BEETLE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
700.9284An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity.201930770836
60510.9281Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370
50220.9272A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands.201222740651
23830.9266Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. The harlequin ladybird beetle Harmonia axyridis has emerged as a model species in invasion biology because of its strong resistance against pathogens and remarkable capacity to outcompete native ladybirds. The invasive success of the species may reflect its well-adapted immune system, a hypothesis we tested by analysing the transcriptome and characterizing the immune gene repertoire of untreated beetles and those challenged with bacteria and fungi. We found that most H. axyridis immunity-related genes were similar in diversity to their counterparts in the reference beetle Tribolium castaneum, but there was an unprecedented expansion among genes encoding antimicrobial peptides and proteins (AMPs). We identified more than 50 putative AMPs belonging to seven different gene families, and many of the corresponding genes were shown by quantitative real-time RT-PCR to be induced in the immune-stimulated beetles. AMPs with the highest induction ratio in the challenged beetles were shown to demonstrate broad and potent activity against Gram-negative bacteria and entomopathogenic fungi. The invasive success of H. axyridis can therefore be attributed at least in part to the greater efficiency of its immune system, particularly the expansion of AMP gene families and their induction in response to pathogens.201323173204
4940.9264Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes.201627289079
4650.9262The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants.201829603592
9960.9259Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants.201323430045
5570.9249Effector-triggered and pathogen-associated molecular pattern-triggered immunity differentially contribute to basal resistance to Pseudomonas syringae. Pathogens induce pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants. PAMPs are microbial molecules recognized by host plants as nonself signals, whereas pathogen effectors are evolved to aid in parasitism but are sometimes recognized by specific intracellular resistance proteins. In the absence of detectable ETI determining classical incompatible interactions, basal resistance exists during compatible and nonhost interactions. What triggers the basal resistance has remained elusive. Here, we provide evidence that ETI contributes to basal resistance during both compatible and nonhost Arabidopsis-Pseudomonas syringae interactions. Mutations in RAR1 and NDR1, two genes required for ETI, compromise basal resistance in both compatible and nonhost interactions. Complete nonhost resistance to P. syringae pv. tabaci required a functional type III secretion system. PTI appears to play a greater role in nonhost resistance than basal resistance during compatible interactions, because abrogation of PTI compromises basal resistance during nonhost but not compatible interactions. Strikingly, simultaneous abrogation of ETI and flagellin-induced PTI rendered plants completely susceptible to the nonadapted bacterium P. syringae pv. tabaci, indicating that ETI and PTI act synergistically during nonhost resistance. Thus, both nonhost resistance and basal resistance to virulent bacteria can be unified under PTI and ETI.201020521956
5880.9244A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility (S) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas-caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri (Xcc) causing canker in citrus and Xanthomonas campestris pv. vesicatoria (Xcv) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5(V 39E), CsTFIIAγ(V 39E), pepper CaTFIIAγ(V 39E), and tomato SlTFIIAγ(V 39E) also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ(V 39E)-type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.201729163628
813990.9244TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting.201323707478
70100.9239A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.201627472897
56110.9237Protein phosphatase AP2C1 negatively regulates basal resistance and defense responses to Pseudomonas syringae. Mitogen-activated protein kinases (MAPKs) mediate plant immune responses to pathogenic bacteria. However, less is known about the cell autonomous negative regulatory mechanism controlling basal plant immunity. We report the biological role of Arabidopsis thaliana MAPK phosphatase AP2C1 as a negative regulator of plant basal resistance and defense responses to Pseudomonas syringae. AP2C2, a closely related MAPK phosphatase, also negatively controls plant resistance. Loss of AP2C1 leads to enhanced pathogen-induced MAPK activities, increased callose deposition in response to pathogen-associated molecular patterns or to P. syringae pv. tomato (Pto) DC3000, and enhanced resistance to bacterial infection with Pto. We also reveal the impact of AP2C1 on the global transcriptional reprogramming of transcription factors during Pto infection. Importantly, ap2c1 plants show salicylic acid-independent transcriptional reprogramming of several defense genes and enhanced ethylene production in response to Pto. This study pinpoints the specificity of MAPK regulation by the different MAPK phosphatases AP2C1 and MKP1, which control the same MAPK substrates, nevertheless leading to different downstream events. We suggest that precise and specific control of defined MAPKs by MAPK phosphatases during plant challenge with pathogenic bacteria can strongly influence plant resistance.201728062592
69120.9236Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Plant pathogenic bacteria of the genus Xanthomonas possess transcription activator-like effectors (TALEs) that activate transcription of disease susceptibility genes in the host, inducing a state of disease. Here we report that some isolates of the rice pathogen Xanthomonas oryzae use truncated versions of TALEs (which we term interfering TALEs, or iTALEs) to overcome disease resistance. In comparison with typical TALEs, iTALEs lack a transcription activation domain but retain nuclear localization motifs and are expressed from genes that were previously considered pseudogenes. We show that the rice gene Xa1, encoding a nucleotide-binding leucine-rich repeat protein, confers resistance against X. oryzae isolates by recognizing multiple TALEs. However, the iTALEs present in many isolates interfere with the otherwise broad-spectrum resistance conferred by Xa1. Our findings illustrate how bacterial effectors that trigger disease resistance in the host can evolve to interfere with the resistance process and, thus, promote disease.201627811915
8138130.9235Xanthomonas and the TAL Effectors: Nature's Molecular Biologist. Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants.201626443209
198140.9231The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD. Our data show that loss of dFADD function renders flies highly susceptible to Gram-negative infections without affecting resistance to Gram-positive bacteria. By genetic analysis we show that dFADD acts downstream of IMD in the pathway that controls inducibility of the antibacterial peptide genes.200212433364
606150.9230Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.202133923690
67160.9227R gene expression induced by a type-III effector triggers disease resistance in rice. Disease resistance (R) genes in plants encode products that specifically recognise incompatible pathogens and trigger a cascade of events leading to disease resistance in the host plant. R-gene specificity is dictated by both host R genes and cognate avirulence (avr) genes in pathogens. However, the basis of gene-for-gene specificity is not well understood. Here, we report the cloning of the R gene Xa27 from rice and the cognate avr gene avrXa27 from Xanthomonas oryzae pv. oryzae. Resistant and susceptible alleles of Xa27 encode identical proteins. However, expression of only the resistant allele occurs when a rice plant is challenged by bacteria harbouring avrXa27, whose product is a nuclear localized type-III effector. Induction of Xa27 occurs only in the immediate vicinity of infected tissue, whereas ectopic expression of Xa27 resulted in resistance to otherwise compatible strains of the pathogen. Thus Xa27 specificity towards incompatible pathogens involves the differential expression of the R gene in the presence of the AvrXa27 effector.200515973413
68170.9226Designer TALEs enable discovery of cell death-inducer genes. Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.202438723194
72180.9224R gene-controlled host specificity in the legume-rhizobia symbiosis. Leguminous plants can enter into root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. An intriguing but still poorly understood property of the symbiosis is its host specificity, which is controlled at multiple levels involving both rhizobial and host genes. It is widely believed that the host specificity is determined by specific recognition of bacterially derived Nod factors by the cognate host receptor(s). Here we describe the positional cloning of two soybean genes Rj2 and Rfg1 that restrict nodulation with specific strains of Bradyrhizobium japonicum and Sinorhizobium fredii, respectively. We show that Rj2 and Rfg1 are allelic genes encoding a member of the Toll-interleukin receptor/nucleotide-binding site/leucine-rich repeat (TIR-NBS-LRR) class of plant resistance (R) proteins. The involvement of host R genes in the control of genotype-specific infection and nodulation reveals a common recognition mechanism underlying symbiotic and pathogenic host-bacteria interactions and suggests the existence of their cognate avirulence genes derived from rhizobia. This study suggests that establishment of a root nodule symbiosis requires the evasion of plant immune responses triggered by rhizobial effectors.201020937853
8257190.9222RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this and other economically important pests, more efficient methods for production and delivery of dsRNA need to be developed. Extensive research to determine off-target and non-target effects, environmental fate and potential for resistance development is also essential.201426705514