BEIJINGENSIS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
994600.8284Genomic insights into plasmid-mediated antimicrobial resistance in the bacterium Bhargavaea beijingensis strain PS04. The dissemination of antimicrobial-resistant bacteria through environment is a major health concern for public health. Pathogenic bacteria in natural environment can mediate the transfer of antimicrobial-resistant genes via horizontal gene transfer to naturally occurring bacteria in the soil. Bhargavaea beijingensis is a Gram-negative bacterium that is commonly found in soil and water. In recent years, there has been an emergence of antibiotic-resistant strains of environmental bacteria, which pose a significant threat to human health. One mechanism of antibiotic resistance in bacteria is through the acquisition of plasmids, which can carry genes that confer resistance to various antibiotics. In this study, a novel plasmid of repUS12 replicon type was identified in the strain PS04 of B. beijingensis, which carried the ermT and tet(L) genes, encoding resistance to macrolides, lincosamides, and tetracycline. The plasmid was found to be the first of its kind in B. beijingensis and was thought to have been acquired through horizontal gene transfer. The emergence of plasmid-mediated resistance in B. beijingensis highlights the need for continued surveillance and monitoring of antibiotic resistance in environmental bacteria.202338133813
306110.8241Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae.201425296446
299920.8215Integrative and conjugative elements in streptococci can act as vectors for plasmids and translocatable units integrated via IS1216E. Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.202336933870
175330.8169Characterization of a Linezolid- and Vancomycin-Resistant Streptococcus suis Isolate That Harbors optrA and vanG Operons. Linezolid and vancomycin are among the last-resort antimicrobial agents in the treatment of multidrug-resistant Gram-positive bacterial infections. Linezolid- and vancomycin-resistant (LVR) Gram-positive bacteria may pose severe threats to public health. In this study, three optrA- and vanG-positive Streptococcus suis strains were isolated from two farms of different cities. There were only 1 and 343 single-nucleotide polymorphisms in coding region (cSNPs) of HCB4 and YSJ7 to YSJ17, respectively. Mobilome analysis revealed the presence of vanG, erm(B), tet(O/W/32/O), and aadE-apt-sat4-aphA3 cluster on an integrative and conjugative element, ICESsuYSJ17, and erm(B), aphA3, aac(6')-aph(2″), catpC(194), and optrA on a prophage, ΦSsuYSJ17-3. ICESsuYSJ17 exhibited a mosaic structure and belongs to a highly prevalent and transferable ICESa2603 family of Streptococcus species. ΦSsuYSJ17-3 shared conserved backbone to a transferable prophage Φm46.1. A novel composite transposon, IS1216E-araC-optrA-hp-catpC(194)-IS1216E, which can be circulated as translocatable unit (TU) by IS1216E, was integrated on ΦSsuYSJ17-3. Vancomycin resistance phenotype and vanG transcription assays revealed that the vanG operon was inducible. The LVR strain YSJ17 exhibited moderate virulence in a zebrafish infection model. To our knowledge, this is the first report of LVR isolate, which is mediated by acquired resistance genes optrA and vanG operons in Gram-positive bacteria. Since S. suis has been recognized as an antimicrobial resistance reservoir in the spread of resistance genes to major streptococcal pathogens, the potential risks of disseminating of optrA and vanG from S. suis to other Streptococcus spp. are worrisome and routine surveillance should be strengthened.201931551963
924340.8169Gene Transfer Potential of Outer Membrane Vesicles of Gram-Negative Bacteria. The increasing spread of multidrug-resistant pathogenic bacteria is one of the major threats to public health worldwide. Bacteria can acquire antibiotic resistance and virulence genes through horizontal gene transfer (HGT). A novel horizontal gene transfer mechanism mediated by outer membrane vesicles (OMVs) has been recently identified. OMVs are rounded nanostructures released during their growth by Gram-negative bacteria. Biologically active toxins and virulence factors are often entrapped within these vesicles that behave as molecular carriers. Recently, OMVs have been reported to contain DNA molecules, but little is known about the vesicle packaging, release, and transfer mechanisms. The present review highlights the role of OMVs in HGT processes in Gram-negative bacteria.202134205995
375350.8167Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Bambermycin (flavophospholipol) is a phosphoglycolipid antimicrobial produced by various strains of Streptomyces. It is active primarily against Gram-positive bacteria because of inhibition of transglycosylase and thus of cell wall synthesis. Bambermycin is used as a feed additive growth promoter in cattle, pigs, chickens, and turkeys, but has no therapeutic use in humans or animals. Flavophospholipol is known to suppress certain microorganisms (e.g., Staphylococcus spp. and Enterococcus faecalis) and thus contributes to an improved equilibrium of the gut microflora providing a barrier to colonization with pathogenic bacteria and resultant improved weight gain and feed conversion. Flavophospholipol has also been shown to decrease the frequency of transferable drug resistance among Gram-negative enteropathogens and to reduce the shedding of pathogenic bacteria such as Salmonella in pigs, calves, and chickens. Plasmid-mediated resistance to bambermycin has not been described. Likewise, cross-resistance among bacteria between bambermycin and penicillin, tetracycline, streptomycin, erythromycin, or oleandromycin has not been observed. This brief review summarizes the antimicrobial properties of bambermycin, in particular, its potentially favorable role in decreasing antimicrobial resistance.200616698216
175260.8165Genetic Characterization of a Linezolid- and Penicillin-Resistant Enterococcus hirae Isolate Co-Harboring poxtA and pbp5fm. Linezolid and penicillin are critical for treating multidrug resistant (MDR) Gram-positive infections, but the emergence of resistance to both seriously threatens public health. Here, we first report the cocarrying poxtA (oxazolidinone resistance) and pbp5fm (β-lactam resistance) genes by the plasmid in a strain of Enterococcus hirae HDC14-2 derived from porcine. The isolate also exhibits MDR phenotypes to phenicols, oxazolidinones, tetracyclines, β-lactams, aminoglycosides, macrolides, and lincosamides. Whole-genome sequencing (WGS) revealed these resistance genes, along with tet(L), tet(M), catA, erm(B), aac(6)-aph(2"), aadE, spw, lsa(E), lnu(B), sat4, and aphA3, were clustered in a novel MDR region flanked by IS1216 elements on plasmid pHDC14-2.133K. This IS1216-bounded MDR region formed translocatable units (TUs), including an IS1216-poxtA TU that was also identified on a secondary plasmid, pHDC14-2.27K. Functional assays demonstrated the excisability and mobility of these TUs, indicating its potential ability integration into other plasmids or chromosomes. Critically, electrotransformation confirmed the transfer of pHDC14-2.27K (poxtA-carrying) to Enterococcus faecalis JH2-2, with retained TU activity and minimal fitness cost. This study provides the evidence of colocalized poxtA and pbp5fm on plasmids in enterococci, highlighting their role in disseminating pan-resistance among bacteria. Although E. hirae is not an important pathogenic bacterium to humans and animals, but its potential risk to horizontally spread of these resistance genes important in medicine still cannot be ignored.202540692874
987270.8149pCTX-M3-Structure, Function, and Evolution of a Multi-Resistance Conjugative Plasmid of a Broad Recipient Range. pCTX-M3 is the archetypic member of the IncM incompatibility group of conjugative plasmids (recently referred to as IncM2). It is responsible for the worldwide dissemination of numerous antibiotic resistance genes, including those coding for extended-spectrum β-lactamases and conferring resistance to aminoglycosides. The IncM plasmids acquired during evolution diverse mobile genetic elements found in one or two multiple resistance regions, MRR(s), grouping antibiotic resistance genes as well as mobile genetic elements or their remnants. The IncM plasmids can be found in bacteria inhabiting various environments. The information on the structure and biology of pCTX-M3 is integrated in this review. It focuses on the functional modules of pCTX-M3 responsible for its replication, stable maintenance, and conjugative transfer, indicating that the host range of the pCTX-M3 replicon is limited to representatives of the family Enterobacteriaceae (Enterobacterales ord. nov.), while the range of recipients of its conjugation system is wide, comprising Alpha-, Beta-, and Gammaproteobacteria, and also Firmicutes.202133925677
994580.8149The Ellis Island Effect: A novel mobile element in a multi-drug resistant Bacteroides fragilis clinical isolate includes a mosaic of resistance genes from Gram-positive bacteria. Objectives: Bacteroides fragilis, a Gram-negative anaerobic bacterium, is alternately a gut commensal or virulent pathogen and is an important reservoir for horizontal gene transfer (HGT) of bacterial resistance and virulence genes in the human gastrointestinal tract. We identified a unique conjugative transposon (CTn) in a multidrug resistant clinical isolate of B. fragilis (BF-HMW615); we named this element CTnHyb because it included a hybrid mosaic of foreign elements. This study reports the characterization of CTnHyb and discusses the potential impact on horizontal spread of resistance genes. Results: CTnHyb contains several efflux pump genes and several genes that confer or may confer antibiotic resistance to tetracycline, kanamycin, metronidazole and spectinomycin (truncated gene). CTnHyb also contains a mosaic of mobile elements from Gram-positive organisms. CTnHyb is easily transferred from BF-HMW615 (the original isolate) to BF638R (lab strain) and integrated into the BF638R chromosome. The "foreign" (from Gram-positive bacteria) nucleotide sequences within CTnHyb were > 99% preserved indicating that the gene acquisition from the Gram-positive bacteria was very recent. Conclusion: CTnHyb is a novel CTn residing in a multidrug resistant strain of B. fragilis. The global nature and wide phylogenetic reach of HGT means that any gene in any bacterium can potentially be mobilized. Understanding the mechanisms that drive the formation and transfer of these elements and, potentially, ways to limit the transfer are necessary to prevent a devastating spread of resistance elements.201425165618
994890.8148Oxazolidinones: mechanisms of resistance and mobile genetic elements involved. The oxazolidinones (linezolid and tedizolid) are last-resort antimicrobial agents used for the treatment of severe infections in humans caused by MDR Gram-positive bacteria. They bind to the peptidyl transferase centre of the bacterial ribosome inhibiting protein synthesis. Even if the majority of Gram-positive bacteria remain susceptible to oxazolidinones, resistant isolates have been reported worldwide. Apart from mutations, affecting mostly the 23S rDNA genes and selected ribosomal proteins, acquisition of resistance genes (cfr and cfr-like, optrA and poxtA), often associated with mobile genetic elements [such as non-conjugative and conjugative plasmids, transposons, integrative and conjugative elements (ICEs), prophages and translocatable units], plays a critical role in oxazolidinone resistance. In this review, we briefly summarize the current knowledge on oxazolidinone resistance mechanisms and provide an overview on the diversity of the mobile genetic elements carrying oxazolidinone resistance genes in Gram-positive and Gram-negative bacteria.202235989417
5454100.8148Identification of an Enterococcus faecium strain isolated from raw bovine milk co-harbouring the oxazolidinone resistance genes optrA and poxtA in China. Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.202438718528
9947110.8147A novel integrative conjugative element mediates transfer of multi-drug resistance between Streptococcus suis strains of different serotypes. Streptococcus suis represents a key antibiotic resistance gene reservoir and an important pathogen for humans and animals. Resistance can be spread through horizontal gene transfer of chromosome-borne mobile genetic elements; however, the exact mechanism by which this occurs remains poorly understood. In the present study, we identified and characterized a novel 82-kb integrative conjugative element (ICE) named ICESsuCZ130302 from the virulent S. suis strain CZ130302. It carries genes that provide resistance to multiple antibiotics, such as tetracycline, doxycycline, erythromycin, lincomycin, neomycin, and kanamycin. It also contains a nisin biosynthesis gene cluster, a toxin-antitoxin system, a type IV secretion system, and an integrase and excisase system. The mobile element can be excised from the chromosome, circulized, and transferred via conjugation from serotype Chz strain CZ130302 to serotype 2 strain P1/7, where it confers resistance to the aforementioned antimicrobial agents. The full length ICE, where multiple antimicrobial resistance genes accumulated, was further identified to be naturally transferred between different serotypes strains of S. suis. This finding illustrates how such elements represent a potential means by which antimicrobial resistance is introduced to a wide range of bacteria of veterinary and medical significance.201930642585
9951120.8146Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Conjugative transposons are highly ubiquitous elements found throughout the bacterial world. Members of the Tn916-Tn1545 family carry the widely disseminated tetracycline-resistance determinant Tet M, as well as additional resistance genes. They have been found naturally in, or been introduced into, over 50 different species and 24 genera of bacteria. Recent investigations have led to insights into the molecular basis of movement of these interesting mobile elements.19957648031
5237130.8146Phenotypic and genomic analysis of Enterococcus avium MC09 pathogenicity isolated from Scylla spp. (mud crab) in a Thai market. Enterococcus avium is a Gram-positive pathogenic bacterium classified under the Enterococcaceae family. E. avium has been isolated from diverse environmental sources, raising concerns about its potential role in the spread of antibiotic resistance. E. avium MC09, isolated from a mud crab in a Thai market, was analyzed for its antibiotic resistance and pathogenic potential in this study. The isolation of E. avium from mud crab is significant as it highlights the potential role of seafood as a reservoir for antibiotic-resistant bacteria, which may pose risks to public health throughout the food chain. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method revealed that E. avium MC09 is resistant to clindamycin, erythromycin, streptomycin, and tetracycline, and exhibits alpha hemolysis on blood agar, indicating its potential virulence. Genomic DNA was extracted and sequenced using the Oxford Nanopore Technologies (ONT) platform, revealing the presence of resistance genes for macrolides (ermB) and tetracyclines (tetL and tetM). Furthermore, several virulence-associated genes were detected, such as srtC, ecbA, efaA, dltA, cpsA/uppS, cpsB/cdsA, cylR2, icps4I, cpsY, epsE, vctC, mgtB, ndk, lisR, and lgt suggesting a pathogenic potential. Additionally, the study identified several insertion sequences (ISs), including (IS1216, IS1216E, IS1216V, IS6770, ISEfa7, ISEfa8, and ISS1W which are commonly found in pathogenic Enterococcus strains. The presence of these IS elements further emphasizes the strain's potential for virulence and genetic adaptability. This study provides comprehensive insights into both the phenotypic and genotypic characteristics of E. avium MC09, highlighting its antimicrobial resistance and pathogenic mechanisms, and underlines the importance of monitoring antibiotic resistance in seafood-associated bacteria.202540015576
9843140.8146Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Conjugative transposons are integrated DNA elements that excise themselves to form a covalently closed circular intermediate. This circular intermediate can either reintegrate in the same cell (intracellular transposition) or transfer by conjugation to a recipient and integrate into the recipient's genome (intercellular transposition). Conjugative transposons were first found in gram-positive cocci but are now known to be present in a variety of gram-positive and gram-negative bacteria also. Conjugative transposons have a surprisingly broad host range, and they probably contribute as much as plasmids to the spread of antibiotic resistance genes in some genera of disease-causing bacteria. Resistance genes need not be carried on the conjugative transposon to be transferred. Many conjugative transposons can mobilize coresident plasmids, and the Bacteroides conjugative transposons can even excise and mobilize unlinked integrated elements. The Bacteroides conjugative transposons are also unusual in that their transfer activities are regulated by tetracycline via a complex regulatory network.19958531886
9950150.8145Mobile Oxazolidinone Resistance Genes in Gram-Positive and Gram-Negative Bacteria. Seven mobile oxazolidinone resistance genes, including cfr, cfr(B), cfr(C), cfr(D), cfr(E), optrA, and poxtA, have been identified to date. The cfr genes code for 23S rRNA methylases, which confer a multiresistance phenotype that includes resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A compounds. The optrA and poxtA genes code for ABC-F proteins that protect the bacterial ribosomes from the inhibitory effects of oxazolidinones. The optrA gene confers resistance to oxazolidinones and phenicols, while the poxtA gene confers elevated MICs or resistance to oxazolidinones, phenicols, and tetracycline. These oxazolidinone resistance genes are most frequently found on plasmids, but they are also located on transposons, integrative and conjugative elements (ICEs), genomic islands, and prophages. In these mobile genetic elements (MGEs), insertion sequences (IS) most often flanked the cfr, optrA, and poxtA genes and were able to generate translocatable units (TUs) that comprise the oxazolidinone resistance genes and occasionally also other genes. MGEs and TUs play an important role in the dissemination of oxazolidinone resistance genes across strain, species, and genus boundaries. Most frequently, these MGEs also harbor genes that mediate resistance not only to antimicrobial agents of other classes, but also to metals and biocides. Direct selection pressure by the use of antimicrobial agents to which the oxazolidinone resistance genes confer resistance, but also indirect selection pressure by the use of antimicrobial agents, metals, or biocides (the respective resistance genes against which are colocated on cfr-, optrA-, or poxtA-carrying MGEs) may play a role in the coselection and persistence of oxazolidinone resistance genes.202134076490
2997160.8145Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain.202033584554
3009170.8144Identification of a novel conjugative plasmid carrying the multiresistance gene cfr in Proteus vulgaris isolated from swine origin in China. The multiresistance gene cfr has a broad host range encompassing both Gram-positive and Gram-negative bacteria, and can be located on the chromosomes or on plasmids. In this study, a novel conjugative plasmid carrying cfr, designated as pPvSC3, was characterized in a Proteus vulgaris strain isolated from swine in China. Plasmid pPvSC3 is 284,528 bp in size and harbors 10 other antimicrobial resistance genes, making it a novel plasmid that differs from all known plasmids due to its unique backbone and repA gene. BLAST analysis of the plasmid sequence shows no significant homology to any known plasmid backbone, but shows high level homology to Providencia rettgeri strain CCBH11880 Contig_9, a strain isolated from surgical wound in Brazil, 2014. There are two resistance-determining regions in pPvSC3, a cfr-containing region and a multidrug-resistant (MDR) region. The cfr-containing region is flanked by IS26, which could be looped out via IS26-mediated recombination. The MDR region harbors 10 antimicrobial resistance genes carried by various DNA segments that originated from various sources. Plasmid pPvSC3 could be successfully transferred to Escherichia coli by conjugation. In summary, we have characterized a novel conjugative plasmid pPvSC3 carrying the multiresistance gene cfr and 10 other antimicrobial resistance genes, and consider that this novel type of plasmid deserves attention.201931499097
3180.8141Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.201525646457
9253190.8140Horizontally transferred genetic elements and their role in pathogenesis of bacterial disease. This article reviews the roles that laterally transferred genes (LTG) play in the virulence of bacterial pathogens. The features of LTG that allow them to be recognized in bacterial genomes are described, and the mechanisms by which LTG are transferred between and within bacteria are reviewed. Genes on plasmids, integrative and conjugative elements, prophages, and pathogenicity islands are highlighted. Virulence genes that are frequently laterally transferred include genes for bacterial adherence to host cells, type 3 secretion systems, toxins, iron acquisition, and antimicrobial resistance. The specific roles of LTG in pathogenesis are illustrated by specific reference to Escherichia coli, Salmonella, pyogenic streptococci, and Clostridium perfringens.201424318976