# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5217 | 0 | 0.9818 | UV Resistance of bacteria from the Kenyan Marine cyanobacterium Moorea producens. UV resistance of bacteria isolated from the marine cyanobacterium Moorea producens has not been observed previously, findings which highlight how unsafe germicidal UV irradiation for sterilization of air, food, and water could be. Further, UV resistance of Bacillus licheniformis is being observed for the first time. This study focused on bacteria isolated from the marine cyanobacterium M. producens collected off the Kenyan coast at Shimoni, Wasini, Kilifi, and Mida. UV irradiance of isolates (302 nm, 70 W/m(2) , 0-1 hr) established B. licheniformis as the most UV resistant strain, with the following order of taxon resistance: Bacilli> γ proteobacteria > Actinobacteria. UV resistance was independent of pigmentation. The maximum likelihood phylogenetic distance determined for both B. licheniformis and Bacillus aerius relative to M. producens CCAP 1446/4 was 2.0. Survival of B. licheniformis upon UV irradiance followed first-order kinetics (k = 0.035/min, R(2) = 0.88). Addition of aqueous extracts (2, 10, 20 and 40 mg/ml) of this B. licheniformis strain on the less resistant Marinobacterium stanieri was not significant, however, the commercial sunscreen benzophenone-3 (BP-3) positive control and the time of irradiance were significant. Detection of bacteria on M. producens filaments stained with acridine orange confirmed its nonaxenic nature. Although the chemistry of UV resistance in cyanobacteria has been studied in depth revealing for example the role of mycosporine like amino acids (MAAs) in UV resistance less is known about how bacteria resist UV irradiation. This is of interest since cyanobacteria live in association with bacteria. | 2019 | 30123980 |
| 3628 | 1 | 0.9814 | Antibiotic resistance patterns of gram-negative bacteria isolated from environmental sources. A total of 2,445 gram-negative bacteria belonging to fecal coliform, Pseudomonas, Moraxella, Acinetobacter, and Flavobacterium-Cytophaga groups were isolated from the rivers and bay of Tillamook, Oregon, and their resistances to chloramphenicol (25 microgram/ml), streptomycin (10 microgram/ml), ampicillin (10 microgram/ml), tetracycline (25 microgram/ml), chlortetracycline (25 microgram/ml), oxytetracycline (25 microgram/ml), neomycin (50 microgram/ml), nitrofurazone (12.5 microgram/ml), nalidixic acid (25 microgram/ml), kanamycin (25 microgram/ml), and penicillin G (10 IU/ml) were determined. Among fecal coliforms the bay isolates showed greater resistance to antibiotics than those from tributaries or surface runoff. No such well-defined difference was found among other bacterial groups. The antibiotic resistance patterns of gram-negative bacteria from different sources correlated well, perhaps indicating their common origin. The antibiotic resistance patterns of gram-negative bacteria of different general also correlated well, perhaps indicating that bacteria which share a common environment also share a common mode for developing antibiotic resistance. | 1978 | 727777 |
| 6152 | 2 | 0.9810 | Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance. | 2016 | 27210016 |
| 366 | 3 | 0.9809 | Genes encoding mercuric reductases from selected gram-negative aquatic bacteria have a low degree of homology with merA of transposon Tn501. An investigation of the Hg2+ resistance mechanism of four freshwater and four coastal marine bacteria that did not hybridize with a mer operonic probe was conducted (T. Barkay, C. Liebert, and M. Gillman, Appl. Environ. Microbiol. 55:1196-1202, 1989). Hybridization with a merA probe, the gene encoding the mercuric reductase polypeptide, at a stringency of hybridization permitting hybrid formation between evolutionarily distant merA genes (as exists between gram-positive and -negative bacteria), detected merA sequences in the genomes of all tested strains. Inducible Hg2+ volatilization was demonstrated for all eight organisms, and NADPH-dependent mercuric reductase activities were detected in crude cell extracts of six of the strains. Because these strains represented random selections of bacteria from three aquatic environments, it is concluded that merA encodes a common molecular mechanism for Hg2+ resistance and volatilization in aerobic heterotrophic aquatic communities. | 1990 | 2166470 |
| 5448 | 4 | 0.9809 | Virulence gene profiles, biofilm formation, and antimicrobial resistance of Vibrio cholerae non-O1/non-O139 bacteria isolated from West Bengal, India. Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data. | 2018 | 30582054 |
| 92 | 5 | 0.9809 | Quantitative trait loci for partial resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Segregation of partial resistance to Pseudomonas syringae pv. maculicola (Psm) ES4326 was studied in the recombinant inbred population created from accessions (ecotypes) Columbia (Col-4), the more susceptible parent, and Landsberg (Ler-0). Plants were spray inoculated with lux-transformed bacteria in experiments to measure susceptibility. The amount of disease produced on a range of Col × Ler lines by spray inoculation was highly correlated with that produced by pressure infiltration of bacteria into the apoplast. Quantitative trait locus (QTL) analysis identified four loci that contributed to partial resistance: QRpsJIC-1.1, QRpsJIC-2.1, QRpsJIC-3.1 and QRpsJIC-5.1 on chromosomes 1, 2, 3 and 5, respectively. QRpsJIC-3.1, located 8.45 cM from the top of the consensus genetic map of chromosome 3, had a large, approximately additive effect on partial resistance, explaining 50% of the genetic variation in this population. Fine mapping narrowed the region within which this QTL was located to 62 genes. A list of candidate genes included several major classes of resistance gene. | 2013 | 23724899 |
| 1320 | 6 | 0.9808 | Detection of tetracycline resistance genes in bacteria isolated from fish farms using polymerase chain reaction. Five common tetracycline resistance genes tet(A), tet(B), tet(M), tet(O) and tet(S) were studied by polymerase chain reaction in 100 bacteria isolated from Iranian fish farms. In the antibiogram test most of the bacteria were either intermediately or completely resistant to tetracycline. Nine isolates out of 46 Aeromonas spp. contained either tet(A/M/S) resistant genes as follows: tet(A) in A. veronii/sobria (n = 1), A. media (n = 2), A. aquariorum (n = 1), and A. veronii (n = 3); tet(M) in one isolate of A. sobria and tet(S) in 1 isolate of A. jandaei. In other bacteria, tet(A) gene was detected in Citrobacter freundi (n = 1), Pseudomonas putida (n = 1); tet(S) was also identified in Yersinia ruckeri (n = 1), Arthrobacter arilaitensis (n = 1) and P. putida (n = 1). In total, 31 isolates (31.00%) contained the tetracycline resistance genes in which 21 bacteria (21.00%) showed the tet(S), nine bacteria (9.00%) contained the tet(A) and 1 bacteria (1.00%) was positive for tet(M). All of the L. garvieae isolates contained tet(S) in this study. The most widely distributed resistance gene was gene tet(A) and the least known resistance genes was tet(M) among the studied bacteria of the genus Aeromonas in this study. | 2014 | 25610578 |
| 833 | 7 | 0.9807 | Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. BACKGROUND: In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS: Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS: Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes. | 2013 | 23951238 |
| 524 | 8 | 0.9806 | Sulfamethoxazole degradation by Pseudomonas silesiensis F6a isolated from bioelectrochemical technology-integrated constructed wetlands. The antibiotic-degrading ability and mechanism of the bacteria in the novel and ecological bioelectrochemical technology-integrated constructed wetlands (BICW) remain unknown. In this study, the sulfamethoxazole (SMX) degrading strain Pseudomonas silesiensis F6a (F6a), which had high degradation efficiency, was firstly isolated from a substrate sample in BICW. The SMX degradation process of F6a follows pseudo first order kinetics. Four metabolic pathways and twelve degradation products were identified. Based on genomics and proteomics analysis, six key SMX-degrading genes, Gene4641 deoC, Gene0552 narI, Gene0546 luxS, Gene1753 nuoH, Gene0655 and Gene4650, were identified, which were mainly participated in C-S cleavage, S-N hydrolysis and isoxazole ring cleavage. Interestingly, we found the corresponding sulfonamides resistance genes were not detected in F6a, which may provide an evidence for low abundance of the sulfonamides resistance genes in BICW system. These findings would contribute to a better understanding of biotransformation of antibiotic in the BICW. | 2022 | 35636241 |
| 1380 | 9 | 0.9806 | Distribution of tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae isolated from dairy and nondairy farm soils. The prevalence of selected tetracycline and streptomycin resistance genes and class 1 integrons in Enterobacteriaceae (n = 80) isolated from dairy farm soil and nondairy soils was evaluated. Among 56 bacteria isolated from dairy farm soils, 36 (64.3%) were resistant to tetracycline, and 17 (30.4%) were resistant to streptomycin. Lower frequencies of tetracycline (9 of 24 or 37.5%) and streptomycin (1 of 24 or 4.2%) resistance were observed in bacteria isolated from nondairy soils. Bacteria (n = 56) isolated from dairy farm soil had a higher frequency of tetracycline resistance genes including tetM (28.6%), tetA (21.4%), tetW (8.9%), tetB (5.4%), tetS (5.4%), tetG (3.6%), and tetO (1.8%). Among 24 bacteria isolated from nondairy soils, four isolates carried tetM, tetO, tetS, and tetW in different combinations; whereas tetA, tetB, and tetG were not detected. Similarly, a higher prevalence of streptomycin resistance genes including strA (12.5%), strB (12.5%), ant(3'') (12.5), aph(6)-1c (12.5%), aph(3'') (10.8%), and addA (5.4%) was detected in bacteria isolated from dairy farm soils than in nondairy soils. None of the nondairy soil isolates carried aadA gene. Other tetracycline (tetC, tetD, tetE, tetK, tetL, tetQ, and tetT) and streptomycin (aph(6)-1c and ant(6)) resistance genes were not detected in both dairy and nondairy soil isolates. A higher distribution of multiple resistance genes was observed in bacteria isolated from dairy farm soil than in nondairy soil. Among 36 tetracycline- and 17 streptomycin-resistant isolates from dairy farm soils, 11 (30.6%) and 9 (52.9%) isolates carried multiple resistance genes encoding resistance to tetracycline and streptomycin, respectively, which was higher than in bacteria isolated from nondairy soils. One strain each of Citrobacter freundii and C. youngae isolated from dairy farm soils carried class 1 integrons with different inserted gene cassettes. Results of this small study suggest that the presence of multiple resistance genes and class 1 integrons in Enterobacteriaceae in dairy farm soil may act as a reservoir of antimicrobial resistance genes and could play a role in the dissemination of these antimicrobial resistance genes to other commensal and indigenous microbial communities in soil. However, additional longer-term studies conducted in more locations are needed to validate this hypothesis. | 2008 | 17701242 |
| 5222 | 10 | 0.9805 | Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene. | 2009 | 19414240 |
| 5950 | 11 | 0.9804 | Epidemiological study of sulfonamide and trimethoprim resistance genes in Enterobacteriaceae. Sulfonamide (Su) and trimethoprim (Tp) resistance are known to caused by the production of drug resistant dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR), respectively. Sulfonamide and trimethoprim are often used in combination under the name cotrimoxazole. Cotrimoxazole resistance in various enteric bacteria isolated at Ramathibodi Hospital was studied. The rate of resistance from 1984-1989 of many genera was rather constant at 40%-60% except in Shigella spp in which the rate increased rapidly in 1987 till 1989. Seventy-five percent of Su-Tp resistant (Sur-Tpr) bacteria were also found to be resistant to other drugs such as ampicillin, aminoglycosides, tetracycline and chloramphenicol in addition to cotrimoxazole. Two hundred and forty Su-Tp resistant strains were analysed for the presence of type I and II dihydropteroate synthase as well as type I and V dihydrofolate reductase genes by hybridization with the corresponding gene probes. Type I DHPS gene predominated in Su-Tp resistant bacteria at 60.8% whereas type II DHPS was found in only 25%. Some strains (11.7%) had both genotypes but 2.5% did not have any. In the trimethoprim resistance study, the DHFR type I gene was also found more frequently (30%) whereas type V DHFR was only 19%. The remaining of Tp resistance (51%) was unclassified. The coexistence of Su and Tp resistance genes of each type was investigated among 118 Su and Tp resistant strains. It was found that type I DHPS gene was found together with either type I or V DHFR gene and type II DHPS was found with type I DHFR gene at about the same rate (28.9%, 27.1% and 26.3%, respectively). However, the presence of type II DHPS together with type V DHFR was rather low, only 5.9% of isolates were found to have both types of genes. | 1990 | 2237584 |
| 5387 | 12 | 0.9804 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 1270 | 13 | 0.9804 | Multiantibiotic resistance of gram-negative bacteria isolated from drinking water samples in southwest Greece. In this study we monitored the sensitivity of 239 gram-negative bacteria (of fecal and non-fecal origin), isolated from the old drinking water distribution network of Patras in southwestern Greece, to 20 antibiotic agents. Two methods were used to find the multiresistant bacteria (bacteria resistant to two or more antibiotics): the diffusion disk method and a serial dilution method. The gram-negative bacteria tested were: Enterobacteriaceae (62), Pseudomonas (145), Vibrionaceae (24), Chromobacter (3), Acinetobacter (2) and others (4). The highest levels of antibiotic resistance were obtained for cephalothin (86.7%), ampicillin (77.5%) and carbenicillin (71%) followed by cefoxitin (55.4%) and cefuroxime (51.2%). Intermediate resistance levels were found for ticarcillin (31.3%), ceftizoxime (31.2%), chloramphenicol (30.3%), and cefotetan (25.2%). Low resistance levels were obtained for cefotaxime (17.9%), sulfisoxazole (15.2%), ceftriaxone (12.5%), tetracycline (11.9%), trimethoprim/sulfamethoxazole (7.4%) and piperacillin (2.4%). Overall 91.3% of the gram-negative bacteria isolated from drinking water were multiresistant. No resistant strains were found to quinolones, aminoglycosides, imipenem, aztreonam, ceftazidime or cefoperazone. The high antibiotic resistance rate of the isolated microorganisms from the Patras drinking water supply is discussed. | 2000 | 10949974 |
| 2013 | 14 | 0.9804 | Identification and characterization of class 1 integrons in bacteria from an aquatic environment. In a survey of 3000 Gram-negative bacteria isolated from an estuarine environment over a 2 month period, the incidence of class 1 integrons was determined to be 3.6%. Of 85 integrons studied further, 11 lacked both the qacEdelta1 and sull genes usually present in the 3' conserved segment of the integron. The qacEdelta1 and sull genes were identified in the 3' conserved segment of 36 integrons. The remaining 38 integrons lacked a sull gene but contained a qacE gene. The variable region of 74 integrons was characterized by PCR and sequence analysis. Forty of the integrons were found to lack integrated gene cassettes, although 21 of these 'empty' integrons were shown to contain inserted DNA which has been tentatively identified as a novel insertion sequence (IS) element. Of the 34 integrons which contained inserted gene cassettes, the aadA1a gene was found to be the most prevalent (74%). Nineteen integrons contained additional or other gene cassettes in their variable region, including those encoding resistance to trimethoprim (dfr1a, dfrIIc, dfrV, dfrVII, dfrXII), chloramphenicol (catB3, catB5), aminoglycosides (aadA2, aacA4, aacC1), beta-lactamases (oxa2) and erythromycin (ereA). This study confirms the occurrence of integrons in bacteria from a natural habitat and suggests that in the absence of continued antibiotic selective pressures, integrons which persist appear to preferentially exist without integrated antibiotic resistance gene cassettes. | 1999 | 10459805 |
| 6151 | 15 | 0.9803 | Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. Novel hyper-resistant bacteria were isolated from the Crven Dol mine (Allchar, North Macedonia), arsenic-rich extreme environment. Bacteria were recovered from a secondary mineral mixture, an alteration of hydrothermal realgar rich in arsenates (pharmacolite, hornesite, and talmessite). The sample was recovered from the dark part of the mine at 28 m depth. Three bacterial strains and a bacterial consortium were isolated for their capacity to survive exposure to 32 g/L (209 mM) of arsenite, and 176 g/L (564 mM) of arsenate. The 16S rRNA gene analysis identified bacterial isolates as Stenotrophomonas sp. and two Microbacterium spp. This analysis also revealed that bacterial consortium comprise two Bacteriodetes exhibiting similarity to Olivibacter ginsengisoli and to uncultured bacterium, and one γ-proteobacteria with similarity to Luteimonas sp. Among all isolates Stenotrophomonas sp. exhibited the highest tolerance to As compound as well as the capacity to accumulate As inside the cells. Analysis of genes involved in As-resistance showed that recovered isolates possess the genes encoding the ArsB, Acr3(1) and Acr3(2) proteins, indicating that at least a part of their resistance could be ascribed to As-efflux systems described in isolates obtained from human-polluted environments. | 2021 | 32712355 |
| 6143 | 16 | 0.9803 | Paleomicrobiology to investigate copper resistance in bacteria: isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry. Remains of a medieval foundry were excavated by archaeologists in 2013 in Verdun (France). Ancient workshops specialized in brass and copper alloys were found with an activity between 13th to 16th c. Levels of Cu, Zn and Pb reached 20000, 7000 and 6000 mg kg(-1) (dw), respectively, in several soil horizons. The objective of the present work was to examine the microbial community in this contaminated site. A total of 8-22 10(6) reads were obtained by shotgun metagenomics in four soil horizons. Bioinformatic analyses suggest the presence of complex bacterial communities dominated by Proteobacteria. The structure of the community was not affected by metals, contrary to the set of metal-resistance genes. Using selective media, a novel strain of Cupriavidus necator (eutrophus), strain B9, was isolated. Its genome was sequenced and a novel metal resistance gene cluster with Hg resistance genes (merRTPCA) followed by 24 copper-resistance genes (actP, cusCBAF, silP, copK1, copH4QLOFGJH3IDCBARS, copH2H1, copK2) was found. This cluster is partly homologous to the cop genes of Cupriavidus gilardii CR3 and C. metallidurans CH34. Proteomics indicated that the four copH genes were differentially expressed: CopH1 and CopH2 were mostly induced by Cd while CopH4 was highly expressed by Cu. | 2017 | 27943589 |
| 816 | 17 | 0.9803 | High-Level Nickel Resistance in Alcaligenes xylosoxydans 31A and Alcaligenes eutrophus KTO2. Two new nickel-resistant strains of Alcaligenes species were selected from a large number (about 400) of strains isolated from ecosystems polluted by heavy metals and were studied on the physiological and molecular level. Alcaligenes xylosoxydans 31A is a heterotrophic bacterium, and Alcaligenes eutrophus KTO2 is an autotrophic aerobic hydrogen-oxidizing bacterium. Both strains carry-among other plasmids-a megaplasmid determining resistance to 20 to 50 mM NiCl(2) and 20 mM CoCl(2) (when growing in defined Tris-buffered media). Megaplasmids pTOM8, pTOM9 from strain 31A, and pGOE2 from strain KTO2 confer nickel resistance to the same degree to transconjugants of all strains of A. eutrophus tested but were not transferred to Escherichia coli. However, DNA fragments carrying the nickel resistance genes, cloned into broad-hostrange vector pVDZ'2, confer resistance to A. eutrophus derivatives as well as E. coli. The DNA fragments of both bacteria, TBA8, TBA9, and GBA (14.5-kb BamHI fragments), appear to be identical. They share equal size, restriction maps, and strong DNA homology but are largely different from fragment HKI of nickel-cobalt resistance plasmid pMOL28 of A. eutrophus CH34. | 1991 | 16348590 |
| 1224 | 18 | 0.9803 | Prevalence, antibiotic resistance patterns and molecular characterization of Escherichia coli from Austrian sandpits. The aim was to determine the prevalence of E. coli and coliform bacteria in playground sand of all public children's sandpits in Graz (n = 45), Austria, and to assess the frequency of antimicrobial resistance in E. coli. Molecular characterization included the discrimination of O-serotypes and H-antigens and the determination of virulence and resistance genes, using a microarray technology. E. coli isolates were tested for susceptibility to a set of antibiotics by VITEK2 system and disk diffusion method. In total, 22 (49%) and 44 (98%) sandpits were positive for E. coli and coliform bacteria. Median concentrations of E. coli and coliform bacteria in the sand samples were: 2.6 × 10(4) CFU/100 g and 3.0 × 10(5) CFU/100 g. Resistance rates were: ampicillin, 12.5%; piperacillin, 10.4%; amoxicillin/clavulanic acid, 9.4%; cotrimoxazole, 6.3%; tetracycline, 6.3%; piperacillin/tazobactam, 5.2%. No ESBL- or carbapenemase-producing isolates were found. The most prevalent serogroups were O15, O6 and O4. Isolates harbored 0 up to 16 different virulence genes. | 2014 | 25089889 |
| 2767 | 19 | 0.9802 | Characterisation of class 3 integrons with oxacillinase gene cassettes in hospital sewage and sludge samples from France and Luxembourg. In this study, antibiotic resistance class 3 integrons in Gram-negative bacteria isolated from hospital sewage and sludge and their genetic contents were characterised. Two samples of hospital effluent from France and Luxembourg and one sample of sludge from a wastewater treatment plant in France were collected in 2010 and 2011. Bacteria were cultured on selective agar plates and integrons were detected in colonies by quantitative PCR. Integron gene cassette arrays and their genetic environments were analysed by next-generation sequencing. Three class 3 integron-positive isolates were detected, including Acinetobacter johnsonii LIM75 (French hospital effluent), Aeromonas allosaccharophila LIM82 (sludge) and Citrobacter freundii LIM86 (Luxembourg hospital effluent). The gene cassettes were all implicated in antibiotic (aminoglycoside and β-lactam) or antiseptic resistance. An oxacillinase gene cassette (blaOXA-10, blaOXA-368 or blaOXA-2) was found in each integron. All of the class 3 integrons were located on small mobilisable plasmids. This study highlights the role of class 3 integrons in the dissemination of clinically relevant antibiotic resistance genes, notably oxacillinase genes, in hospital effluent. | 2016 | 27499434 |