# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5442 | 0 | 0.8487 | Prevalence, Antimicrobial Susceptibility and Resistance Gene Detection in Bacteria Isolated from Goldfish and Tiger Barb from Ornamental Fish Farms of Tamil Nadu. This study aims to determine the antimicrobial resistance (AMR) pattern in freshwater ornamental cyprinids, such as Goldfish and Tiger barb. Molecular characterization of bacterial isolates confirmed the presence of 7 bacterial isolates in Goldfish and 6 in Tiger barb. Antimicrobial susceptibility test using 36 antibiotics revealed a higher resistance pattern for bacitracin, rifampicin, trimethoprim, cefalexin, ampicillin, amoxicillin, nalidixic acid and nitrofurantoin. Sulphafurazole, norfloxacin and ciprofloxacin were effective against all the bacterial isolates derived from Goldfish and Tiger barb. Most bacterial isolates exhibited > 0.2 multi-drug resistance index (MDR), indicating the severity of antibiotic use in the culture system. The finding of the present study suggests that ornamental fish may act as the reservoir of MDR bacteria and dissemination of resistance genes to clinical and human commensal bacteria through horizontal gene transfer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12088-022-01023-y. | 2022 | 35974915 |
| 812 | 1 | 0.8439 | Characterization of plQ5 plasmid originating fromKlebsiella pneumoniae. plQ5 plasmid consists of a group of genes specifying resistance to ampicillin, chloramphenicol, carbencillin, kanamycin and trimethoprim-sulphamethoxazole. It is isolated inKlebslella pneumoniae ZD532, is about 26.8 Kb and is freely transmissible to various bacterial species of Gram-negative bacteria. Physical characterization revealed that plQ5 plasmid has a single site forHindill,BamHI,EcoRI and two sites forBglII restriction enzyme. | 1990 | 24429982 |
| 3063 | 2 | 0.8354 | Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12. | 1976 | 779633 |
| 1227 | 3 | 0.8343 | Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance. | 1990 | 2282290 |
| 8129 | 4 | 0.8337 | Pesticide contamination and antimicrobial resistance: Two threats to the Neotropical Otter (Lontra longicaudis) in the Peñas Blancas River Basin, Costa Rica. The effects of synthetic pesticides on antibiotic-resistance genes (ARGs) in bacterial communities from contaminated waters are unclear. Otters in the Peñas Blancas basin encounter various anthropogenic residues, including pesticides. In 2022, we analyzed the presence of pesticides in six water samples and ARGs in eight otter fecal samples. Thirteen pesticides (herbicides, insecticides, fungicides, and multi-target) and seven ARGs (qnrS, tetA, tetB, tetQ, tetW, sulI, sulII) were detected. Regulated pesticides such as chlorpyrifos and ethoprophos, along with diazinon, diuron, imidacloprid, and terbutryn were found. These pesticides have been implicated in promoting antimicrobial resistance (AMR) in bacteria, particularly when combined with sub-lethal doses of antibiotics. Elevated levels of ethoprophos (0.67 ng/L) and a fecal sample containing four ARGs (tetA, tetB, sulI, and sulII) came from the upper basin. Our findings reveal pesticide application practices in the region, and highlight the potential risk of pesticide exposure to wildlife, including development of AMR. | 2025 | 40473152 |
| 2995 | 5 | 0.8337 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 5446 | 6 | 0.8332 | Antimicrobial sensitivity trends and virulence genes in Shigella spp. from the Oceania region. Shigella is a common cause of diarrhoea in Papua New Guinea (PNG) and other Oceania countries. However, little is known about the strains causing infection. Archived Shigella isolates (n = 72) were obtained from research laboratories in PNG and reference laboratories in Australia. Shigella virulence genes were detected by PCR, and antimicrobial susceptibility was determined by disk diffusion. The ipaH virulence gene was present in all 72 isolates. The prevalence of other virulence genes was variable, with ial, invE, ipaBCD, sen/ospD3 and virF present in 60% of isolates and set1A and set1B genes present in 42% of isolates. Most S. flexneri isolates contained genes encoding enterotoxin 1 and/or enterotoxin 2. Resistance to antibiotics was common, with 51/72 isolates resistant to 2-4 antimicrobials. A greater proportion of bacteria isolated since 2010 (relative to pre-2010 isolates) were resistant to commonly used antibiotics such as ampicillin, chloramphenicol, tetracycline, and trimethoprim-sulfamethoxazole; suggesting that antimicrobial resistance (AMR) in Shigella is increasing over time in the Oceania region. There is a need for improved knowledge regarding Shigella circulation in the Oceania region and further monitoring of AMR patterns. | 2018 | 29906636 |
| 5233 | 7 | 0.8325 | Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Spices are often used in dried form, sometimes with significant microbial contamination including pathogenic and food spoilage bacteria. The antibiotic resistance represents an additional risk for food industry, and it is worthy of special attention as spices are important food additives. During our work, we examined the microbiological quality of 50 different spices with cultivation methods on diverse selective media. The identification of the most representative bacteria was carried out using 16S rDNA gene sequence analysis. Antibiotic resistance profiling of twelve identified Bacillus species (B. subtilis subsp. stercoris BCFK, B. licheniformis BCLS, B. siamensis SZBC, B. zhangzhouensis BCTA, B. altitudinis SALKÖ, B. velezensis CVBC, B. cereus SALÖB isolate, B. tequilensis KOPS, B. filamentosus BMBC, B. subtilis subsp. subtilis PRBC2, B. safensis BMPS, and B. mojavensis BCFK2 isolate) was performed using the standard disk-diffusion method against 32 antibiotics. The study showed that the majority resistance was obtained against penicillin G (100%), oxacillin (91.67%), amoxyclav (91.67%), rifampicin (75%), and azithromycin (75%). Our findings suggest that spices harbor multidrug-resistant bacteria. | 2021 | 34401102 |
| 1382 | 8 | 0.8321 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 5443 | 9 | 0.8321 | Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. Extensive use of antimicrobial agents in finfish farming and the consequent selective pressure lead to the acquisition of antibiotic resistance in aquaculture environment bacteria. Vibrio genus represents one of the main pathogens affecting gilthead sea bream. The development of antibiotic resistance by Vibrio represents a potential threat to human health by exchange of resistant genes to human pathogens through food chain. The objective of the present study was to conduct a multisite survey on the antibiotic resistance of Vibrio spp. isolated from gilthead sea bream reared in Italian mariculture. Vibrio spp. strains were isolated from skin, gills, muscles and intestinal content of 240 gilthead sea bream. A random selection of 150 strains was sequenced for species identification. Resistance against 15 antimicrobial agents was tested by the broth microdilution method. Vibrio harveyi and Vibrio alginolyticus accounted for 36.7% and 33.3% of the isolates respectively. 96% of the strains showed multiple resistance to the tested drugs, with two strains, Vibrio aestuarianus and Vibrio harveyi resistant to 10 and 9 antibiotics, respectively. Ampicillin, amoxicillin, erythromycin and sulfadiazine showed low efficacy against Vibrio spp. Rational use of antimicrobial agents and surveillance on antibiotic administration may reduce the acquisition of resistance by microorganisms of aquatic ecosystems. | 2014 | 25180847 |
| 2602 | 10 | 0.8321 | Human-wildlife ecological interactions shape Escherichia coli population and resistome in two sloth species from Costa Rica. Antimicrobial resistance (AMR) is a global health concern, with natural ecosystems acting as reservoirs for resistant bacteria. We assessed AMR in Escherichia coli isolated from two wild sloth species in Costa Rica. E. coli from two-toed sloths (Choloepus hoffmanni), a species with greater mobility and a broader diet, showed resistance to sulfamethoxazole (25%), tetracycline (9.4%), chloramphenicol (6.3%), ampicillin (6.3%), trimethoprim (3.1%), and ciprofloxacin (3.1%), which correlated with the presence of resistance genes (tet(A), tet(B), bla(TEM-1B), aph(3")-Id, aph(6)-Id, sul2, qnrS1, floR and dfrA8). E. coli from three-toed sloths (Bradypus variegatus) showed 40% resistance to sulfamethoxazole despite no detected resistance genes, suggesting a regional effect. A significant negative correlation was found between AMR and distance to human-populated areas, highlighting anthropogenic impact on AMR spread. Notably, E. coli isolates from remote areas with no human impact indicate that some ecosystems remain unaffected. Preserving these areas is essential to protect environmental and public health. | 2025 | 40610649 |
| 5248 | 11 | 0.8319 | Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords. | 2024 | 38767750 |
| 2128 | 12 | 0.8317 | Emerging Antibiotic Resistance to Bacterial Isolates from Human Urinary Tract Infections in Grenada. A urinary tract infection (UTI) in humans is one of the most common ailments in developing countries. The treatment of UTI is becoming difficult because of the increasing drug resistance against the common bacteria associated with UTI. This research aimed to determine the bacteria, and their antimicrobial drug resistance, associated with UTI in the Grenada population. A retrospective study of data (2015 through 2017) from the microbiology laboratory of the Grenada General Hospital was analyzed. Bacteria were isolated from 1289 (33.3%) urine cultures of 3867 UTI suspected urine samples. Both Gram-positive (Staphylococcus aureus 5.0%; Enterococci group D 43.2%) and Gram-negative bacteria (Escherichia coli 51%; Klebsiella pneumoniae20.0%; Proteus mirabilis 10.0%; Acinetobacter spp. 20.0%) were isolated. Bacterial isolates were tested for their resistance to nine antibacterial drugs (ampicillin, gentamicin, norfloxacin, cefuroxime, ceftazidime, Bactrim, imipenem, augmentin, and ciprofloxacin). Gram-negative bacteria showed higher antimicrobial drug resistance. | 2019 | 31700763 |
| 2994 | 13 | 0.8316 | Molecular Characterization of Salmonella spp. Isolates from Wild Colombian Babilla (Caiman crocodilus fuscus) Isolated In Situ. Salmonella enterica is a pathogen capable of colonizing various environments, including the intestinal tract of different animals such as mammals, birds, and reptiles, which can act as carriers. S. enterica infection induces different clinical diseases, gastroenteritis being the most common, which in some cases, can evolve to septicemia and meningitis. Reptiles and amphibians have been reported as a reservoir of Salmonella, and transmission of the pathogen to humans has been documented. This study aimed to determine the presence of virulence genes and characterize the genotypic antibiotic resistance profile in Salmonella strains isolated from Caiman crocodilus fuscus obtained in situ (natural habitat) in Prado, Tolima, Colombia in a previous study and stored in a strain bank in our laboratory. Fifteen Salmonella strains were evaluated through endpoint PCR to determine the presence of resistance genes and virulence genes. The genes bla(TEM), strB, and sul1 were detected in all the strains that confer resistance to ampicillin, streptomycin, and sulfamethoxazole, as well as the virulence genes invA, pefA, prgH, spaN, tolC, sipB, sitC, pagC, msgA, spiA, sopB, sifA, lpfA, csgA, hilA, orgA, iroN, avrA, and sivH, indicating the possible role of babilla (Caiman crocodilus fuscus) as a carrier of multidrug-resistant bacteria. | 2022 | 36496880 |
| 3738 | 14 | 0.8314 | In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria. | 2017 | 28749770 |
| 2996 | 15 | 0.8309 | Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns. | 2022 | 35460193 |
| 5594 | 16 | 0.8308 | Antibiotic resistance among fecal indicator bacteria from healthy individually owned and kennel dogs. Escherichia coli and Enterococcus faecalis strains isolated from anal swabs of clinically healthy dogs were examined for the presence of acquired antimicrobial resistance. The strains originated from dogs of 92 different owners and from eight breeding kennels. The purpose of the present study was to evaluate the resistance situation in the intestinal flora of the dog to assess the possible role of the dog flora as a reservoir of antimicrobial resistance. Multiple resistance was rarely found in E. coli strains collected from individually owned dogs, in contrast with strains from kennel dogs. Resistance to ampicillin, trimethoprim, and sulfamethoxazole was significantly less prevalent in E. coli from privately owned dogs than in strains from kennel dogs. Resistance rates against tetracycline and macrolides were unexpectedly high in E. faecalis strains. Two and three E. faecalis strains from individually owned dogs and kennel dogs, respectively, were resistant to gentamicin, an antibiotic often used for treating enterococcal infections in humans. This study demonstrates that resistance percentages may fluctuate with the choice of dog population. The observed antimicrobial resistance percentages indicate that the flora of healthy dogs may act as a reservoir of resistance genes. | 2004 | 15140396 |
| 3640 | 17 | 0.8306 | Antibiotic resistant bacteria in fish from the Concepción Bay, Chile. Antibiotic resistant bacteria from commercial demersal and pelagic fish captured in the Concepción Bay, Chile were investigated. Viable counts of antibiotic resistant bacteria isolated from gill and intestinal content samples showed high frequencies of resistance to ampicillin, streptomycin and tetracycline, while the proportion of chloramphenicol resistance was rather low. A high incidence of resistance to ampicillin, streptomycin, tetracycline and nitrofurantoin, as well as almost an absence of resistance to gentamicin, amikacin and cotrimoxazole was found among selected isolates which represented the resistant bacterial population. These strains mainly belonged to Vibrionaceae and Enterobacteriaceae and were predominantly resistant to 3 and 4 antibacterials. Isolates from demersal fish exhibited resistance to as many as 8-10 compounds, whereas those from pelagic fish were resistant to seven or fewer antibiotics. These results suggest that Chilean commercial fishes residing in waters near the disposals of urban sewage might play a role as carriers of antibiotic resistant bacteria prompting a health risk to public health for fish consumers. | 2001 | 11763221 |
| 2131 | 18 | 0.8303 | Alistipes Bacteremia in Older Patients with Digestive and Cancer Comorbidities, Japan, 2016-2023. The clinical characteristics of Alistipes bacteremia remain insufficiently understood. We retrospectively analyzed 13 cases of Alistipes bacteremia at a tertiary care center in Japan. Of the 13 patients, 7 were male and 6 female; 10 were >65 years of age. Of 9 patients with comorbidities, 7 had solid tumors or hematological malignancies and 11 had gastrointestinal symptoms. Isolates identified were Alistipes finegoldii in 4 cases, A. onderdonkii in 4, A. putredinis in 3, A. indistinctus in 2, and A. ihumii in 1. Ten strains exhibited low MICs against β-lactam/β-lactamase inhibitors and metronidazole. We observed high MICs against penicillin, ceftriaxone, and minocycline. Several strains harbored antimicrobial resistance genes, including adeF, tet(Q), cfxA3, cfxA4, and ermG. Twelve patients received β-lactam/β-lactamase inhibitors; 2 patients with solid tumors experienced septic shock and died. Alistipes bacteria can translocate from the gastrointestinal tract into the bloodstream, particularly in cases of inflammation, obstruction, or perforation, leading to severe infections. | 2025 | 40133031 |
| 1270 | 19 | 0.8301 | Multiantibiotic resistance of gram-negative bacteria isolated from drinking water samples in southwest Greece. In this study we monitored the sensitivity of 239 gram-negative bacteria (of fecal and non-fecal origin), isolated from the old drinking water distribution network of Patras in southwestern Greece, to 20 antibiotic agents. Two methods were used to find the multiresistant bacteria (bacteria resistant to two or more antibiotics): the diffusion disk method and a serial dilution method. The gram-negative bacteria tested were: Enterobacteriaceae (62), Pseudomonas (145), Vibrionaceae (24), Chromobacter (3), Acinetobacter (2) and others (4). The highest levels of antibiotic resistance were obtained for cephalothin (86.7%), ampicillin (77.5%) and carbenicillin (71%) followed by cefoxitin (55.4%) and cefuroxime (51.2%). Intermediate resistance levels were found for ticarcillin (31.3%), ceftizoxime (31.2%), chloramphenicol (30.3%), and cefotetan (25.2%). Low resistance levels were obtained for cefotaxime (17.9%), sulfisoxazole (15.2%), ceftriaxone (12.5%), tetracycline (11.9%), trimethoprim/sulfamethoxazole (7.4%) and piperacillin (2.4%). Overall 91.3% of the gram-negative bacteria isolated from drinking water were multiresistant. No resistant strains were found to quinolones, aminoglycosides, imipenem, aztreonam, ceftazidime or cefoperazone. The high antibiotic resistance rate of the isolated microorganisms from the Patras drinking water supply is discussed. | 2000 | 10949974 |