes (ARGs) and CAS-CRISPR components which may explain their ecological success. The ARGs accounted for 9.2% of the recent horizontal transfers between bacteria and plasmids. CONCLUSIONS: By comprehensively analysing the plasmidome content of ecosystems, some key habitats have emerged as particularly important for monitoring the spread of ARGs in relation to human health. Of particular note is the potential for air to act as a vector for long-distance transport of ARGs and accessory genes across ecosystems and continents. Video Abstract. | 2025 | 40108678 |
| 7370 | 12 | 0.9986 | Distinct Resistomes and Microbial Communities of Soils, Wastewater Treatment Plants and Households Suggest Development of Antibiotic Resistances Due to Distinct Environmental Conditions in Each Environment. The use of antibiotics in humans and animals results in a release of excess antibiotic residues into the environment through wastewaters and insufficient removal in wastewater treatment plants (WWTP), leading to increasing numbers of bacteria enriched in antibiotic resistance genes (ARG). However, the potential transfer of ARG and their host bacteria between different environments remains largely unexplored. Since many factors need to be fulfilled for a transfer between different environments, we hypothesized that antibiotic resistance (ABR) is less frequently transferred between environments in the same geographical region but rather develops and clusters in each distinct environment, leading to characteristic metagenome patterns in samples of different environments. We sampled agricultural soils, a WWTP and private households and performed metagenomic analyses to evaluate differences and potential overlaps in bacterial communities and resistomes of different environments. Wastewater revealed significantly higher richness of ARG (n = 40) and mobile genetic elements (n = 52) than soil and household samples. Bacterial communities differed between the environments and antibiotic resistance factors clustered distinctly. Overall, only few overlaps of ARG between the environments were observed, leading to the conclusion that ABR predominantly develops in individual environments as caused by environmental filtering for ARG, while a transfer between different environments is less likely. | 2021 | 34062756 |
| 3250 | 13 | 0.9986 | A metagenomic-based method to study hospital air dust resistome. As a symbol of the defense mechanisms that bacteria have evolved over time, the genes that make bacteria resist antibiotics are overwhelmingly present in the environment. Currently, bacterial antibiotic resistance genes (ARGs) in the air are a serious concern. Previous studies have identified bacterial communities and summarized putative routes of transmissions for some dominant hospital-associated pathogens from hospital indoor samples. However, little is known about the possible indoor air ARG transportation. In this study, we mainly surveyed air-conditioner air dust samples under different airflow conditions and analyzed these samples using a metagenomic-based method. The results show air dust samples exhibited a complex resistome, and the average concentration is 0.00042 copies/16S rRNA gene, which is comparable to some other environments. The hospital air-conditioners can form resistome over time and accumulate pathogens. In addition, our results indicate that the Outpatient hall is one of the main ARG transmission sources, which can distribute ARGs to other departments (explains >80% resistome). We believe that the management should focus on ARG carrier genera such as Staphylococcus, Micrococcus, Streptococcus, and Enterococcus in this hospital and our novel evidence-based network strategy proves that plasmid-mediated ARG transfer can occur frequently. Overall, these results provide insights into the characteristics of air dust resistome and possible route for how ARGs are spread in air. | 2021 | 32908446 |
| 7475 | 14 | 0.9986 | A Metagenomic Investigation of Spatial and Temporal Changes in Sewage Microbiomes across a University Campus. Wastewater microbial communities are not static and can vary significantly across time and space, but this variation and the factors driving the observed spatiotemporal variation often remain undetermined. We used a shotgun metagenomic approach to investigate changes in wastewater microbial communities across 17 locations in a sewer network, with samples collected from each location over a 3-week period. Fecal material-derived bacteria constituted a relatively small fraction of the taxa found in the collected samples, highlighting the importance of environmental sources to the sewage microbiome. The prokaryotic communities were highly variable in composition depending on the location within the sampling network, and this spatial variation was most strongly associated with location-specific differences in sewage pH. However, we also observed substantial temporal variation in the composition of the prokaryotic communities at individual locations. This temporal variation was asynchronous across sampling locations, emphasizing the importance of independently considering both spatial and temporal variation when assessing the wastewater microbiome. The spatiotemporal patterns in viral community composition closely tracked those of the prokaryotic communities, allowing us to putatively identify the bacterial hosts of some of the dominant viruses in these systems. Finally, we found that antibiotic resistance gene profiles also exhibit a high degree of spatiotemporal variability, with most of these genes unlikely to be derived from fecal bacteria. Together, these results emphasize the dynamic nature of the wastewater microbiome, the challenges associated with studying these systems, and the utility of metagenomic approaches for building a multifaceted understanding of these microbial communities and their functional attributes. IMPORTANCE Sewage systems harbor extensive microbial diversity, including microbes derived from both human and environmental sources. Studies of the sewage microbiome are useful for monitoring public health and the health of our infrastructure, but the sewage microbiome can be highly variable in ways that are often unresolved. We sequenced DNA recovered from wastewater samples collected over a 3-week period at 17 locations in a single sewer system to determine how these communities vary across time and space. Most of the wastewater bacteria, and the antibiotic resistance genes they harbor, were not derived from human feces, but human usage patterns did impact how the amounts and types of bacteria and bacterial genes we found in these systems varied over time. Likewise, the wastewater communities, including both bacteria and their viruses, varied depending on location within the sewage network, highlighting the challenges and opportunities in efforts to monitor and understand the sewage microbiome. | 2022 | 36121163 |
| 7361 | 15 | 0.9986 | Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. Antimicrobial resistance (AMR) is a serious issue that is continuously growing and spreading, leading to a dwindling number of effective treatments for infections that were easily treatable with antibiotics in the past. Animal farms are a major hotspot for AMR, where antimicrobials are often overused, misused, and abused, in addition to overcrowding of animals. In this study, we investigated the risk of AMR transmission from a farm to nearby residential areas by examining the overall occurrence of endotoxins, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) in the air of a cattle farm. We assessed various factors, including the season and year, day and nighttime, and different locations within the farm building and its vicinity. The most abundant ARGs detected were tetW, aadA1, and sul2, genes that encode for resistances towards antibiotics commonly used in veterinary medicine. While there was a clear concentration gradient for endotoxin from the middle of the farm building to the outside areas, the abundance of ARGs and MGEs was relatively uniform among all locations within the farm and its vicinity. This suggests that endotoxins preferentially accumulated in the coarse particle fraction, which deposited quickly, as opposed to the ARGs and MGEs, which might concentrate in the fine particle fraction and remain longer in the aerosol phase. The occurrence of the same genes found in the air samples and in the manure indicated that ARGs and MGEs in the air mostly originated from the cows, continuously being released from the manure to the air. Although our atmospheric dispersion model indicated a relatively low risk for nearby residential areas, farm workers might be at greater risk of getting infected with resistant bacteria and experiencing overall respiratory tract issues due to continuous exposure to elevated concentrations of endotoxins, ARGs and MGEs in the air of the farm. | 2023 | 37625772 |
| 3344 | 16 | 0.9986 | Co-occurrence of resistance genes to antibiotics, biocides and metals reveals novel insights into their co-selection potential. BACKGROUND: Antibacterial biocides and metals can co-select for antibiotic resistance when bacteria harbour resistance or tolerance genes towards both types of compounds. Despite numerous case studies, systematic and quantitative data on co-occurrence of such genes on plasmids and chromosomes is lacking, as is knowledge on environments and bacterial taxa that tend to carry resistance genes to such compounds. This effectively prevents identification of risk scenarios. Therefore, we aimed to identify general patterns for which biocide/metal resistance genes (BMRGs) and antibiotic resistance genes (ARGs) that tend to occur together. We also aimed to quantify co-occurrence of resistance genes in different environments and taxa, and investigate to what extent plasmids carrying both types of genes are conjugative and/or are carrying toxin-antitoxin systems. RESULTS: Co-occurrence patterns of resistance genes were derived from publicly available, fully sequenced bacterial genomes (n = 2522) and plasmids (n = 4582). The only BMRGs commonly co-occurring with ARGs on plasmids were mercury resistance genes and the qacE∆1 gene that provides low-level resistance to quaternary ammonium compounds. Novel connections between cadmium/zinc and macrolide/aminoglycoside resistance genes were also uncovered. Several clinically important bacterial taxa were particularly prone to carry both BMRGs and ARGs. Bacteria carrying BMRGs more often carried ARGs compared to bacteria without (p < 0.0001). BMRGs were found in 86 % of bacterial genomes, and co-occurred with ARGs in 17 % of the cases. In contrast, co-occurrences of BMRGs and ARGs were rare on plasmids from all external environments (<0.7 %) but more common on those of human and domestic animal origin (5 % and 7 %, respectively). Finally, plasmids with both BMRGs and ARGs were more likely to be conjugative (p < 0.0001) and carry toxin-antitoxin systems (p < 0.0001) than plasmids without resistance genes. CONCLUSIONS: This is the first large-scale identification of compounds, taxa and environments of particular concern for co-selection of resistance against antibiotics, biocides and metals. Genetic co-occurrences suggest that plasmids provide limited opportunities for biocides and metals to promote horizontal transfer of antibiotic resistance through co-selection, whereas ample possibilities exist for indirect selection via chromosomal BMRGs. Taken together, the derived patterns improve our understanding of co-selection potential between biocides, metals and antibiotics, and thereby provide guidance for risk-reducing actions. | 2015 | 26576951 |
| 3337 | 17 | 0.9986 | Evidence for wastewaters as environments where mobile antibiotic resistance genes emerge. The emergence and spread of mobile antibiotic resistance genes (ARGs) in pathogens have become a serious threat to global health. Still little is known about where ARGs gain mobility in the first place. Here, we aimed to collect evidence indicating where such initial mobilization events of clinically relevant ARGs may have occurred. We found that the majority of previously identified origin species did not carry the mobilizing elements that likely enabled intracellular mobility of the ARGs, suggesting a necessary interplay between different bacteria. Analyses of a broad range of metagenomes revealed that wastewaters and wastewater-impacted environments had by far the highest abundance of both origin species and corresponding mobilizing elements. Most origin species were only occasionally detected in other environments. Co-occurrence of origin species and corresponding mobilizing elements were rare in human microbiota. Our results identify wastewaters and wastewater-impacted environments as plausible arenas for the initial mobilization of resistance genes. | 2023 | 36966231 |
| 7374 | 18 | 0.9986 | Unravelling the Portuguese Coastal and Transitional Waters' Microbial Resistome as a Biomarker of Differential Anthropogenic Impact. Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial communities thriving in these habitats, leading to the development of microbial resistance traits. The samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with anthropogenic pollution. These anthropogenic pressures, along with the differences in species diversity among the surveyed sites, lead to observed differences in the presence and resistance-related sequences' abundance (set of all metal and antibiotic resistant genes and their precursors in pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox regulation and oxidative stress response were prevalent. A higher number of significant correlations were found between the abundance of resistance-related sequences and pollution, inorganic pressures and density of nearby population centres when compared to the number of significant correlations between taxa abundance at different phylogenetic levels and the same environmental traits. This points towards predominance of the environmental conditions over the sequence abundance rather than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the taxa present in the samples. | 2022 | 36287893 |
| 3247 | 19 | 0.9986 | Metagenome-wide characterization of shared antimicrobial resistance genes in sympatric people and lemurs in rural Madagascar. BACKGROUND: Tracking the spread of antibiotic resistant bacteria is critical to reduce global morbidity and mortality associated with human and animal infections. There is a need to understand the role that wild animals in maintenance and transfer of antibiotic resistance genes (ARGs). METHODS: This study used metagenomics to identify and compare the abundance of bacterial species and ARGs detected in the gut microbiomes from sympatric humans and wild mouse lemurs in a forest-dominated, roadless region of Madagascar near Ranomafana National Park. We examined the contribution of human geographic location toward differences in ARG abundance and compared the genomic similarity of ARGs between host source microbiomes. RESULTS: Alpha and beta diversity of species and ARGs between host sources were distinct but maintained a similar number of detectable ARG alleles. Humans were differentially more abundant for four distinct tetracycline resistance-associated genes compared to lemurs. There was no significant difference in human ARG diversity from different locations. Human and lemur microbiomes shared 14 distinct ARGs with highly conserved in nucleotide identity. Synteny of ARG-associated assemblies revealed a distinct multidrug-resistant gene cassette carrying dfrA1 and aadA1 present in human and lemur microbiomes without evidence of geographic overlap, suggesting that these resistance genes could be widespread in this ecosystem. Further investigation into intermediary processes that maintain drug-resistant bacteria in wildlife settings is needed. | 2024 | 39099658 |