BELONGING - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
172200.9982Genomic Characteristics and Molecular Epidemiology of Multidrug-Resistant Klebsiella pneumoniae Strains Carried by Wild Birds. This study aimed to explore the relationship between wild birds and the transmission of multidrug-resistant strains. Klebsiella pneumoniae was isolated from fresh feces of captured wild birds and assessed by the broth microdilution method and comparative genomics. Four Klebsiella pneumoniae isolates showed different resistance phenotypes; S90-2 and S141 were both resistant to ampicillin, cefuroxime, and cefazolin, while M911-1 and S130-1 were sensitive to most of the 14 antibiotics tested. S90-2 belongs to sequence type 629 (ST629), and its genome includes 30 resistance genes, including bla(CTX-M-14) and bla(SHV-11), while its plasmid pS90-2.3 (IncR) carries qacEdelta1, sul1, and aph(3')-Ib. S141 belongs to ST1662, and its genome includes a total of 27 resistance genes, including bla(SHV-217). M911-1 is a new ST, carrying bla(SHV-1) and fosA6, and its plasmid pM911-1.1 (novel) carries qnrS1, bla(LAP-2), and tet(A). S130-1 belongs to ST3753, carrying bla(SHV-11) and fosA6, and its plasmid pS130-1 [IncFIB(K)] carries only one resistance gene, tet(A). pM911-1.1 and pS90-2.3 do not have conjugative transfer ability, but their resistance gene fragments are derived from multiple homologous Enterobacteriaceae strain chromosomes or plasmids, and the formation of resistance gene fragments (multidrug resistance region) involves interactions between multiple mobile element genes, resulting in a complex and diverse resistance plasmid structure. The homologous plasmids related to pM911-1.1 and pS90-2.3 were mainly from isolated human-infecting bacteria in China, namely, K. pneumoniae and Escherichia coli. The multidrug-resistant K. pneumoniae isolates carried by wild birds in this study had drug resistance phenotypes conferred primarily by multidrug resistance plasmids that were closely related to human-infecting bacteria. IMPORTANCE Little is known about the pathogenic microorganisms carried by wild animals. This study found that the multidrug resistance phenotype of Klebsiella pneumoniae isolates carried by wild birds was mainly attributed to multidrug resistance plasmids, and these multidrug resistance plasmids from wild birds were closely related to human-infecting bacteria. Wild bird habitats overlap to a great extent with human and livestock habitats, which further increases the potential for horizontal transfer of multidrug-resistant bacteria among humans, animals, and the environment. Therefore, wild birds, as potential transmission hosts of multidrug-resistant bacteria, should be given attention and monitored.202336840587
296110.9980Molecular Characterization and Antimicrobial Susceptibility of C. jejuni Isolates from Italian Wild Bird Populations. Poultry is considered a major reservoir of human campylobacteriosis. It also been reported that not only poultry, but also wild birds, are capable of carrying C. jejuni, thus demonstrating to be a risk of spreading the bacteria in the environment. To gain insight into the population structure and investigate the antimicrobial resistance genotypes and phenotypes, we analyzed a collection of 135 C. jejuni from 15 species of wild birds in Italy. MLST revealed the presence of 41 sequence types (STs) and 13 clonal complexes (CCs). ST-179 complex and the generalist ST-45 complex were the most prevalent. Core genome MLST revealed that C. jejuni from ST-45 complex clustered according to the bird species, unlike the ST-179 complex which featured 3 different species in the same cluster. Overall we found a moderate prevalence of resistance to tetracycline (12.5%), ciprofloxacin and nalidixic acid (10%). The novel ST isolated from one pigeon showed resistance to all the antibiotics tested. The ST-179 complex (33.3%) was identified with significantly higher nalidixic acid resistance relative to other tested STs. Nine AMR genes (tet(O), cmeA, cmeB, cmeC, cmeR, aad, blaOXA-61, blaOXA-184 and erm(B)) and 23S rRNA and gyrA-associated point mutations were also described, indicating a concordance level between genotypic and phenotypic resistance of 23.3%, 23.4% and of 37.5% for streptomycin, tetracycline and quinolones/fluoroquinolones, respectively. We recommend that particular attention should be given to wild birds as key sentinel animals for the ecosystem contamination surveillance.202032326051
203520.9980In Vitro Susceptibility and Florfenicol Resistance in Citrobacter Isolates and Whole-Genome Analysis of Multidrug-Resistant Citrobacter freundii. The genus Citrobacter is an opportunistic pathogen causing infections in animals, and the published data for its resistance to florfenicol are scarce. In this study, we investigated the antimicrobial susceptibility and molecular characteristics of florfenicol resistance genes among Citrobacter isolates from animal and relevant environmental samples and conducted a comparative analysis of a multidrug-resistant Citrobacter freundii strain isolated from a rabbit. Among 20 Citrobacter strains isolated from animal samples, resistance was most commonly observed to ampicillin (100%), tetracycline (75%), streptomycin (65%), florfenicol (60%), chloramphenicol (60%), and aztreonam (50%), while all the strains found in environmental samples were resistant to few antibiotics. The florfenicol resistance gene floR was detected in 12 isolates (48%, 12/25) from animal samples, and all of the floR-positive isolates were resistant to florfenicol with minimum inhibitory concentration (MIC) values ≥256 μg/mL. Sequencing and comparative analysis of the plasmids from a multidrug-resistant C. freundii isolate named R47 showed that the floR-containing region in the plasmid pR47-54 was a truncated transposon-like structure and could be found on both plasmids and chromosomes of bacteria of either animal or human origin. Furthermore, a range of antimicrobial and metal resistance genes associated with mobile genetic elements could be identified in pR47-54 and the other plasmid pR47-309 of C. freundii R47. These results provide in-depth views into the phenotypic and molecular characteristics of Citrobacter isolates recovered from animal and relevant environmental samples, as well as highlight the role horizontal gene transfer plays in the dissemination of plasmid-encoded resistance genes.201931828082
151830.9980Genomic characterisation of an mcr-1 and mcr-3-producing Escherichia coli strain isolated from pigs in France. OBJECTIVES: Colistin is considered a last-resort antibiotic against carbapenem-resistant isolates. Currently, this antibiotic is facing the emergence of mobilised colistin resistance (mcr) genes, which confer colistin resistance. This study conducted genomic characterisation of an atypical multidrug-resistant Escherichia coli harbouring two mcr genes in France. Samples collected from a pig farm in Avignon (Vaucluse department) were subjected to molecular screening targeting mcr variants. METHODS: Samples were cultured on selective Lucie-Bardet-Jean-Marc-Rolain medium. Growing bacteria were identified using MALDI-TOF, followed by antibiotic susceptibility testing. Whole-genome sequencing and bioinformatic genome analysis were performed. RESULTS: Selective culture of stools revealed the presence of an E. coli strain named Q4552 harbouring mcr-1.1 and mcr-3.5 genes, which is also resistant to 14 antibiotics. Genome sequencing and assembly yielded a complete and circular chromosome and eight different plasmids. Sequence analysis demonstrated an integration of a mobile genetic element carrying mcr-1.1 in the chromosome, whereas mcr-3.5 was in the plasmid and its resistome was composed of 22 resistance genes. The Q4552 strain was identified as an ST-843 clone that belonged to the clonal complex Cplx-568 and is the only ST type of this cplx-568 that has been isolated from animals, humans, and the environment. CONCLUSION: We report the first co-occurrence of mcr-1 and mcr-3 genes in France from a pathogenic E. coli isolated from a pig. Because this clone (ST-843) has been reported in zoonotic transmissions, programs to monitor the bacterium are urgently required to avoid its spread and zoonotic transmission to humans.202235085790
119140.9980IncFII plasmid carrying antimicrobial resistance genes in Shigella flexneri: Vehicle for dissemination. OBJECTIVES: Plasmids harbouring antimicrobial resistance determinants in clinical strains are a significant public-health concern worldwide. The present study investigated such plasmids in clinical isolates of Shigella flexneri. METHODS: A total of 162 Shigella isolates were obtained from stool specimens in the year 2015. Among the 70 multidrug-resistant (MDR) Shigella spp., 27 S. flexneri isolates were randomly selected for further characterisation. Antimicrobial resistance genes (ARGs) and plasmid incompatibility (Inc) types were analysed. RESULTS: IncFII plasmids were found in 63% (17/27) of the studied S. flexneri isolates. ARGs such as dhfr1a (81%), sulII (74%), bla(OXA) (74%), bla(TEM) (33%), bla(AmpC) (30%), qnrS (15%) and qnrB (4%) were identified by PCR, whereas bla(CTX-M) was not detected. Next-generation sequencing of a representative S. flexneri IncFII-type plasmid (pSF470) revealed the presence of bla(TEM1-B), bla(DHA-1), qnrB10, mphA, sulI, sulII, strA, strB and tetR ARGs along with the intI1 integrase gene. In addition, pMLST analysis showed that the replicon belonged to F2:A-:B- type. CONCLUSIONS: This study helps to know the prevalent plasmid types in MDR Shigella isolates and will improve our understanding of resistance dissemination among enteric bacteria. ARGs in plasmids further highlight the importance of such studies in enteric bacteria.201930342929
118450.9980Prevalence and Genetic Analysis of Chromosomal mcr-3/7 in Aeromonas From U.S. Animal-Derived Samples. The prevalence of mcr-positive bacteria in 5,169 domestic animal-derived samples collected by USDA Food Safety and Inspection Service between October 2018 and May 2019 was investigated. A procedure including enriched broth culture and real-time PCR targeting mcr-1 to mcr-8 were used for the screening. Fifteen positive isolates were identified, including one plasmid-borne mcr-1-positive Escherichia coli strain, EC2492 (reported elsewhere) and 14 mcr-3/7-positive strains from poultry (1), catfish (2), and chicken rinse (11) samples, resulting in an overall prevalence of mcr-positive bacteria 0.29% in all meat samples tested. Analysis of 16S rRNA and whole genome sequences revealed that all 14 strains belonged to Aeromonas. Data from phylogenetic analysis of seven housekeeping genes, including gyrB, rpoD, gyrA, recA, dnaJ, dnaX, and atpD, indicated that nine strains belonged to Aeromonas hydrophila and five strains belonged to Aeromonas jandaei. Antimicrobial tests showed that almost all mcr-positive strains exhibited high resistance to colistin with MICs ≥ 128mg/L, except for one A. jandaei strain, which showed a borderline resistance with a MIC of 2 mg/L. A segment containing two adjacent mcr-3 and mcr-3-like genes was found in two A. hydrophila and one A. jandaei strains and a variety of IS-like elements were found in the flanking regions of this segment. A mcr-3-related lipid A phosphoethanolamine transferase gene was present in all 14 Aeromonas strains, while an additional mcr-7-related lipid A phosphoethanolamine transferase gene was found in 5 A. jandaei strains only. In addition to mcr genes, other antimicrobial resistance genes, including bla (OXA-12/OXA-724), aqu-2, tru-1, cepS, cphA, imiH, ceph-A3, ant(3″)-IIa, aac(3)-Via, and sul1 were observed in chromosomes of some Aeromonas strains. The relative high prevalence of chromosome-borne mcr-3/7 genes and the close proximity of various IS elements to these genes highlights the need for continued vigilance to reduce the mobility of these colistin-resistance genes among food animals.202133995332
118860.9980High Prevalence of Plasmid-Mediated Quinolone Resistance and IncQ Plasmids Carrying qnrS2 Gene in Bacteria from Rivers near Hospitals and Aquaculture in China. Effluents from hospital and aquaculture are considered important sources of quinolone resistance. However, little information is available on the impact of this effluent on nearby rivers. In this study, 188 ciprofloxacin-resistant bacterial isolates obtained from rivers near hospitals and aquaculture were screened for plasmid-mediated quinolone resistance (PMQR) genes. Species identification, antibiotic susceptibility testing, and PMQR gene transferability assessment were conducted for PMQR-positive bacteria. Representative qnrS2-encoding plasmids were subsequently sequenced using a primer-walking approach. In total, 44 isolates (23.4%) were positive for qnr genes (16 qnrB2, 3 qnrS1, and 25 qnrS2) and 32 isolates (17.0%) were positive for aac(6')-Ib-cr. Other PMQR genes were not detected. The qnrB2 and aac(6')-Ib-cr genes had a higher prevalence in aquaculture samples than in hospital samples, and were significantly associated with Enterobacteriaceae (p < 0.05). In contrast, the prevalence of qnrS2 was not site-related, but was significantly associated with Aeromonas spp. (p < 0.05). All PMQR isolates were resistant to three or more classes of antibiotics. Eleven qnrS2-harboring plasmids from Aeromonas spp., including a novel conjugative plasmid pHP18, were selected for sequencing. These plasmids were small in size (6,388-16,197 bp) and belonged to the IncQ or IncU plasmid family, with qnrS2 being part of a mobile insertion cassette. Taken together, our findings suggest that aquaculture is a possible source for aac(6')-Ib-cr and qnrB2 dissemination, and demonstrate the ubiquity of qnrS2 in aquatic environments. Finally, Aeromonas spp. served as vectors for qnrS2 with the help of IncQ-type plasmids.201627427763
198370.9980Aeromonas species isolated from aquatic organisms, insects, chicken, and humans in India show similar antimicrobial resistance profiles. Aeromonas species are Gram-negative bacteria that infect various living organisms and are ubiquitously found in different aquatic environments. In this study, we used whole genome sequencing (WGS) to identify and compare the antimicrobial resistance (AMR) genes, integrons, transposases and plasmids found in Aeromonas hydrophila, Aeromonas caviae and Aeromonas veronii isolated from Indian major carp (Catla catla), Indian carp (Labeo rohita), catfish (Clarias batrachus) and Nile tilapia (Oreochromis niloticus) sampled in India. To gain a wider comparison, we included 11 whole genome sequences of Aeromonas spp. from different host species in India deposited in the National Center for Biotechnology Information (NCBI). Our findings show that all 15 Aeromonas sequences examined had multiple AMR genes of which the Ambler classes B, C and D β-lactamase genes were the most dominant. The high similarity of AMR genes in the Aeromonas sequences obtained from different host species point to interspecies transmission of AMR genes. Our findings also show that all Aeromonas sequences examined encoded several multidrug efflux-pump proteins. As for genes linked to mobile genetic elements (MBE), only the class I integrase was detected from two fish isolates, while all transposases detected belonged to the insertion sequence (IS) family. Only seven of the 15 Aeromonas sequences examined had plasmids and none of the plasmids encoded AMR genes. In summary, our findings show that Aeromonas spp. isolated from different host species in India carry multiple AMR genes. Thus, we advocate that the control of AMR caused by Aeromonas spp. in India should be based on a One Health approach.202236532495
199280.9979Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. The ability of antimicrobial resistance (AR) to transfer, on mobile genetic elements (MGEs) between bacteria, can cause the rapid establishment of multidrug resistance (MDR) in bacteria from animals, thus creating a foodborne risk to human health. To investigate MDR and its association with plasmids in Salmonella enterica, whole genome sequence (WGS) analysis was performed on 193 S. enterica isolated from sources associated with United States food animals between 1998 and 2011; 119 were resistant to at least one antibiotic tested. Isolates represented 86 serotypes and variants, as well as diverse phenotypic resistance profiles. A total of 923 AR genes and 212 plasmids were identified among the 193 strains. Every isolate contained at least one AR gene. At least one plasmid was detected in 157 isolates. Genes were identified for resistance to aminoglycosides (n = 472), β-lactams (n = 84), tetracyclines (n = 171), sulfonamides (n = 91), phenicols (n = 42), trimethoprim (n = 8), macrolides (n = 5), fosfomycin (n = 48), and rifampicin (n = 2). Plasmid replicon types detected in the isolates were A/C (n = 32), ColE (n = 76), F (n = 43), HI1 (n = 4), HI2 (n = 20), I1 (n = 62), N (n = 4), Q (n = 7), and X (n = 35). Phenotypic resistance correlated with the AR genes identified in 95.4% of cases. Most AR genes were located on plasmids, with many plasmids harboring multiple AR genes. Six antibiotic resistance cassette structures (ARCs) and one pseudo-cassette were identified. ARCs contained between one and five resistance genes (ARC1: sul2, strAB, tetAR; ARC2: aac3-iid; ARC3: aph, sph; ARC4: cmy-2; ARC5: floR; ARC6: tetB; pseudo-ARC: aadA, aac3-VIa, sul1). These ARCs were present in multiple isolates and on plasmids of multiple replicon types. To determine the current distribution and frequency of these ARCs, the public NCBI database was analyzed, including WGS data on isolates collected by the USDA Food Safety and Inspection Service (FSIS) from 2014 to 2018. ARC1, ARC4, and ARC5 were significantly associated with cattle isolates, while ARC6 was significantly associated with chicken isolates. This study revealed that a diverse group of plasmids, carrying AR genes, are responsible for the phenotypic resistance seen in Salmonella isolated from United States food animals. It was also determined that many plasmids carry similar ARCs.201931057528
202290.9979Analysis of antimicrobial resistance genes detected in multiple-drug-resistant Escherichia coli isolates from broiler chicken carcasses. Multi-drug-resistant (MDR) bacteria in food animals are a potential problem in both animal and human health. In this study, MDR commensal Escherichia coli isolates from poultry were examined. Thirty-two E. coli isolates from broiler carcass rinses were selected based on their resistance to aminoglycosides, β-lactams, chloramphenicols, tetracyclines, and sulfonamide antimicrobials. Microarray analysis for the presence of antimicrobial resistance and plasmid genes identified aminoglycoside [aac(6), aac(3), aadA, aph, strA, and strB], β-lactam (bla(AmpC), bla(TEM), bla(CMY), and bla(PSE-1)), chloramphenicol (cat, flo, and cmlA), sulfamethoxazole (sulI and sulII), tetracycline [tet(A), tet(C), tet(D), and tetR], and trimethoprim (dfrA) resistance genes. IncA/C plasmid core genes were detected in 27 isolates, while IncHI1 plasmid genes were detected in one isolate, indicating the likely presence of these plasmids. PCR assays for 18 plasmid replicon types often associated with MDR in Enterobacteriaceae also detected one or more replicon types in all 32 isolates. Class I integrons were investigated by PCR amplification of the integrase I gene, intI1, and the cassette region flanked by conserved sequences. Twenty-five isolates were positive for the intI1 gene, and class I integrons ranging in size from ~1,000 to 3,300 bp were identified in 19 of them. The presence of class I integrons, IncA/C plasmid genes, and MDR-associated plasmid replicons in the isolates indicates the importance of these genetic elements in the accumulation and potential spread of antimicrobial resistance genes in the microbial community associated with poultry.201222385320
1723100.9979High-Level Aminoglycoside Resistance in Human Clinical Klebsiella pneumoniae Complex Isolates and Characteristics of armA-Carrying IncHI5 Plasmids. Aminoglycosides are important options for treating life-threatening infections. However, high levels of aminoglycoside resistance (HLAR) among Klebsiella pneumoniae isolates have been observed to be increasing frequently. In this study, a total of 292 isolates of the K. pneumoniae complex from a teaching hospital in China were analyzed. Among these isolates, the percentage of HLAR strains was 13.7% (40/292), and 15 aminoglycoside resistance genes were identified among the HLAR strains, with rmtB being the most dominant resistance gene (70%, 28/40). We also described an armA-carrying Klebsiella variicola strain KP2757 that exhibited a high-level resistance to all aminoglycosides tested. Whole-genome sequencing of KP2757 demonstrated that the strain contained one chromosome and three plasmids, with all the aminoglycoside resistance genes (including two copies of armA and six AME genes) being located on a conjugative plasmid, p2757-346, belonging to type IncHI5. Comparative genomic analysis of eight IncHI5 plasmids showed that six of them carried two copies of the intact armA gene in the complete or truncated Tn1548 transposon. To the best of our knowledge, for the first time, we observed that two copies of armA together with six AME genes coexisted on the same plasmid in a strain of K. variicola with HLAR. Comparative genomic analysis of eight armA-carrying IncHI5 plasmids isolated from humans and sediment was performed, suggesting the potential for dissemination of these plasmids among bacteria from different sources. These results demonstrated the necessity of monitoring the prevalence of IncHI5 plasmids to restrict their worldwide dissemination.202133897641
1187110.9979Coastal seawater bacteria harbor a large reservoir of plasmid-mediated quinolone resistance determinants in Jiaozhou Bay, China. Diversity and prevalence of plasmid-mediated quinolone resistance determinants were investigated in environmental bacteria isolated from surface seawater of Jiaozhou Bay, China. Five qnr gene alleles were identified in 34 isolates by PCR amplification, including qnrA3 gene in a Shewanella algae isolate, qnrB9 gene in a Citrobacter freundii isolate, qnrD gene in 22 Proteus vulgaris isolates, qnrS1 gene in 1 Enterobacter sp. and 4 Klebsiella spp. isolates, and qnrS2 gene in 1 Pseudomonas sp. and 4 Pseudoalteromonas sp. isolates. The qnrC, aac(6')-Ib-cr, and qepA genes could not be detected in this study. The 22 qnrD-positive Proteus vulgaris isolates could be differentiated into four genotypes based on ERIC-PCR assay. The qnrS1 and qnrD genes could be transferred to Escherichia coli J53 Azi(R) or E. coli TOP10 recipient strains using conjugation or transformation methods. Among the 34 qnr-positive isolates, 30 had a single point mutation in the QRDRs of GyrA protein (Ala67Ser, Ser83Ile, or Ser83Thr), indicating that cooperation of chromosome- and plasmid-mediated resistance contributed to the spread and evolution of quinolone resistance in this coastal bay. Eighty-five percent of the isolates were also found to be resistant to ampicillin, and bla(CMY), bla(OXY), bla(SHV), and bla(TEM) genes were detected in five isolates that also harbored the qnrB9 or qnrS1 gene. Our current study is the first identification of qnrS2 gene in Pseudoalteromonas and Pseudomonas strains, and qnrD gene in Proteus vulgaris strains. High prevalence of diverse qnr genes in Jiaozhou Bay indicates that coastal seawater may serve as an important reservoir, natural source, and dissemination vehicle of quinolone resistance determinants.201222252223
1724120.9979Isolation, Molecular Characterization, and Antimicrobial Resistance of Selected Culturable Bacteria From Crayfish (Procambarus clarkii). Red swamp crayfish (Procambarus clarkii) have become one of the favorite aquatic products in China. The modern farming mode which uses antibiotics to prevent diseases could impact the bacteria in crayfish intestines. Here, we determined the distribution and antimicrobial resistance phenotypes of the selected culturable bacteria in crayfish intestines and characterized an isolate with last-line antibiotic resistance determinant. Totally, 257 strains were isolated from 115 crayfish. These strains were highly diverse, with Citrobacter sp. (n = 94, 36.6%) and Aeromonas sp. (n = 88, 34.2%) being dominant. Other isolates belonged to genera Pseudomonas, Myroides, Morganella, Klebsiella, Acinetobacter, Proteus, Enterobacter, Kluyvera, and Escherichia. Most strains from crayfish were susceptible to all tested antibiotics. None of the isolates carried last-line antibiotic resistance genes except one Escherichia coli isolate with bla (NDM-5) was detected, which is the first report of bla (NDM-5)-positive E. coli isolate from red swamp crayfish. Whole-genome sequencing suggested it belonged to ST48 and carried several resistance genes. bla (NDM-5) was located within an Tn3000-like transposon linked to an external 5 bp sequence (ACTAT) on both sides on a IncHI1B/HI1A/FIA multi-replicon plasmid. This transposon was considered to be acquired by replicative transposition mediated by IS3000. The emergence of bacteria with last-line antibiotic resistance genes in crayfish poses serious threat to public health since crayfish could act as a reservoir for the transfer of resistance to humans.202235747368
969130.9979Dissemination of the rmtB gene carried on IncF and IncN plasmids among Enterobacteriaceae in a pig farm and its environment. OBJECTIVES: To investigate the prevalence and characterization of 16S rRNA methylase-producing bacteria in a pig farm and its environment in East China. METHODS: Enterobacteriaceae isolates and metagenomic DNA from 102 pig faecal samples from a pig farm and 97 soil samples taken in or around the farm were screened for the presence of 16S rRNA methylase genes. The clonal relationships of 16S rRNA methylase-positive isolates, plasmid content and other associated resistance genes were also characterized. RESULTS: Fifty-six rmtB-positive Enterobacteriaceae isolates, including 54 Escherichia coli, 1 Morganella morganii and 1 Proteus mirabilis, were recovered from 55 pig faecal samples. Nineteen rmtB-positive bacteria, including 13 E. coli, 2 M. morganii, 2 Leclercia adecarboxylata, 1 Enterobacter aerogenes and 1 Enterobacter cloacae, were recovered from 16 soil samples. Among the 75 rmtB-positive isolates, 31 and 25 also carried the qepA and bla(CTX-M) genes, respectively. The qepA gene co-localized with rmtB on the F2:A-:B1 plasmids and the bla(CTX-M-65) gene co-localized with rmtB on the F33:A-:B- plasmids. The rmtB gene was also found to be associated with the IncN plasmids. Clonal transmission of rmtB-positive E. coli isolates was observed between different pig groups and soil samples. CONCLUSIONS: Both horizontal gene transfer and clonal spread could be responsible for the dissemination of the rmtB gene in the pig farm and its environment. To our knowledge, this study is the first report of rmtB-positive bacteria from farmland soils and indicates that these antibiotic-resistant bacteria and/or resistance genes could be acquired by humans through the food chain.201121852287
1102140.9979Characterization of multidrug-resistant Gram-negative bacilli isolated from hospitals effluents: first report of a bla(OXA-48)-like in Klebsiella oxytoca, Algeria. The antibiotic susceptibility profile and antimicrobial resistance determinants were characterized on Gram-negative bacilli (GNB) isolated from Algerian hospital effluents. Among the 94 isolates, Enterobacteriaceae was the predominant family, with Escherichia coli and Klebsiella pneumoniae being the most isolated species. In non-Enterobacteriaceae, Acinetobacter and Aeromonas were the predominant species followed by Pseudomonas, Comamonas, Pasteurella, and Shewanella spp. The majority of the isolates were multidrug-resistant (MDR) and carried different antimicrobial resistance genes including bla(CTX-M), bla(TEM), bla(SHV), bla(OXA-48)-like, bla(OXA-23), bla(OXA-51), qnrB, qnrS, tet(A), tet(B), tet(C), dfrA1, aac(3)-IIc (aacC2), aac(6')-1b, sul1, and sul2. The qacEΔ1-sul1 and intI2 signatures of class 1 and class 2 integrons, respectively, were also detected. Microarray hybridization on MDR E. coli revealed additional resistance genes (aadA1 and aph3strA, tet30, mphA, dfrA12, bla(cmy2), bla(ROB1), and cmlA1) and classified the tested strains as commensals, thus highlighting the potential role of humans in antibiotic resistance dissemination. This study is the first report of bla(OXA-48)-like in Klebsiella oxytoca in Algeria and bla(OXA-23) in A. baumannii in Algerian hospital effluents. The presence of these bacteria and resistance genes in hospital effluents represents a serious public health concern since they can be disseminated in the environment and can colonize other hosts.201930637660
2088150.9979Architecture of Class 1, 2, and 3 Integrons from Gram Negative Bacteria Recovered among Fruits and Vegetables. The spread of antibiotic resistant bacteria throughout the food chain constitutes a public health concern. To understand the contribution of fresh produce in shaping antibiotic resistance bacteria and integron prevalence in the food chain, 333 antibiotic resistance Gram negative isolates were collected from organic and conventionally produced fruits (pears, apples, and strawberries) and vegetables (lettuces, tomatoes, and carrots). Although low levels of resistance have been detected, the bacterial genera identified in the assessed fresh produce are often described not only as environmental, but mostly as commensals and opportunistic pathogens. The genomic characterization of integron-harboring isolates revealed a high number of mobile genetic elements and clinically relevant antibiotic resistance genes, of which we highlight the presence of as mcr-1, qnrA1, bla GES-11, mphA, and oqxAB. The study of class 1 (n = 8), class 2 (n = 3) and class 3 (n = 1) integrons, harbored by species such as Morganella morganii, Escherichia coli, Klebsiella pneumoniae, led to the identification of different integron promoters (PcW, PcH1, PcS, and PcWTNG-10) and cassette arrays (containing drfA, aadA, cmlA, estX, sat, and bla GES). In fact, the diverse integron backbones were associated with transposable elements (e.g., Tn402, Tn7, ISCR1, Tn2 (*), IS26, IS1326, and IS3) that conferred greater mobility. This is also the first appearance of In1258, In1259, and In3-13, which should be monitored to prevent their establishment as successfully dispersed mobile resistance integrons. These results underscore the growing concern about the dissemination of acquired resistance genes by mobile elements in the food chain.201627679611
1080160.9979Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes. A total of 232 isolates of gram-negative bacteria were recovered from mammals, reptiles, and birds housed at Asa Zoological Park, Hiroshima prefecture, Japan. Forty-nine isolates (21.1%) showed multidrug resistance phenotypes and harbored at least one antimicrobial resistance gene. PCR and DNA sequencing identified class 1 and class 2 integrons and many beta-lactamase-encoding genes, in addition to a novel AmpC beta-lactamase gene, bla(CMY-26). Furthermore, the plasmid-mediated quinolone resistance genes qnr and aac(6')-Ib-cr were also identified.200717720829
1008170.9979Antimicrobial resistance of Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp. isolated from the feces of giant panda. BACKGROUND: Escherichia coli, Enterobacter spp., Klebsiella pneumoniae and Enterococcus spp., common gut bacteria in giant pandas, include opportunistic pathogens. The giant panda is an endangered species, classified as vulnerable by the World Wildlife Foundation. Continuous monitoring for the emergence of antimicrobial resistance (AMR) among bacterial isolates from giant pandas is vital not only for their protection but also for public health. RESULTS: A total of 166 E. coli, 68 Enterobacter spp., 116 K. pneumoniae and 117 Enterococcus spp. isolates were collected from fecal samples of 166 giant pandas. In the antimicrobial susceptibility tests, 144 E. coli isolates, 66 Enterobacter spp. isolates, 110 K. pneumoniae isolates and 43 Enterococcus spp. isolates were resistant to at least one antimicrobial. The resistant isolates carried antimicrobial resistance genes (ARGs), including sul3, bla(TEM), bla(SHV) and tetA. The differences in the prevalence of the bla types implied that the genetic basis for β-lactam resistance among the E. coli, Enterobacter spp. and K. pneumoniae isolates was different. The strain K. pneumoniae K85 that was resistant to sixteen antimicrobials was selected for whole genome sequencing. The genome contained Col440I, IncFIB(K) and IncFII(K) plasmids and altogether 258 ARGs were predicted in the genome; 179 of the predicted ARGs were efflux pump genes. The genetic environment of the β-lactamase genes bla(CTX-M-3) and bla(TEM-1) in the K. pneumoniae K85 genome was relatively similar to those in other sequenced K. pneumoniae genomes. In comparing the giant panda age groups, the differences in the resistance rates among E. coli, K. pneumoniae and Enterobacter spp. isolates suggested that the infections in giant pandas of different age should be treated differently. CONCLUSIONS: Antimicrobial resistance was prevalent in the bacterial isolates from the giant pandas, implying that the gut bacteria may pose serious health risks for captive giant pandas. The resistance genes in the genome of K. pneumoniae K85 were associated with insertion sequences and integron-integrase genes, implying a potential for the further spread of the antimicrobial resistance.202235421931
1022180.9979Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. The intestinal tract is a huge reservoir of Enterobacteriaceae, some of which are opportunist pathogens. Several genera of these bacteria harbour intrinsic antibiotic resistance genes, such as ampC genes in species of Citrobacter, Enterobacter or Escherichia genera. In this work, beta-lactamases and other resistance mechanisms have been characterized in Enterobacteriaceae isolates recovered from healthy human faecal samples, focusing on the ampC beta-lactamase genes. Fifty human faecal samples were obtained, and 70 Enterobacteriaceae bacteria were isolated: 44 Escherichia coli, 4 Citrobacter braakii, 9 Citrobacter freundii, 8 Enterobacter cloacae, 1 Proteus mirabilis, 1 Proteus vulgaris, 1 Klebsiella oxytoca, 1 Serratia sp. and 1 Cronobacter sp. A high percentage of resistance to ampicillin was detected (57%), observing the AmpC phenotype in 22 isolates (31%) and the ESBL phenotype in 3 isolates. AmpC molecular characterization showed high diversity into bla CMY and bla ACT genes from Citrobacter and Enterobacter species, respectively, and the pulsed-field gel electrophoresis (PFGE) analysis demonstrated low clonality among them. The prevalence of people colonized by strains carrying plasmid-mediated ampC genes obtained in this study was 2%. The unique plasmid-mediated bla AmpC identified in this study was the bla CMY-2 gene, detected in an E. coli isolate ascribed to the sequence type ST405 which belonged to phylogenetic group D. The hybridization and conjugation experiments demonstrated that the ISEcp1-bla CMY-2-blc structure was carried by a ~78-kb self-transferable IncK plasmid. This study shows a high polymorphism among beta-lactamase genes in Enterobacteriaceae from healthy people microbiota. Extensive AmpC-carrier studies would provide important information and could allow the anticipation of future global health problems.201525501887
1978190.9979Antibiotic resistance plasmids in Enterobacteriaceae isolated from fresh produce in northern Germany. In this study, the genomes of 22 Enterobacteriaceae isolates from fresh produce and herbs obtained from retail markets in northern Germany were completely sequenced with MiSeq short-read and MinION long-read sequencing and assembled using a Unicycler hybrid assembly. The data showed that 17 of the strains harbored between one and five plasmids, whereas in five strains, only the circular chromosomal DNA was detected. In total, 38 plasmids were identified. The size of the plasmids detected varied between ca. 2,000 and 326,000 bp, and heavy metal resistance genes were found on seven (18.4%) of the plasmids. Eleven plasmids (28.9%) showed the presence of antibiotic resistance genes. Among large plasmids (>32,000 bp), IncF plasmids (specifically, IncFIB and IncFII) were the most abundant replicon types, while all small plasmids were Col-replicons. Six plasmids harbored unit and composite transposons carrying antibiotic resistance genes, with IS26 identified as the primary insertion sequence. Class 1 integrons carrying antibiotic resistance genes were also detected on chromosomes of two Citrobacter isolates and on four plasmids. Mob-suite analysis revealed that 36.8% of plasmids in this study were found to be conjugative, while 28.9% were identified as mobilizable. Overall, our study showed that Enterobacteriaceae from fresh produce possess antibiotic resistance genes on both chromosome and plasmid, some of which are considered to be transferable. This indicates the potential for Enterobacteriaceae from fresh produce that is usually eaten in the raw state to contribute to the transfer of resistance genes to bacteria of the human gastrointestinal system. IMPORTANCE: This study showed that Enterobacteriaceae from raw vegetables carried plasmids ranging in size from 2,715 to 326,286 bp, of which about less than one-third carried antibiotic resistance genes encoding resistance toward antibiotics such as tetracyclines, aminoglycosides, fosfomycins, sulfonamides, quinolones, and β-lactam antibiotics. Some strains encoded multiple resistances, and some encoded extended-spectrum β-lactamases. The study highlights the potential of produce, which may be eaten raw, as a potential vehicle for the transfer of antibiotic-resistant bacteria.202439287384