# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6005 | 0 | 0.8996 | Antimicrobial activity of Pediococcus pentosaceus strains against diarrheal pathogens isolated from pigs and effect on paracellular permeability of HT-29 cells. This study aimed to investigate lactic acid bacteria with antimicrobial activities against infectious diarrheal pathogens in pigs and their genetic characteristics. Acid-resistant lactic acid bacteria were examined for bile resistance, pancreatic enzyme resistance, gelatinase and urease activities, and antibiotic resistance. Subsequently, selected isolates were examined for antimicrobial activities against Campylobacter coli, Clostridium perfringens, Escherichia coli, and Salmonella Typhimurium, and their effects on paracellular permeability and the expression of tight junction protein-encoding genes in HT-29 cells were assessed. Whole genome sequencing was performed to identify the genes related to safety and antibacterial activity. Of the 51 isolates examined, 12 were resistant to bile and pancreatin and did not produce gelatinase and urease. Of these 12, isolates 19, 20, 30, 36, and 67 showed tetracycline resistance and isolates 15, 19, and 38W showed antimicrobial activity against infectious diarrheal bacteria. Treatment with isolate 38W significantly reduced the paracellular permeability induced by E. coli in HT-29 cells and alleviated the expression of tight junction protein-encoding genes (claudin-1, occludin, and ZO-1) induced by E. coli inoculation. Isolates 15, 19, and 38W were named as Pediococcus pentosaceus SMFM2016-NK1, SMFM2016-YK1, and SMFM2016-WK1, respectively. Bacteriocin-related genes were YheH, ytrF, BceA, BceB, and MccF in SMFM2016-NK1; YheH, ytrF, BceA, BceB, entK, lcnA, MccF, and skgD in SMFM2016-YK1; and YheH, ytrF, BceA, BceB, and MccF in SMFM2016-WK1. SMFM2016-YK1 harbored the tetM gene. These results indicate that P. pentosaceus SMFM2016-WK1 might control diarrheal pathogens isolated from pigs. However, a further study is necessary because the results were obtained only from in vitro experiment. | 2025 | 40873998 |
| 1299 | 1 | 0.8979 | Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health. | 2021 | 34129676 |
| 8475 | 2 | 0.8973 | Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence. | 2022 | 35722285 |
| 1253 | 3 | 0.8970 | Phenotypic and Genotypic Assessment of Antibiotic Resistance and Genotyping of vacA, cagA, iceA, oipA, cagE, and babA2 Alleles of Helicobacter pylori Bacteria Isolated from Raw Meat. BACKGROUND: Foodstuffs with animal origins, particularly meat, are likely reservoirs of Helicobacter pylori. PURPOSE: An existing survey was accompanied to assess phenotypic and genotypic profiles of antibiotic resistance and genotyping of vacA, cagA, cagE, iceA, oipA, and babA2 alleles amongst the H. pylori bacteria recovered from raw meat. METHODS: Six-hundred raw meat samples were collected and cultured. H. pylori isolates were tested using disk diffusion and PCR identification of antibiotic resistance genes and genotyping. RESULTS: Fifty-two out of 600 (8.66%) raw meat samples were contaminated with H. pylori. Raw ovine meat (13.07%) had the uppermost contamination. H. pylori bacteria displayed the uppermost incidence of resistance toward tetracycline (82.69%), erythromycin (80.76%), trimethoprim (65.38%), levofloxacin (63.46%), and amoxicillin (63.46%). All H. pylori bacteria had at least resistance toward one antibiotic, even though incidence of resistance toward more than eight antibiotics was 28.84%. Total distribution of rdxA, pbp1A, gyrA, and cla antibiotic resistance genes were 59.61%, 51.92%, 69.23%, and 65.38%, respectively. VacA s1a (84.61%), s2 (76.92%), m1a (50%), m2 (39.13%), iceA1 (38.46%), and cagA (55.76%) were the most generally perceived alleles. S1am1a (63.46%), s2m1a (53.84%), s1am2 (51.92%), and s2m2 (42.30%) were the most generally perceived genotyping patterns. Frequency of cagA-, oipA-, and babA2- genotypes were 44.23%, 73.07%, and 80.76%, respectively. A total of 196 combined genotyping patterns were also perceived. CONCLUSION: The role of raw meat, particularly ovine meat, in transmission of virulent and resistant H. pylori bacteria was determined. VacA and cagA genotypes had the higher incidence. CagE-, babA2-, and oipA- H. pylori bacteria had the higher distribution. Supplementary surveys are compulsory to originate momentous relations between distribution of genotypes, antibiotic resistance, and antibiotic resistance genes. | 2020 | 32099418 |
| 8791 | 4 | 0.8966 | Synergistic biocontrol of Bacillus subtilis and Pseudomonas fluorescens against early blight disease in tomato. Early blight of tomato caused by Alternaria solani results in significant crop losses. In this study, Bacillus subtilis J3 and Pseudomonas fluorescens J8 were co-cultured as a synthetic microbial community (BCA) for synergistic biocontrol of A. solani, and the inhibition mechanism was investigated. BCA presented an inhibition ration against A. solani at 94.91%, which lowered the disease incidence by 38.26-42.87%; reduced peroxidase, catalase, superoxide dismutase activity of tomatoes by 73.11-90.22%; and promoted the biomass by 66.91-489.21%. With BCA protection, the relative expression of tomato resistance genes (including gPAL2, SWRKY, PR-10, and CHI) in roots and leaves was 12.83-90.70% lower than without protection. BCA also significantly altered the rhizosphere and phyllosphere microbial community. The abundance of potentially beneficial bacteria, including Bacillus, Pseudomonas, Arthrobacter, Lysobacter, and Rhizobium, elevated by 6.58-192.77%. They were negatively correlated with resistance gene expression, indicating their vital involvement in disease control. These results provided essential information on the synergistic biocontrol mechanism of bacteria against pathogens, which could contribute to developing novel biocontrol strategies. KEY POINTS: • Bacillus and Pseudomonas present a synergistic biocontrol effect against A. solani. • Biocontrol prevents pathogen damage and improves tomato growth and systemic resistance. • Beneficial bacteria thrive in the rhizosphere is the key to microbial regulation. | 2023 | 37540249 |
| 1223 | 5 | 0.8965 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 1254 | 6 | 0.8964 | Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed. | 2020 | 31692060 |
| 1342 | 7 | 0.8959 | Prevalence, Toxin Genes, and Antibiotic Resistance Profiles of Bacillus cereus Isolates from Spices in Antalya and Isparta Provinces in Türkiye. Bacillus cereus is a pathogenic bacterium commonly found in nature and can produce toxins that cause food poisoning. This study aimed to detect the prevalence of B. cereus group bacteria in 50 unpackaged and 20 packaged spice samples frequently used as flavoring in Turkish cuisine, as well as investigate the presence of toxin genes and antibiotic resistance in the isolates. A total of 48 B. cereus group bacteria were isolated from 27 of 70 (38.57%) spice samples. The prevalence of B. cereus group bacteria in packaged (25%, 5/20) and unpackaged (44%, 22/50) spice samples did not differ significantly (P ˃ 0.05). All B. cereus group isolates were identified as B. cereus sensu stricto (B. cereus) using molecular methods. The hemolytic activity tests revealed that the most strains (44/48, 91.67%) are β-hemolytic. The distributions of toxin genes in isolates were investigated by PCR. It was determined that all isolates were identified to have 2-8 toxin genes, except B. cereus SBC3. The three most common toxin genes were found to be nheA (47/48, 97.92%), nheB (46/48, 95.83%), and entFM (46/48, 95.83%). All B. cereus isolates were susceptible to linezolid and vancomycin, while 35.42% (17/48) showed resistance to erythromycin. Multi-drug resistance (MDR) was detected in 8.3% (4/48) of B. cereus isolates, while 33.33% of the isolates showed multiple antibiotic resistance (MAR) index values higher than 0.2. The findings indicate that B. cereus may pose a health risk in packaged and unpackaged spices if present in high quantities. Therefore, the presence of B. cereus strains in both packaged and unpackaged spices should be monitored regarding consumer health and product safety. | 2023 | 38031610 |
| 3546 | 8 | 0.8943 | Mitigation of tetracycline resistance genes in silage through targeted lactic acid bacteria inoculation. The dissemination of antibiotic resistance genes (ARGs) in silage ecosystems poses a critical challenge to ecological stability and public health security. This investigation focuses on tetracycline resistance genes (TRGs), the most prevalent subtype of ARGs in silage, employing a targeted selection strategy for lactic acid bacteria (LAB) inoculants. From 226 isolated LAB strains, four candidates (LP1-3: Lactiplantibacillus plantarum; LC1: Lacticaseibacillus paracasei) demonstrating superior growth kinetics (OD(600) > 1.6 within 24 h) and rapid acidification capacity (pH < 3.9 within 24 h) were selected. Strains LP3 and LC1 exhibited minimal intrinsic TRGs content. These four strains reduced (p < 0.001) pH, ammonia-N concentration, and coliform bacterial counts of stylo silage. Metagenomic analysis revealed that strains LP1-3 promoted Lactiplantibacillus dominance (0.709-0.975 vs. 0.379-0.509 in the control), while LC1 enhanced Lacticaseibacillus abundance (0.449-0.612 vs. 0.002-0.013 in the control). Ensiling process downregulated 367 and upregulated 227 ARGs. Inoculation with the four LAB strains further enhanced the suppression of ARGs. Among the top 30 TRGs, 22 were reduced by strains LP1-3 and 20 by LC1. Quantitative PCR results showed that strains LP1-3 decreased (p < 0.05) the contents of tetA and tetG during 30 days fermentation. Among the TRGs increased, tetA(60), tetB(58), tet(T) were positively correlated with Lactiplantibacillus spp., tetA(58), tetB(60), tetA(46), tetB(46), tet(43) were significantly correlated with Lacticaseibacillus spp. (R > 0.4, p < 0.001). In conclusion, the fermentation process induced substantial ARGs profile modifications, LAB-mediated microbiome engineering enables TRGs suppression, providing a scientific foundation for precision silage management strategies targeting antimicrobial resistance mitigation. | 2025 | 41038354 |
| 5387 | 9 | 0.8942 | Assessment of antibiotic susceptibility within lactic acid bacteria strains isolated from wine. Susceptibility to 12 antibiotics was tested in 75 unrelated lactic acid bacteria strains of wine origin of the following species: 38 Lactobacillus plantarum, 3 Lactobacillus hilgardii, 2 Lactobacillus paracasei, 1 Lactobacillus sp, 21 Oenococcus oeni, 4 Pediococcus pentosaceus, 2 Pediococcus parvulus, 1 Pediococcus acidilactici, and 3 Leuconostoc mesenteroides. The Minimal Inhibitory Concentrations of the different antibiotics that inhibited 50% of the strains of the Lactobacillus, Leuconostoc and Pediococcus genera were, respectively, the following ones: penicillin (2, < or =0.5, and < or =0.5 microg/ml), erythromycin (< or =0.5 microg/ml), chloramphenicol (4 microg/ml), ciprofloxacin (64, 8, and 128 microg/ml), vancomycin (> or =128 microg/ml), tetracycline (8, 2, and 8 microg/ml), streptomycin (256, 32, and 512 microg/ml), gentamicin (64, 4, and 128 microg/ml), kanamycin (256, 64, and 512 microg/ml), sulfamethoxazole (> or =1024 microg/ml), and trimethoprim (16 microg/ml). All 21 O. oeni showed susceptibility to erythromycin, tetracycline, rifampicin and chloramphenicol, and exhibited resistance to aminoglycosides, vancomycin, sulfamethoxazole and trimethoprim, that could represent intrinsic resistance. Differences were observed among the O. oeni strains with respect to penicillin or ciprofloxacin susceptibility. Antibiotic resistance genes were studied by PCR and sequencing, and the following genes were detected: erm(B) (one P. acidilactici), tet(M) (one L. plantarum), tet(L) (one P. parvulus), aac(6')-aph(2") (four L. plantarum, one P. parvulus, one P. pentosaceus and two O. oeni), ant(6) (one L. plantarum, and two P. parvulus), and aph(3')-IIIa (one L. plantarum and one O. oeni). This is the first time, to our knowledge, that ant(6), aph(3')-IIIa and tet(L) genes are found in Lactobacillus and Pediococcus strains and antimicrobial resistance genes are reported in O. oeni strains. | 2006 | 16876896 |
| 1339 | 10 | 0.8942 | Helicobacter pylori in a poultry slaughterhouse: Prevalence, genotyping and antibiotic resistance pattern. Although Helicobacter pylori (H. pylori) is a highly significant pathogen, its source remains unclear. Many people consume chicken daily as a source of animal protein worldwide; thus, hygienic methods of supplying chickens for consumption are critical for public health. Therefore, our study examined the distribution of the glmM (ureC), babA2, vacA and cagA virulence genes in H. pylori strains in chicken meat and giblets (gizzards and livers) and the resistance of the strains to various antibiotics. Ninety chicken meat, gizzard and liver samples were obtained from a semi-automatic abattoir in Sadat City, Egypt, and were cultured and preliminarily analyzed using biochemical tests. The presence of the ureC, babA2, vacA and cagA genotypes was tested for in samples positive for H. pylori by multiplex polymerase chain reaction (Multiplex-PCR). The resistance of H. pylori to various antimicrobial drugs was tested using the disc diffusion method. In total, 7 of the 90 chicken samples were positive for H. pylori (7.78%); in 3/7 (42.85%) samples, the bacteria were found in the chicken liver, while the bacteria were found in the meat in 2/7 (28.57%) and in the gizzard in 2/7 (28.57%) samples. The total prevalence of both the ureC and babA2 genes in the isolated H. pylori strains was 100%, while the prevalence of the vacA and cagA genes was 57.1% and 42.9%, respectively. The resistance of H. pylori to the antibiotics utilized in our study was 100% for streptomycin; 85.7% for amoxicillin and penicillin; 71.4% for oxytetracycline, nalidixic acid and ampicillin; 57.1% for sulfamethoxazole and erythromycin; and 42.9% for neomycin, chloramphenicol and norfloxacin. In conclusion, the chicken meat and giblets were tainted by H. pylori, with a higher occurrence of the ureC, babA2, vacA and cagA genotypes. Future investigations should investigate the resistance of H. pylori to various antimicrobial agents in Egypt. | 2018 | 30174504 |
| 1319 | 11 | 0.8939 | Isolation and Identification of Aerobic Bacteria Carrying Tetracycline and Sulfonamide Resistance Genes Obtained from a Meat Processing Plant. Microbial contamination in food-processing plants can play a fundamental role in food quality and safety. The purpose of this study was to investigate aerobic bacteria carrying tetracycline and sulfonamide resistance genes from a meat processing plant as possible sources of meat contamination. One hundred swab samples from surfaces of conveyor belts, meat slicers, meat knives, benches, plastic trays, gloves, and aprons were analyzed. A total of 168 isolates belonging to 10 genera were obtained, including Pseudomonas sp. (n = 35), Acinetobacter sp. (n = 30), Aeromonas sp. (n = 20), Myroides sp. (n = 15), Serratia sp. (n = 15), Staphylococcus sp. (n = 14), Enterobacter sp. (n = 11), Escherichia coli (n = 10), Lactococcus sp. (n = 10), and Klebsiella sp. (n = 8). Of the 168 isolates investigated, 60.7% showed resistance to tetracycline and 57.7% to trimethoprim/sulfamethoxazole. The tetracycline resistance genes tetL, tetA, tetB, tetC, tetE, tetM, tetS, tetK, and tetX were found in the frequency of 7.7%, 6.0%, 4.8%, 4.8%, 3.6%, 3.6%, 3.6%, 1.2%, and 0.6%, respectively. Sulfonamide resistance genes sul1 and sul2 were observed in the frequency of 17.9% and 38.1%, respectively. The tetracycline resistance genes tetX was first found in Myroides sp. This investigation demonstrated that food contact surfaces in a meat processing plant may be sources of contamination of aerobic bacteria carrying tetracycline and sulfonamide antibiotic resistance genes. | 2016 | 27100915 |
| 1352 | 12 | 0.8937 | Bacterial Diversity and Antimicrobial Resistance of Microorganisms Isolated from Teat Cup Liners in Dairy Farms in Shandong Province, China. Global milk consumption exceeds 800 million tons a year and is still growing. Milk quality and its products are critical to human health. A teat cup makes direct contact with the cow's teats during milking and its cleanliness is very important for the quality of raw milk. In this study, the microorganism from post-milking teat cup liners were collected from six dairy farms in Shandong Province of China, the bacterial species were identified using microbial mass spectrometry, the minimum inhibitory concentrations of the isolated strains against ten antimicrobial agents were determined using the broth microdilution method, and the antimicrobial resistance genes were detected by PCR. The results indicated that the most frequently isolated bacteria in this study were Bacillus licheniformis (39/276, 14.13%), followed by Bacillus pumilus (20/276, 7.25%), Bacillus cereus (17/276, 6.16%), and Bacillus subtili (16/276, 5.80%). The isolates exhibited the highest average resistance to lincomycin (87.37%), followed by sulfadiazine (61.05%) and streptomycin (42.63%); the highest detection rate of resistance genes was Sul1 (55.43%), followed by ant(4') (51.09%), tet(M) (25.36%), bla(KPC) (3.62%) and qnrS (3.62%). These findings imply the necessity for enhanced measures in disinfecting cow udders and milking equipment, highlighting the persistently challenging issue of antimicrobial resistance in Shandong Province. | 2024 | 39123692 |
| 1259 | 13 | 0.8931 | Tetracycline resistance potential of heterotrophic bacteria isolated from freshwater fin-fish aquaculture system. AIMS: This study investigated the tetracycline resistance potential of heterotrophic bacteria isolated from twenty-four freshwater fin-fish culture ponds in Andhra Pradesh, India. METHODS AND RESULTS: A total of 261 tetracycline resistant bacteria (tetR) were recovered from pond water, pond sediment, fish gills, fish intestine, and fish feed. Bacteria with high tetracycline resistance (tetHR) (n = 30) that were resistant to tetracycline concentrations above 128 μg mL-1 were predominantly Lactococcus garvieae followed by Enterobacter spp., Lactococcus lactis, Enterobacter hormaechei, Staphylococcus arlettae, Streptococcus lutetiensis, Staphylococcus spp., Brevundimonas faecalis, Exiguobacterium profundum, Lysinibacillus spp., Stutzerimonas stutzeri, Enterobacter cloacae, and Lactococcus taiwanensis. Resistance to 1024 μg mL-1 of tetracycline was observed in L. garvieae, S. arlettae, Enterobacter spp., B. faecalis. Tet(A) (67%) was the predominant resistance gene in tetHR followed by tet(L), tet(S), tet(K), and tet(M). At similar concentrations of exposure, tetracycline procured at the farm level (69.5% potency) exhibited lower inhibition against tetHR bacteria compared to pure tetracycline (99% potency). The tetHR bacteria showed higher cross-resistance to furazolidone (100%) followed by co-trimoxazole (47.5%) and enrofloxacin (11%). CONCLUSIONS: The maximum threshold of tetracycline resistance at 1024 μg mL-1 was observed in S. arlettae, Enterobacter spp., B. faecalis, and L. garvieae and tet(A) was the major determinant found in this study. | 2023 | 36958862 |
| 1302 | 14 | 0.8931 | A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are considered among the major causes of foodborne diseases. This survey aims to assess genotypic and phenotypic profiles of antibiotic resistance in S. aureus bacteria isolated from ready-to-eat food samples. METHODS: According to the previously reported prevalence of S. aureus in ready-to-eat food samples, a total of 415 ready-to-eat food samples were collected from Tehran province, Iran. S. aureus bacteria were identified using culture and biochemical tests. Besides, the phenotypic antibiotic resistance profile was determined by disk diffusion. In addition, the genotypic pattern of antibiotic resistance was determined using the PCR. RESULTS: A total of 64 out of 415 (15.42%) ready-to-eat food samples were contaminated with S. aureus. Grilled mushrooms and salad olivieh harbored the highest contamination rate of (30%), while salami samples harbored the lowest contamination rate of 3.33%. In addition, S. aureus bacteria harbored the highest prevalence of resistance to penicillin (85.93%), tetracycline (85.93%), gentamicin (73.43%), erythromycin (53.12%), trimethoprim-sulfamethoxazole (51.56%), and ciprofloxacin (50%). However, all isolates were resistant to at least four antibiotic agents. Accordingly, the prevalence of tetK (70.31%), blaZ (64.06%), aacA-D (57.81%), gyrA (50%), and ermA (39.06%) was higher than that of other detected antibiotic resistance genes. Besides, AacA-D + blaZ (48.43%), tetK + blaZ (46.87%), aacA-D + tetK (39.06%), aacA-D + gyrA (20.31%), and ermA + blaZ (20.31%) were the most frequently identified combined genotypic patterns of antibiotic resistance. CONCLUSION: Ready-to-eat food samples may be sources of resistant S. aureus, which pose a hygienic threat in case of their consumption. However, further investigations are required to identify additional epidemiological features of S. aureus in ready-to-eat foods. | 2021 | 34635183 |
| 1281 | 15 | 0.8930 | Antibiotic resistance in the pathogenic foodborne bacteria isolated from raw kebab and hamburger: phenotypic and genotypic study. BACKGROUND: In recent years, interest in the consumption of ready-to-eat (RTE) food products has been increased in many countries. However, RTE products particularly those prepared by meat may be potential vehicles of antibiotic-resistance foodborne pathogens. Considering kebab and hamburger are the most popular RTE meat products in Iran, this study aimed to investigate the prevalence and antimicrobial resistance of common foodborne pathogens (Escherichia coli, Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes) in raw kebab and hamburger samples collected from fast-food centers and restaurants. Therefore, total bacterial count (TBC), as well as the prevalence rates and antibiogram patterns of foodborne pathogens in the samples were investigated. Also, the presence of antibiotic-resistance genes (bla(SHV), bla(TEM,) bla(Z), and mecA) was studied in the isolates by PCR. RESULTS: The mean value of TBC in raw kebab and hamburger samples was 6.72 ± 0.68 log CFU/g and 6.64 ± 0.66 log CFU/g, respectively. E. coli had the highest prevalence rate among the investigated pathogenic bacteria in kebab (70%) and hamburger samples (48%). Salmonella spp., L. monocytogenes, and S. aureus were also recovered from 58, 50, and 36% of kebab samples, respectively. The contamination of hamburger samples was detected to S. aureus (22%), L. monocytogenes (22%), and Salmonella spp. (10%). In the antimicrobial susceptibility tests, all isolates exhibited high rates of antibiotic resistance, particularly against amoxicillin, penicillin, and cefalexin (79.66-100%). The bla(TEM) was the most common resistant gene in the isolates of E. coli (52.54%) and Salmonella spp. (44.11%). Fourteen isolates (23.72%) of E. coli and 10 isolates (29.41%) of Salmonella spp. were positive for bla(SHV). Also, 16 isolates (55.17%) of S. aureus and 10 isolates (27.27%) of L. monocytogenes were positive for mecA gene. CONCLUSIONS: The findings of this study showed that raw kebab and hamburger are potential carriers of antibiotic-resistance pathogenic bacteria, which can be a serious threat to public health. | 2021 | 34615465 |
| 1226 | 16 | 0.8930 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1301 | 17 | 0.8930 | Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat. | 2020 | 32440171 |
| 7756 | 18 | 0.8928 | Mitigation of antibiotic resistance: the efficiency of a hybrid subsurface flow constructed wetland in the removal of resistant bacteria in wastewater. This research investigates the effectiveness of a lab-scale hybrid subsurface flow constructed wetland (HSSFCW) for removing wastewater contaminants, including antibiotic-resistant bacteria (ARB), genes (ARGs) and antibiotics. The results suggested that HSSFCW demonstrated a high removal efficiency for COD (89%) and BOD (88.9%), while lower efficiencies were observed for salts, TDS, EC, and TKN. Further, various bacteria such as Enterobacter cloacae, Serratia liquefaciens and Serratia odorifera were detected in the plant rhizosphere, while Acinetobacter baumanii and Staphylococcus spp. were identified as biofilm formers on the wetland media. The mean removal efficiency of 70.44, 65.99, 70.66 and 51.49% was observed for total heterotrophic bacteria; Cefixime (Cef)-, Ciprofloxacin (Cip)-, and Linezolid (Lzd)-resistant bacteria. Upon chlorination of effluent samples, Cef-, Cip- and Lzd-resistant bacteria were effectively inactivated at 30, 15 and 7.5 mg Cl(2) min/L, respectively. The wetland achieved a removal efficiency of 83.85% for Cip and 100% for Lzd at week 12 with p = 0.040 and p < 0.001, respectively. Further, a log reduction of 0.66 for 16S, 0.82 for blaTEM, 0.61 for blaCTX, and 0.48 for blaOXA was observed. Thus, HSSFCW was observed to be efficient in removing organic contaminants, ARBs, ARGs and antibiotics from domestic wastewater and can be upgraded under natural environments. | 2025 | 40536145 |
| 1297 | 19 | 0.8925 | Antimicrobial resistance, prevalence of resistance genes, and molecular characterization in intestinal Bacteroides fragilis group isolates. Since the level of antimicrobial resistance in Bacteroides fragilis has increased, monitoring the antimicrobial susceptibility could be necessary. The objectives of this study were to (i) investigate the prevalence of species, the occurrence of reduced antimicrobial susceptibility (E-test method), and antibiotic resistance genes in the B. fragilis group and (ii) evaluate the prevalence of enterotoxigenic B. fragilis and the distribution of bft gene subtypes in hospitalized patients. As many as 475 isolates out of 250 stool samples were detected to be B. fragilis group by using conventional biochemical tests (API-32A system) and multiplex-PCR. In addition, 48.2%, 13.9%, 76.6%, and 1.2% of B. fragilis group isolates were resistant (according to EUCAST breakpoint) to piperacillin-tazobactam, meropenem, clindamycin, and metronidazole, respectively. Six metronidazole-resistant strains were isolated; B. fragilis (n: 3), B. thetaiotaomicron, B. vulgates, and B. ovatus. The presence of the cfiA, cepA, ermF, and nim genes was observed in 3.8%, 15.9%, 34.1%, and 0.7% of the B. fragilis isolates, respectively. One hundred thirty-two B. fragilis isolates (27.8%)and 21 B fragilis isolates (15.9%) turned out to be bft gene positive by multiplex-PCR; eleven isolates (52.4%) harbored bft-1, eight isolates (38%) harbored bft-2 isotypes, and two isolates (9.5%) harbored bft-3 isotype (16.66%). These bacteria harbor antimicrobial resistance genes that could be transferred to other susceptible intestinal strains. Further investigations on lineage analysis are needed for a better understanding of these bacteria in Iran. | 2019 | 30803024 |