# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1413 | 0 | 0.9975 | Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings. | 2023 | 37370334 |
| 1391 | 1 | 0.9973 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 1229 | 2 | 0.9970 | Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)). | 2021 | 33513540 |
| 952 | 3 | 0.9970 | Molecular Surveillance of ESBL and Carbapenemase Genes in Gram-Negative Bacterial Pathogens Isolated from Various Clinical Samples Collected from Northern Region of United Arab Emirates. The aim of this study was to explore the prevalence of ESBL and carbapenemase genes in Gram-negative bacteria isolated from various clinical samples collected from northern regions of UAE. In total 3670 clinical samples were obtained from patients attending various hospitals and clinics in the northern regions of the UAE. All the samples underwent routine bacterial culture examination, and their antibiotic sensitivity patterns mainly on beta-lactam and carbapenem resistance in Gram-negative bacteria. Molecular detection of ESBL and carbapenemase genes (bla(CTX-M), bla(TEM), bla(SHV), bla(NDM), bla(IMP), and bla(OXA-48)) was performed on them. A total of 249 MDR Gram-negative bacteria (E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis and A. baumannii) were isolated. The genes bla(CTX-M), bla(TEM), and bla(SHV) were detected in all the MDR isolates. Among them, the bla(CTX-M) was predominant especially in E. coli. The bla(NDM) and bla(IMP) were detected in a few K. pneumoniae and A. baumannii. The genes combination bla(CTX-M+TEM) and bla(CTX-M+SHV), bla(CTX-M+SHV), bla(TEM+SHV), and bla(TEM+NDM) were detected mostly in K. pneumoniae and E. coli, and few A. baumannii. The gene combination bla(CTX-M+TEM+SHV) and bla(CTX-M+TEM+SHV+IMP) were also detected in few E. coli, P. aeruginosa, and A. baumannii. The current findings highlight the importance of molecular detection of ESBL and carbapenemase genes to emphasize monitoring and controlling the development of MDR bacterial pathogens. | 2025 | 40871384 |
| 1068 | 4 | 0.9969 | Dissemination of IncF plasmids carrying beta-lactamase genes in Gram-negative bacteria from Nigerian hospitals. INTRODUCTION: Production of beta-lactamases is the predominant cause of resistance to beta-lactam antibiotics in Gram-negative bacteria. We investigated the diversity of plasmid-borne beta-lactamase genes and replicon type of the plasmids carrying the respective genes in Gram-negative bacteria recovered from clinical infection in Nigerian hospitals. METHODOLOGY: A total of 134 Gram-negative bacteria of 13 species were analyzed for antimicrobial susceptibility, phenotypic and genotypic detection of various beta-lactamases, and plasmid analysis, including replicon typing. RESULTS: Of the 134 isolates, 111 (82.8%) contained beta-lactamases, while 28 (20.9%) carried extended-spectrum beta-lactamases. PCR and sequencing identified TEM-1 in 109 isolates (81.3%), SHV-1 in 33 isolates (24.6%), OXA-1 in 15 isolates (11.2%) and CTX-M enzymes (24 CTX-M-15 and 1 CTX-M-3) in 25 isolates (18.7%). Multiplex PCR showed that 6 isolates carried plasmidic AmpCs (ACT-1, DHA-1 and CMY-2); these enzymes were detected only in isolates possessing CTX-M beta-lactamases. Of 13 (76.9%) representative plasmids investigated in detail, 9 (69.2%) were self-transferable when selected by a beta-lactam and the plasmids once transferred coded for beta-lactam resistance. Replicon typing indicated IncF as the common vector encoding for beta-lactamases. CONCLUSIONS: The study showed a diversity of beta-lactamase genes disseminated by conjugative IncF plasmids in Gram-negative bacteria; TEM-1, SHV-1, OXA-1, CTX-M-15, CTX-M-3 and plasmidic AmpC enzymes are in common circulation in Nigeria. | 2013 | 23669427 |
| 1238 | 5 | 0.9969 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |
| 1231 | 6 | 0.9968 | Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad. | 2012 | 23493415 |
| 1458 | 7 | 0.9967 | Molecular characterization of extended spectrum β -lactamases enterobacteriaceae causing lower urinary tract infection among pediatric population. BACKGROUND: The β-lactam antibiotics have traditionally been the main treatment of Enterobacteriaceae infections, nonetheless, the emergence of species producing β- Lactamases has rendered this class of antibiotics largely ineffective. There are no published data on etiology of urinary tract infections (UTI) and antimicrobial resistance profile of uropathogens among children in Qatar. The aim of this study is to determine the phenotypic and genotypic profiles of antimicrobial resistant Enterobacteriaceae among children with UTI in Qatar. METHODS: Bacteria were isolated from 727 urine positive cultures, collected from children with UTI between February and June 2017 at the Pediatric Emergency Center, Doha, Qatar. Isolated bacteria were tested for antibiotic susceptibility against sixteen clinically relevant antibiotics using phoenix and Double Disc Synergy Test (DDST) for confirmation of extended-spectrum beta-lactamase (ESBL) production. Existence of genes encoding ESBL production were identified using polymerase chain reaction (PCR). Statistical analysis was done using non-parametric Kappa statistics, Pearson chi-square test and Jacquard's coefficient. RESULTS: 201 (31.7%) of samples were confirmed as Extended Spectrum β -Lactamases (ESBL) Producing Enterobacteriaceae. The most dominant pathogen was E. coli 166 (83%) followed by K. pneumoniae 22 (11%). Resistance was mostly encoded by (bla) CTX-M (59%) genes, primarily (bla) CTX-MG1 (89.2%) followed by (bla) CTX-MG9 (7.7%). 37% of isolated bacteria were harboring multiple (bla) genes (2 genes or more). E. coli isolates were categorized into 11 clusters, while K. pneoumoniae were grouped into five clonal clusters according to the presence and absence of seven genes namely (bla) TEM, (bla) SHV, (bla) CTX-MG1, (bla) CTX-MG2, (bla) CTX-MG8 (bla) CTX-MG9,(bla) CTX-MG25. CONCLUSIONS: Our data indicates an escalated problem of ESBL in pediatrics with UTI, which mandates implementation of regulatory programs to reduce the spread of ESBL producing Enterobacteriaceae in the community. The use of cephalosporins, aminoglycosides (gentamicin) and trimethoprim/sulfamethoxazole is compromised in Qatar among pediatric population with UTI, leaving carbapenems and amikacin as the therapeutic option for severe infections caused by ESBL producers. | 2018 | 30069306 |
| 1414 | 8 | 0.9967 | Prevalence and antimicrobial susceptibility of extended-spectrum beta-lactamase-producing bacteria in intensive care units of Sanandaj general hospitals (Kurdistan, Iran). This study focused on analyzing the spread of extended-spectrum beta-lactamase (ESBL) enzymes among Gram-negative bacteria at intensive care units (ICUs). Between January 2007 and January 2008, 301 consecutive clinical isolates of Gram-negative type were isolated. Of these, 66 strains were collected from patients in ICUs in two major hospitals in Sanandaj (Kurdistan, Iran). The isolates were identified, tested for antimicrobial susceptibility, and analyzed for the presence of ESBL using the double-disk synergy test. Isolates with a positive ESBL phenotype were subjected to PCR for SHV, TEM, OXA and CTX-M beta-lactamase gene families. Sixty-six Gram-negative bacteria were isolated from clinical samples of 66 ICU patients. These isolates included 16 Escherichia coli, 28 Enterobacter spp., 5 Pseudomonas spp., 10 Klebsiella pneumoniae, 3 Serratia marcescens and 1 Stenotrophomonas maltophilia. Twenty-three (34.85%) of these isolates were ESBL producing. The ESBL genes detected were SHV, TEM, OXA-1, OXA-2 and CTX-M. The results show the presence of ESBL genes among Gram-negative bacteria in the ICU setting of Sanandaj's hospitals. There is a need to institute a strict hospital infection control policy and regular surveillance of bacterial resistance to antimicrobial agents. | 2009 | 19521074 |
| 1416 | 9 | 0.9967 | Prevalence of extended-spectrum β-lactamase (ESBL) and molecular detection of blaTEM, blaSHV and blaCTX-M genotypes among Enterobacteriaceae isolates from patients in Khartoum, Sudan. INTRODUCTION: the emergence of antibiotic resistance pathogens is an important health risk. Usually Gram negative bacteria acquire resistance to beta-lactam antibiotics by beta-lactamase production. The objectives of this study was to assess the prevalence of ESBL and to detect the frequency of blaTEM, blaSHV and blaCTX-M genotypes among ESBL producing Enterobacteriaceae isolates from patients in Khartoum, Sudan. METHODS: a total of 171 isolates of Enterobacteriaceae were recovered from hospitals in Khartoum, Sudan (2014 -2015) were used to detect ESBL production using disc diffusion method. blaTEM, blaSHV and blaCTX-M genes were investigated by PCR based methods using gene-specific primers. RESULTS: the high resistance among Enterobacteriaceae was noticed in ciprofloxacin (72%) and ofloxacin (73%). ESBL production was mainly in Escherichia Coli (38%) and Klebsiella pneumonia (34%). Prevalent genotypes were blaTEM (86%), blaCTX-M (78%) and blaSHV (28%). These were found mainly in Escherichia Coli (38%, 37%, 2%) and K. pneumonia (34%, 31%, 26.1%). The majority of ESBL producing isolates possess more than one ESBL genes. CONCLUSION: the ESBL production in Enterobacteriaceae was high, with blaTEM and blaCTX-M genotypes more prevalent. Public health and laboratory standard of excellence is needed to reducing the spread of resistant pathogens. | 2020 | 33520052 |
| 1415 | 10 | 0.9966 | Antibiogram and Molecular Characterization of AmpC and ESBL-Producing Gram-Negative Bacteria from Poultry and Abattoir Samples. BACKGROUND AND OBJECTIVE: The global antibiotic resistance threat posed by ESBL and AmpC-producing Gram-Negative Bacteria (GNB) is a public health menace that rolls back the gains of 'One Health'. This study investigated the antibiogram and prevalence of AmpC and ESBL genes in Escherichia coli, Klebsiella spp. and Pseudomonas spp. from poultry and abattoir milieus in Enugu and Ebonyi States, Nigeria. MATERIALS AND METHODS: Isolation, identification and characterization of GNB from samples (150 abattoirs and 300 poultry) were done using standard microbiological techniques. Antimicrobial Susceptibility Testing (AST), as well as phenotypic screening for ESBL and AmpC enzymes, was performed using the Kirby-Bauer disc diffusion technique. PCR technique was used to screen isolated GNB for AmpC and ESBL genes. RESULTS: Exactly 42 E. coli and 8 Klebsiella spp. isolate from poultry samples and another 5 P. aeruginosa isolates from abattoir samples were phenotypically confirmed to be ESBL-producers. AmpC enzymes were phenotypically detected in 8 E. coli and 13 P. aeruginosa isolates from poultry samples. All ESBL and AmpC-positive bacteria exhibited high resistance frequencies to tested antibiotics, especially to the carbapenems and cephalosporins. ESBL genes (CTX-M, SHV-1, TEM) and AmpC genes (ACC-M, MOX-M, DHA-M) were harbored by the isolated GNB in this study. Overall, the DHA-M and CTX-M genes, mediating AmpC and ESBL production respectively were the most prevalent genes harbored by the tested GNB. CONCLUSION: This study reported that AmpC and ESBL genes are harbored by Gram-negative bacteria (E. coli, Klebsiella species and P. aeruginosa) that emanated from poultry and abattoir milieus. | 2021 | 33683048 |
| 1420 | 11 | 0.9966 | Metallo-β-lactamase and AmpC genes in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates from abattoir and poultry origin in Nigeria. BACKGROUND: Gram-negative bacteria (GNB) including Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae represent the most relevant reservoir of resistance genes such as metallo-β-lactamase (MBL) and AmpC genes that give them the undue advantage to resist antimicrobial onslaught. This study aimed to investigate the occurrence of MBL (bla(IMP-1), bla(IMP-2), bla(VIM-1), bla(VIM-2)) and AmpC (bla(FOX), bla(DHA), bla(CMY), bla(ACC)) resistance genes in aforementioned GNB collected from abattoir and poultry sources in Nigeria. RESULTS: In total, 370 isolates were collected from abattoir tables (n = 130), anal region of cows (n = 120), and the cloacae of poultry birds (n = 120). The test isolates showed high rate of resistance to cephalosporins and carbapenems. The MBLs were phenotypically detected in 22 E. coli, 22 P. aeruginosa, and 18 K. pneumoniae isolates using combined disc test (CDT). However, only 11 E. coli, 24 P. aeruginosa, and 18 Klebsiella pneumoniae isolates were phenotypically confirmed to be AmpC producers using cefoxitin-cloxacillin double disk synergy test (CC-DDST). MBL encoding genes (particularly the bla(IMP-1) genes and bla(IMP-2) genes) were detected by polymerase chain reaction (PCR) in 12 (54.6%) E. coli, 15 (83.3%) K. pneumoniae, and 16 (72.7%) P. aeruginosa isolates. AmpC genes (particularly the bla(CMY) genes and bla(FOX) genes) were found in a total of 5 (29.4%) E. coli isolates, 5 (27.8%) isolates of K. pneumoniae, and 10 (41.7%) isolates of P. aeruginosa. CONCLUSIONS: Our study showed the circulation of MBL and AmpC genes in GNB from abattoir and poultry origin in Nigeria. Adoption of regular control policies is necessary to reduce the spread of these species as soon as possible, especially in poultry and slaughterhouses. | 2021 | 33882823 |
| 1419 | 12 | 0.9966 | Dissemination of carbapenem resistance and plasmids encoding carbapenemases in Gram-negative bacteria isolated in India. BACKGROUND: Carbapenem resistance in Gram-negative bacteria is an ongoing public health problem of global dimensions leaving very few treatment options for infected patients. OBJECTIVES: To study the dissemination of plasmid-borne carbapenemase genes in Gram-negative bacteria from a diagnostic centre in Tamil Nadu, India. METHODS: A total of 151 non-repetitive isolates belonging to 10 genera were collected between January 2015 and December 2016 from a diagnostic centre in Tamil Nadu. The isolates included Escherichia coli (n = 57), Klebsiella pneumoniae (n = 45), Pseudomonas aeruginosa (n = 10), Salmonella Typhi (n = 8), Enterobacter cloacae (n = 8), Acinetobacter baumannii (n = 7), Serratia marcescens (n = 5), Achromobacter xylosoxidans (n = 5), Proteus mirabilis (n = 5), Klebsiella oxytoca (n = 5) and Elizabethkingia meningoseptica (n = 1). RESULTS: Of the 151 isolates, 71% (n = 107) and 68% (n = 103) were found to be resistant to meropenem and imipenem, respectively. The most prevalent β-lactamase gene was bla (NDM-1) (n = 22), followed by bla (OXA-181) (n = 21), bla (GES-1) (n = 11), bla (OXA-51) (n = 9), bla (GES-9) (n = 8), bla (OXA-23) (n = 7) and bla (IMP-1) (n = 3). We also observed bla (OXA-23) in E. coli (n = 4), and three K. pneumoniae were positive for both, bla (OXA-23) and bla (OXA-51). Plasmid incompatibility (inc/rep) typing results showed that the resistance genes (n = 11) were present in the isolates carrying plasmid-types IncX, IncA/C, IncFIA-FIB and IncFIIA. The plasmid-borne resistance genes in E. coli and K. pneumoniae were transferred to susceptible E. coli AB1157. CONCLUSIONS: This study highlights the prevalence of carbapenem resistance and the acquisition of plasmid-borne carbapenemase genes in Gram-negative bacteria isolated at this centre. | 2021 | 34223092 |
| 1233 | 13 | 0.9966 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1242 | 14 | 0.9966 | An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which bla(CTX-M-15) was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with bla(KPC-3) included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase. | 2021 | 33799747 |
| 939 | 15 | 0.9966 | Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Long-term-care facilities (LTCFs) are reservoirs of resistant bacteria. We undertook a point-prevalence survey and risk factor analysis for specific resistance types among residents and staff of a Bolzano LTCF and among geriatric unit patients in the associated acute-care hospital. Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on chromogenic agar; isolates were typed by pulsed-field gel electrophoresis; resistance genes and links to insertion sequences were sought by PCR; plasmids were analysed by PCR, restriction fragment length polymorphism and incompatibility grouping. Demographic data were collected. Of the LTCF residents, 74.8% were colonized with ≥1 resistant organism, 64% with extended-spectrum β-lactamase (ESBL) producers, 38.7% with methicillin-resistant Staphylococcus aureus (MRSA), 6.3% with metallo-β-lactamase (MBL) producers, and 2.7% with vancomycin-resistant enterococci. Corresponding rates for LTCF staff were 27.5%, 14.5%, 14.5%, 1.5% and 0%, respectively. Colonization frequencies for geriatric unit patients were lower than for those in the LTCF. Both clonal spread and plasmid transfer were implicated in the dissemination of MBL producers that harboured IncN plasmids bearing bla(VIM-1), qnrS, and bla(SHV-12). Most (44/45) ESBL-producing Escherichia coli isolates had bla(CTX-M) genes of group 1; a few had bla(CTX-M) genes of group 9 or bla(SHV-5); those with bla(CTX-M-15) or bla(SHV-5) were clonal. Risk factors for colonization of LTCF residents with resistant bacteria included age ≥86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit; those for geriatric unit patients were age and dementia. In conclusion, ESBL-producing and MBL-producing Enterobacteriaceae and MRSA were prevalent among the LTCF residents and staff, but less so in the hospital geriatric unit. Education of LTCF employees and better infection control are proposed to minimize the spread of resistant bacteria in the facility. | 2010 | 19686277 |
| 1240 | 16 | 0.9965 | Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance. | 2024 | 39066817 |
| 956 | 17 | 0.9965 | Detection of Extended-Spectrum Beta-Lactamase-Producing and Carbapenem-Resistant Bacteria from Mink Feces and Feed in the United States. Antibiotic-resistant infections caused by extended-spectrum β-lactamases (ESBLs) and carbapenemases are increasing worldwide. Bacteria resistant to extended-spectrum cephalosporins and last resort carbapenems have been reported from food animals and their environments. Other concentrated nonfood-producing animals such as mink farming can be a reservoir of bacteria resistant to these critically important antibiotics. The objective of this study was to determine the prevalence of ESBL-producing bacteria and carbapenem-resistant (CR) bacteria from mink fecal (n = 42) and feed (n = 8) samples obtained from a commercial mink farm in the United States. The most prevalent ESBL-producing bacteria identified from the fecal samples were Escherichia coli (93%), Klebsiella pneumoniae (76%), and Proteus species (88%). E. coli (100%) and K. pneumoniae (75%) were also the most prevalent ESBL-producing bacteria identified from feed samples. All ESBL E. coli isolates were resistant to penicillin and most cephem beta-lactam antibiotics. Among the ESBL E. coli isolates, co-resistance was observed to ciprofloxacin (33%) and gentamicin (28%) indicating multidrug resistance. ESBL E. coli isolates predominantly carried bla(CTX-M-14) and bla(CTX-M-15) genes. Although all feed K. pneumoniae isolates carried bla(CTX-M-9), all fecal K. pneumoniae isolates carried bla(SHV). CR Pseudomonas species (7%), Hafnia alvei (24%), and Myroides odoratimimus (9.5%) were detected from fecal samples. H. alvei (37.5%) was the only CR bacteria detected from the feed samples. All CR isolates were polymerase chain reaction negative for the tested carbapenemases that are commonly reported, which may indicate intrinsic rather than acquired resistance. This study indicates that mink production can be a reservoir for bacteria resistant to the highest priority critically important antibiotics for human health. | 2021 | 33978469 |
| 1232 | 18 | 0.9965 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1237 | 19 | 0.9965 | Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems. | 2018 | 30477153 |