# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5240 | 0 | 0.9620 | Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria. | 2024 | 38332161 |
| 3621 | 1 | 0.9602 | Antimicrobial Resistance in Physiological and Potentially Pathogenic Bacteria Isolated in Southern Italian Bats. The spread of antimicrobial resistance is one of the major health emergencies of recent decades. Antimicrobial-resistant bacteria threaten not only humans but also populations of domestic and wild animals. The purpose of this study was to evaluate the distribution of antibiotic resistance (AMR) and multidrug resistance (MDR) in bacterial strains isolated from six Southern-Italian bat populations. Using the disk diffusion method, we evaluated the antimicrobial susceptibility of 413 strains of Gram-negative bacteria and 183 strains of Gram-positive bacteria isolated from rectal (R), oral (O) and conjunctival (C) swabs of 189 bats belonging to 4 insectivorous species (Myotis capaccinii, Myotis myotis, Miniopterus schreibersii and Rhinolophus hipposideros). In all bat species and locations, numerous bacterial strains showed high AMR levels for some of the molecules tested. In both Gram-negative and Gram-positive strains, the resistance patterns ranged from one to thirteen. MDR patterns varied significantly across sites, with Grotta dei Pipistrelli in Pantalica displaying the highest levels of MDR (77.2% of isolates). No significant differences were found across different bat species. Monitoring antibiotic resistance in wildlife is a useful method of evaluating the impact of anthropic pressure and environmental pollution. Our analysis reveals that anthropic contamination may have contributed to the spread of the antibiotic resistance phenomenon among the subjects we examined. | 2023 | 36978508 |
| 6798 | 2 | 0.9599 | Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks. | 2025 | 39892320 |
| 3071 | 3 | 0.9592 | Human Disturbance Increases Health Risks to Golden Snub-Nosed Monkeys and the Transfer Risk of Pathogenic Antibiotic-Resistant Bacteria from Golden Snub-Nosed Monkeys to Humans. From the perspective of interactions in the human-animal-ecosystem, the study and control of pathogenic bacteria that can cause disease in animals and humans is the core content of "One Health". In order to test the effect of human disturbance (HD) on the health risk of pathogenic antibiotic-resistant bacteria (PARBs) to wild animals and transfer risk of the PARBs from wild animals to humans, golden snub-nosed monkeys (Rhinopithecus roxellana) were used as sentinel animals. Metagenomic analysis was used to analyze the characteristics of PARBs in the gut microbiota of golden snub-nosed monkeys. Then, the total contribution of antibiotic resistance genes (ARGs) and virulence factors (VFs) of the PARBs were used to assess the health risk of PARBs to golden snub-nosed monkeys, and the antimicrobial drug resistance and bacterial infectious disease of PARBs were determined to assess the transfer risk of PARBs from golden snub-nosed monkeys to humans. There were 18 and 5 kinds of PARBs in the gut microbiota of golden snub-nosed monkeys under HD (HD group) and wild habitat environments (W group), respectively. The total health risks of PARBs to the W group and the HD group were -28.5 × 10(-3) and 125.8 × 10(-3), respectively. There were 12 and 16 kinds of KEGG pathways of human diseases in the PARBs of the W group and the HD group, respectively, and the gene numbers of KEGG pathways in the HD group were higher than those in the W group. HD increased the pathogenicity of PARBs to golden snub-nosed monkeys, and the PARBs in golden snub-nosed monkeys exhibited resistance to lincosamide, aminoglycoside, and streptogramin antibiotics. If these PARBs transfer from golden snub-nosed monkeys to humans, then humans may acquire symptoms of pathogens including Tubercle bacillus, Staphylococcus, Streptococcus, Yersinia, Pertussis, and Vibrio cholera. | 2023 | 37835689 |
| 7164 | 4 | 0.9585 | Anthropogenic pressures amplify high-risk antibiotic resistome via co-selection among biocide resistance, virulence, and antibiotic resistance genes in the Ganjiang River basin: Drivers diverge in densely versus sparsely populated reaches. As the largest river in the Poyang Lake system, the Ganjiang River faces escalating anthropogenic pressures that amplify resistance gene dissemination. This study integrated antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and virulence factor genes (VFGs) to reveal their co-selection mechanisms and divergent environmental drivers between densely (DES) and sparsely populated (SPAR) regions of the Ganjiang River basin. The microbial and viral communities and structures differed significantly between the DES and SPAR regions (PERMANOVA, p < 0.001). Midstream DES areas were hotspots for ARGs/BRGs/VFGs enrichment, with peak enrichment multiples reaching 10.2, 5.7, and 5.9-fold respectively. Procrustes analysis revealed limited dependence of ARGs transmission on mobile genetic elements (MGEs) (p > 0.05). Separately, 74 % of dominant ARGs (top 1 %) showed strong correlations with BRGs (r(2) = 0.973, p < 0.01) and VFGs (r(2) = 0.966, p < 0.01) via co-selection. Pathogenic Pseudomonas spp. carrying multidrug-resistant ARGs, BRGs, and adhesion-VFGs were identified as high-risk vectors. In SPAR areas, anthropogenic pressure directly dominated ARGs risk (RC = 54.2 %, β = 0.39, p < 0.05), with biological factors as secondary contributors (RC = 45.8 %, β = 0.33, p < 0.05). In contrast, DES regions showed anthropogenic pressure exerting broader, enduring influences across microorganisms, physicochemical parameters, and biological factors, escalating ARGs risks through diverse pathways, with BRGs/VFGs acting as direct drivers. This study proposes establishing a risk prevention system using BRGs and pathogenic microorganisms as early-warning indicators. | 2025 | 40858019 |
| 5186 | 5 | 0.9580 | Occurrence of Antimicrobial Resistance Genes in the Oral Cavity of Cats with Chronic Gingivostomatitis. Feline chronic gingivostomatitis (FCGS) is a severe immune-mediated inflammatory disease with concurrent oral dysbiosis (bacterial and fungal). Broad-spectrum antibiotics are used empirically in FCGS. Still, neither the occurrence of antimicrobial-resistant (AMR) bacteria nor potential patterns of co-occurrence between AMR genes and fungi have been documented in FCGS. This study explored the differential occurrence of AMR genes and the co-occurrence of AMR genes with oral fungal species. Briefly, 14 clinically healthy (CH) cats and 14 cats with FCGS were included. Using a sterile swab, oral tissue surfaces were sampled and submitted for 16S rRNA and ITS-2 next-generation DNA sequencing. Microbial DNA was analyzed using a proprietary curated database targeting AMR genes found in bacterial pathogens. The co-occurrence of AMR genes and fungi was tested using point biserial correlation. A total of 21 and 23 different AMR genes were detected in CH and FCGS cats, respectively. A comparison of AMR-gene frequencies between groups revealed statistically significant differences in the occurrence of genes conferring resistance to aminoglycosides (ant4Ib), beta-lactam (mecA), and macrolides (mphD and mphC). Two AMR genes (mecA and mphD) showed statistically significant co-occurrence with Malassezia restricta. In conclusion, resistance to clinically relevant antibiotics, such as beta-lactams and macrolides, is a significant cause for concern in the context of both feline and human medicine. | 2021 | 34944364 |
| 3484 | 6 | 0.9578 | Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation. | 2019 | 30952342 |
| 7162 | 7 | 0.9577 | Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. | 2018 | 29860105 |
| 7656 | 8 | 0.9576 | The host-specific resistome in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) revealed by metagenomic sequencing. Investigation of feces of wildlife, which is considered as reservoirs, melting pots, vectors and secondary sources of antimicrobial resistance genes (ARGs), provides insights into the risks and ecology of ARGs in the environment. Here, we investigated microbiomes, virulence factor genes (VFGs) of bacterial pathogens, and resistomes in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) using shotgun metagenome sequencing. As expected, the taxonomic compositions of bacteria were significantly different between the animals. Importantly, we found that the compositions of ARGs were also significantly different between the animals. We detected ARGs including iri, tetA(P), tetB(P), floR, sulII, strA, strB, tetW and tetY. Some of them were significantly more abundant in either of the host animals, such as strA, strB and tetY in Eurasian otters, and tetA(P), tetW and iri in leopard cats. We also found that some ARGs were selectively correlated to particular VFGs-related bacteria, such as tetA(P) and tetB(P) to Clostridium, and iri to Mycobacterium. We also found that there were positive correlations between Acinetobacter and ARGs of multiple antimicrobial classes. The host-specific resistomes and VFGs-related bacteria may be due to differences in the host's gut microbiome, diet and/or habitat, but further investigation is needed. Overall, this study provided important baseline information about the resistomes of the wildlife in Korea, which may help the conservation of these endangered species and assessment of human health risks posed by ARGs and bacterial pathogens from wildlife. | 2022 | 35399616 |
| 7158 | 9 | 0.9575 | Antibiotic resistome, potential pathogenic bacteria and associated health risk in geogenic chromium groundwater. Geogenic chromium (Cr) contamination in groundwater poses a global environmental challenge. However, with antibiotic resistance remaining a public health threat, the occurrence and associated health risks of antibiotic resistomes in Cr contaminated groundwater and their linkages to geogenic Cr are poorly understood. Here, we assessed the groundwater microbiome, potential pathogenic bacteria, and antibiotic resistomes with associated health risks in geogenic Cr impacted groundwater across shallow (<100 m) and deep (>100 m) aquifers in a plateau from Northwestern China. A total of 174 antibiotic resistance genes (ARGs) were detected with absolute abundances reaching 1.28 × 10(8) copies/L. Shallow and deep groundwater harbored distinct ARG profiles with significantly higher abundance and associated health risks presented in shallow groundwater (p < 0.01). A total of 332 potential pathogenic bacteria were identified, abundances of which 53.9 % were strongly correlated to the prevalent ARGs. Toxic Cr(VI) as a potential co-selective agent was positively associated with elevated ARG-linked potential pathogenic bacteria and mobile genetic elements (MGEs). Our findings collectively revealed the geogenic Cr contaminated groundwater as a significant reservoir of ARGs and potential pathogens, highlighting the dual risks of geogenic Cr as both a toxicant and promoter for accelerating ARGs within aquifers. | 2025 | 41072644 |
| 6379 | 10 | 0.9575 | Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Anthropogenic activities mediated antibiotic resistance genes (ARGs) in the pristine aquatic bodies (lakes) is raising concern worldwide. Long read shotgun sequencing was used to assess taxonomic diversity, distribution of ARGs and metal resistance genes (MRGs) and mobile genetic elements (MGEs) in six sites within hypersaline Lonar soda lake (India) prone to various anthropogenic activities. Proteobacteria and Euryarchaeota were dominant phyla under domain Bacteria and Archaea respectively. Higher abundance of Bacteroidetes was pragmatic at sites 18LN5 and 18LN6. Functional analysis indicated 26 broad-spectrum ARGs types, not reported earlier in this ecosystem. Abundant ARG types identified were multidrug efflux, glycopepetide, bacitracin, tetracycline and aminogylcoside resistance. Sites 18LN1 and 18LN5 depicted 167 and 160 different ARGs subtypes respectively and rpoB2, bcrA, tetA(48), mupA, ompR, patA, vanR and multidrug ABC transporter genes were present in all samples. The rpoB2 gene was dominant in 18LN1, whereas bcrA gene in 18LN2-18LN6 sites. Around 24 MRGs types were detected with higher abundance of arsenic in 18LN1 and copper in 18LN2-18LN6, signifying metal contamination linked to MRGs. The bacterial taxa Pseudomonas, Thioalkalivibrio, Burkholderia, Clostridium, Paenibacillus, Bacillus and Streptomyces were significantly associated with ARGs. This study highlights the resistomic hotspots in the lake for deploying policies for conservation efforts. | 2020 | 32155479 |
| 1401 | 11 | 0.9575 | Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance. | 2024 | 39530854 |
| 3167 | 12 | 0.9572 | Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance. | 2024 | 38930496 |
| 2996 | 13 | 0.9570 | Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns. | 2022 | 35460193 |
| 3078 | 14 | 0.9570 | Microbiome of Dipteran vectors associated with integron and antibiotic resistance genes in South Korea. The spread of antibiotic resistance genes (ARGs) across the environment and the role that organisms that interact with humans play as reservoirs of resistant bacteria pose important threats to public health. Flies are two-winged insects composing the order Diptera, which includes synanthropic species with significant ecological roles as pollinators, vectors, and decomposers. Here, we used iSeq100 metabarcoding to characterize the microbiome of six dipteran species in South Korea: Lucilia sericata, Lucilia illustris, Culex pipiens, Aedes vexans, Psychoda alternata and Clogmia albipunctata. We profiled a panel of common ARGs and performed correlation network analysis of the microbiome and resistome to identify co-occurrence patterns of bacterial amplicon sequence variants (ASVs) and resistance genes. We detected blaTEM, ermB, tetB, tetC, aac(6')-Ib-cr, cat2, sul1, qepA, int1 and int2, but no blaSHV, mecA, tetA or cat1. Notably, co-occurrence analysis showed highly mobile genes such as qepA, ermB and sul1 were associated with integron of class 1 integrase presence. These, along with aac(6')-Ib-cr were detected at higher rates across multiple species. Microbiome composition was distinct across species. Amplicon sequence variants (ASVs) of Pseudomonas, Corynebacterium, Clostridium, Ignatzschineria, Bacteroides, Streptococcus, Treponema and Dietzia showed strong co-occurrence with multiple ARGs. This study contributes to the understanding of the role of dipterans as reservoirs of antibiotic resistance. | 2025 | 41046045 |
| 2602 | 15 | 0.9570 | Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health. | 2025 | 40610649 |
| 2782 | 16 | 0.9569 | Urban dust fecal pollution in Mexico City: antibiotic resistance and virulence factors of Escherichia coli. Fecal pollution of settled dust samples from indoor and outdoor urban environments, was measured and characterized by the presence of fecal coliforms (FC), and by the characterization of Escherichia coli virulence genes, adherence and antibiotic resistance traits as markers. There were more FC indoors than outdoors (mean values 1089 and 435MPN/g). Among indoor samples, there were more FC in houses with carpets and/or pets. Using a PCR-based assay for six enteropathogenicity genes (belonging to the EAEC, EHEC and EPEC pathotypes) on randomly selected E. coli isolates, there was no significant difference between isolates from indoors and outdoors (60% and 72% positive to at least one gene). The serotypes commonly associated with pathogenic strains, such as O86 and O28, were found in the indoor isolates; whereas O4, O66 and O9 were found amongst outdoor isolates. However, there were significantly more outdoor isolates resistant to at least one antibiotic (73% vs. 45% from indoors) among the strains positive for virulence factors, and outdoor isolates were more commonly multiresistant. There was no relationship between the presence of virulence genes and resistance traits. These results indicate that outdoor fecal bacteria were more likely from human sources, and those found indoors were related to pets and maintained in carpets. This study illustrates the risk posed by fecal bacteria from human sources, usually bearing virulence and resistance traits. Furthermore, the high prevalence of strains carrying genes associated to EAEC or EHEC pathotypes, in both indoor and outdoor environments, adds to the health risk. | 2006 | 16762593 |
| 5281 | 17 | 0.9568 | Bacteria populating freshly appeared supraglacial lake possess metals and antibiotic-resistant genes. Antibiotic resistance (AR) has been extensively studied in natural habitats and clinical applications. AR is mainly reported with the use and misuse of antibiotics; however, little is known about its presence in antibiotic-free remote supraglacial lake environments. This study evaluated bacterial strains isolated from supraglacial lake debris and meltwater in Dook Pal Glacier, northern Pakistan, for antibiotic-resistant genes (ARGs) and metal-tolerant genes (MTGs) using conventional PCR. Several distinct ARGs were reported in the bacterial strains isolated from lake debris (92.5%) and meltwater (100%). In lake debris, 57.5% of isolates harbored the bla(TEM) gene, whereas 58.3% of isolates in meltwater possessed bla(TEM) and qnrA each. Among the ARGs, qnrA was dominant in debris isolates (19%), whereas in meltwater isolates, qnrA (15.2%) and bla(TEM) (15.2%) were dominant. ARGs were widely distributed among the bacterial isolates and different bacteria shared similar types of ARGs. Relatively greater number of ARGs were reported in Gram-negative bacterial strains. In addition, 92.5% of bacterial isolates from lake debris and 83.3% of isolates from meltwater harbored MTGs. Gene copA was dominant in meltwater isolates (50%), whereas czcA was greater in debris bacterial isolates (45%). Among the MTGs, czcA (18.75%) was dominant in debris strains, whereas copA (26.0%) was greater in meltwater isolates. This presents the co-occurrence and co-selection of MTGs and ARGs in a freshly appeared supraglacial lake. The same ARGs and MTGs were present in different bacteria, exhibiting horizontal gene transfer (HGT). Both positive and negative correlations were determined between ARGs and MTGs. The research provides insights into the existence of MTGs and ARGs in bacterial strains isolated from remote supraglacial lake environments, signifying the need for a more detailed study of bacteria harboring ARGs and MTGs in supraglacial lakes. | 2024 | 38262510 |
| 7160 | 18 | 0.9568 | High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province. | 2024 | 39080455 |
| 3202 | 19 | 0.9568 | Cockroach Microbiome Disrupts Indoor Environmental Microbial Ecology with Potential Public Health Implications. Cockroaches pose a significant global public health concern. However, besides the well-recognized cockroach-induced allergy, the potential impact of the cockroach microbiome on human health through various means is not yet fully elucidated. This study aimed to clarify the health impacts of cockroaches by investigating the microbial interactions among cockroaches, the indoor environment, and humans. We simultaneously collected cockroach, indoor environment (indoor air and floor dust), and human (exhaled breath condensate and skin) samples from residential areas in five cities representing distinct climate zones in China. The 16S rDNA sequencing results revealed that cockroaches harbor diverse bacterial populations that vary across different cities. The prevalence of potential pathogenic bacteria (PPB) in cockroaches ranged from 1.1% to 58.9%, with dominant resistance genes conferring resistance to tetracycline, macrolide, and beta-lactam. The relationships between the cockroach microbiome and the associated environmental and human microbiomes were explored by using fast expectation-maximization microbial source tracking (FEAST). The potential contribution of cockroach bacteria to the floor dust-borne microbiome and indoor airborne microbiome was estimated to be 5.6% and 1.3%, respectively. Similarly, the potential contribution of cockroach PPB to the floor dust-borne microbiome and indoor airborne microbiome was calculated to be 4.0% and 1.2%, respectively. In residences with cockroach infestations, the contribution of other sources to the indoor environment was slightly increased. Collectively, the role of cockroaches in the transmission of microorganisms, particularly pathogenic bacteria and antibiotic resistance genes, cannot be overlooked. | 2025 | 40270532 |