# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8484 | 0 | 0.9251 | Deciphering the acidophilia and acid resistance in Acetilactobacillus jinshanensis dominating baijiu fermentation through multi-omics analysis. Lactic acid bacteria (LAB) are pivotal in constructing the intricate bio-catalytic networks underlying traditional fermented foods such as Baijiu. However, LAB and their metabolic mechanisms are partially understood in Moutai flavor Baijiu fermentation. Here, we found that Acetilactobacillus jinshanensis became the· dominant species with relative abundance reaching 92%, where the acid accumulated rapidly and peaked at almost 30 g/kg in Moutai flavor Baijiu. After separation, purification, and cultivation, A. jinshanensis exhibited pronounced acidophilia and higher acid resistance compared to other LAB. Further integrated multi-omics analysis revealed that fatty acid synthesis, cell membrane integrity, pHi and redox homeostasis maintenance, protein and amide syntheses were possibly crucial acid-resistant mechanisms in A. jinshanensis. Structural proteomics indicated that the surfaces of A. jinshanensis proteases contained more positively charged amino acid residues to maintain protein stability in acidic environments. The genes HSP20 and acpP were identified as acid-resistant genes for A. jinshanensis by heterologous expression analysis. These findings not only enhance our understanding of LAB in Baijiu, providing a scientific basis for acid regulation for production process, but also offer valuable insights for studying core species in other fermentation systems. | 2025 | 39448165 |
| 8641 | 1 | 0.9224 | Uncovering acid resistance genes in lactic acid bacteria and impact of non-viable bacteria on bacterial community during Chinese strong-flavor baijiu fermentation. Chinese strong-flavor baijiu (CSFB) brewing is a spontaneously solid-state fermentation process for approximately 60 days. Numerous microorganisms grow, die, and spark a series of metabolic reactions during fermentation. In this study, the microbial community and structure between total and viable bacteria in zaopei from the 5- and 20-year pits of CSFB are revealed by amplicon sequencing. Metagenome sequencing was applied to investigate acid resistance genes in Lactobacillus and predict carbohydrate active enzyme in zaopei. Besides, SourceTracker was conducted to expose bacterial sources. Results revealed that there was no significant difference in the bacterial community and structure between the total and viable bacteria; Lactobacillus was the most dominant bacterium in zaopei of two types of pits. Meanwhile, acid resistance genes argR, aspA, ilvE, gshA, DnaK, and cfa were genes that sustained Lactobacillus survival in the late stages of fermentation with high contents of acid and ethanol, and glycosyltransferases were identified as the predominated enzymes during the CSFB fermentation which catalyzed the process of lactic acid generation via Embden-Meyerhof-Parnas pathway and Hexose Monophosphate Pathway. Moreover, the environment contributed most bacteria to zaopei of the 5- and 20-year pits. These findings will provide a deeper understanding of the microbial community structure of viable and total bacteria and the reason for the dominance of Lactobacillus in the later stages of CSFB fermentation. | 2023 | 37087286 |
| 523 | 2 | 0.9152 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 7887 | 3 | 0.9144 | Double-edged sword effects of sulfate reduction process in sulfur autotrophic denitrification system: Accelerating nitrogen removal and promoting antibiotic resistance genes spread. This study proposed the double-edged sword effects of sulfate reduction process on nitrogen removal and antibiotic resistance genes (ARGs) transmission in sulfur autotrophic denitrification system. Excitation-emission matrix-parallel factor analysis identified the protein-like fraction in soluble microbial products as main endogenous organic matter driving the sulfate reduction process. The resultant sulfide tended to serve as bacterial modulators, augmenting electron transfer processes and mitigating oxidative stress, thereby enhancing sulfur oxidizing bacteria (SOB) activity, rather than extra electron donors. The cooperation between SOB and heterotroph (sulfate reducing bacteria (SRB) and heterotrophic denitrification bacteria (HDB)) were responsible for advanced nitrogen removal, facilitated by multiple metabolic pathways including denitrification, sulfur oxidation, and sulfate reduction. However, SRB and HDB were potential ARGs hosts and assimilatory sulfate reduction pathway positively contributed to ARGs spread. Overall, the sulfate reduction process in sulfur autotrophic denitrification system boosted nitrogen removal process, but also increased the risk of ARGs transmission. | 2024 | 39122125 |
| 8431 | 4 | 0.9134 | A quaternary ammonium salt grafted tannin-based flocculant boosts the conjugative transfer of plasmid-born antibiotic resistance genes: The nonnegligible side of their flocculation-sterilization properties. This study developed dual-function tannin-based flocculants, namely tannin-graft-acrylamide-diallyl dimethyl ammonium chloride (TGCC-A/TGCC-C), endowed with enhanced flocculation-sterilization properties. The impacts of these flocculants on proliferation and transformation of antibiotic resistance genes (ARGs) among bacteria during the flocculation-deposition process were examined. TGCC-A/TGCC-C exhibited remarkable flocculation capacities towards both Escherichia coli and Staphylococcus aureus, encompassing a logarithmic range of initial cell density (10(8)-10(9) CFU/mL) and a broad pH spectrum (pH 2-11). The grafted quaternary ammonium salt groups played pivotal parts in flocculation through charge neutralization and bridging mechanisms, concurrently contributing to sterilization by disrupting cellular membranes. The correlation between flocculation and sterilization entails a sequential progression, where an excess of TGCC, initially employed for flocculation, is subsequently consumed for sterilization purposes. The frequencies of ARGs conjugative transfer were enhanced in bacterial flocs across all TGCC treatments, stemming from augmented bacterial aggregation and cell membrane permeability, elicited stress response, and up-regulated genes encoding plasmid transfer. These findings underscore the indispensable role of flocculation-sterilization effects in mediating the propagation of ARGs, consequently providing substantial support for the scientific evaluation of the environmental risks associated with flocculants in the context of ARGs dissemination during the treatment of raw water featuring high bacterial density. | 2023 | 37619725 |
| 7880 | 5 | 0.9128 | The synergistic mechanism of β-lactam antibiotic removal between ammonia-oxidizing microorganisms and heterotrophs. Nitrifying system is an effective strategy to remove numerous antibiotics, however, the contribution of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and heterotrophs for antibiotic removal are still unclear. In this study, the mechanism of β-lactam antibiotic (cefalexin, CFX) removal was studied in a nitrifying sludge system. Results showed that CFX was synergistically removed by AOB (Nitrosomonas, played a major role) and AOA (Candidatus_Nitrososphaera) through ammonia monooxygenase-mediated co-metabolism, and by heterotrophs (Pseudofulvimonas, Hydrogenophaga, RB41, Thauera, UTCFX1, Plasticicumulans, Phaeodactylibacter) through antibiotic resistance genes (ARGs)-encoded β-lactamases-mediated hydrolysis. Regardless of increased archaeal and heterotrophic CFX removal with the upregulation of amoA in AOA and ARGs, the system exhibited poorer CFX removal performance at 10 mg/L, mainly due to the inhibition of AOB. This study provides new reference for the important roles of heterotrophs and ARGs, opening the possibilities for the application of ARGs in antibiotic biodegradation. | 2023 | 36174754 |
| 7879 | 6 | 0.9126 | Multidrug-resistant plasmid RP4 increases NO and N(2)O yields via the electron transport system in Nitrosomonas europaea ammonia oxidation. Antibiotic resistance genes (ARGs) have recently become an important public health problem and therefore several studies have characterized ARG composition and distribution. However, few studies have assessed their impact on important functional microorganisms in the environment. Therefore, our study sought to investigate the mechanisms through which multidrug-resistant plasmid RP4 affected the ammonia oxidation capacity of ammonia-oxidizing bacteria, which play a key role in the nitrogen cycle. The ammonia oxidation capacity of N. europaea ATCC25978 (RP4) was significantly inhibited, and NO and N(2)O were produced instead of nitrite. Our findings demonstrated that the decrease in electrons from NH(2)OH decreased the ammonia monooxygenase (AMO) activity, leading to a decrease in ammonia consumption. In the ammonia oxidation process, N. europaea ATCC25978 (RP4) exhibited ATP and NADH accumulation. The corresponding mechanism was the overactivation of Complex Ⅰ, ATPase, and the TCA cycle by the RP4 plasmid. The genes encoding TCA cycle enzymes related to energy generation, including gltA, icd, sucD, and NE0773, were upregulated in N. europaea ATCC25978 (RP4). These results demonstrate the ecological risks of ARGs, including the inhibition of the ammonia oxidation process and an increased production of greenhouse gases such as NO and N(2)O. | 2023 | 37421866 |
| 8471 | 7 | 0.9126 | Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress. | 2024 | 38563743 |
| 8538 | 8 | 0.9122 | Metagenomic ecotoxicity assessment of trace difenoconazole on freshwater microbial community. Difenoconazole, a typical triazole fungicide, inhibits the activity of cytochrome P450 enzyme in fungi, and is extensively used in protecting fruits, vegetables, and cereal crops. However, reports elucidating the effects of difenoconazole on aquatic microbial communities are limited. Our study showed that difenoconazole promoted microalgae growth at concentrations ranging from 0.1 to 5 μg/L, which was similar with its environmental residual concentrations. Metagenomic analysis revealed that the aquatic microbial structure could self-regulate to cope with difenoconazole-induced stress by accumulating bacteria exhibiting pollutant degrading abilities. In the short-term, several functional pathways related to xenobiotic biodegradation and analysis were upregulated to provide ability for aquatic microbial community to process xenobiotic stress. Moreover, most disturbed ecological functions were recovered due to the redundancy of microbial communities after prolonged exposure. Furthermore, the risks associated with the dissemination of antibiotic resistance genes were enhanced by difenoconazole in the short-term. Overall, our study contributes to a comprehensive understanding of the difenoconazole-induced ecological impacts and the behavior of aquatic microbial communities that are coping with xenobiotic stress. | 2022 | 35090847 |
| 6907 | 9 | 0.9120 | Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD. | 2024 | 38968733 |
| 7888 | 10 | 0.9120 | Microecology of aerobic denitrification system construction driven by cyclic stress of sulfamethoxazole. The construction of aerobic denitrification (AD) systems in an antibiotic-stressed environment is a serious challenge. This study investigated strategy of cyclic stress with concentration gradient (5-30 mg/L) of sulfamethoxazole (SMX) in a sequencing batch reactor (SBR), to achieve operation of AD. Total nitrogen removal efficiency of system increased from about 10 % to 95 %. Original response of abundant-rare genera to antibiotics was changed by SMX stress, particularly conditionally rare or abundant taxa (CRAT). AD process depends on synergistic effect of heterotrophic nitrifying aerobic denitrification bacteria (Paracoccus, Thauera, Hypomicrobium, etc). AmoABC, napA, and nirK were functionally co-expressed with multiple antibiotic resistance genes (ARGs) (acrR, ereAB, and mdtO), facilitating AD process. ARGs and TCA cycling synergistically enhance the antioxidant and electron transport capacities of AD process. Antibiotic efflux pump mechanism played an important role in operation of AD. The study provides strong support for regulating activated sludge to achieve in situ AD function. | 2024 | 38710419 |
| 8558 | 11 | 0.9118 | Mitigating the vertical migration and leaching risks of antibiotic resistance genes through insect fertilizer application. The leaching and vertical migration risks of antibiotic resistance genes (ARGs) from fertilized soil to groundwater poses a significant threat to ecological and public safety. Insect fertilizer, particularly black soldier fly organic fertilizer (BOF), renowned for its minimal antibiotic resistance, emerge as a promising alternative for sustainable agricultural fertilization. This study employs soil-column leaching experiments to evaluate the impact of BOF on the leaching behavior of ARGs. Our results reveal that BOF significantly reduces the leaching risks of ARGs by 22.1 %-49.3 % compared to control organic fertilizer (COF). Moreover, BOF promotes the leaching of beneficial Bacillus and, according to random forest analysis, is the most important factor in predicting ARG profiles (3.02 % increase in the MSE). Further network analysis and mantel tests suggest that enhanced nitrogen metabolism in BOF leachates could foster Bacillus biofilm formation, thereby countering antibiotic-resistant bacteria (ARB) and mitigating antibiotic resistance. In addition, linear regression analysis revealed that Bacillus biofilm-associated genes pgaD (biofilm PGA synthesis protein), slrR (biofilm formation regulator), and kpsC (capsular polysaccharide export protein) were identified as pivotal in the elimination of ARGs, which can serve as effective indicators for assessing antibiotic resistance in groundwater. Collectively, this study demonstrates that BOF as an environmentally friendly fertilizer could markedly reduce the vertical migration risks of ARGs and proposes Bacillus biofilm formation related genes as reliable indicators for monitoring antibiotic resistance in groundwater. | 2025 | 40086570 |
| 8487 | 12 | 0.9118 | Mechanisms of nano zero-valent iron in enhancing dibenzofuran degradation by a Rhodococcus sp.: Trade-offs between ATP production and protection against reactive oxygen species. Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G(+)) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G(+) bacteria remain unclear. Herein, we explored effects of nZVI on a G(+) bacterium, Rhodococcus sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G(+) bacteria, offering insights into optimizing bioremediation strategies involving nZVI. | 2025 | 39549579 |
| 8645 | 13 | 0.9118 | Resilience mechanisms of rhizosphere microorganisms in lead-zinc tailings: Metagenomic insights into heavy metal resistance. This study investigates the impact of heavy metal contamination in lead-zinc tailings on plant and soil microbial communities, focusing on the resilience mechanisms of rhizosphere microorganisms in these extreme environments. Utilizing metagenomic techniques, we identified a significant association between Coriaria nepalensis Wall. rhizosphere microbial communities and metal(loid) resistance genes. Our results reveal a notable diversity and abundance of bacteria within the rhizosphere of tailings, primarily consisting of Proteobacteria, Actinobacteria, and Chloroflexi. The presence of metal-resistant bacterial taxa, including Afipia, Bradyrhizobium, Sphingomonas, and Miltoncostaea, indicates specific evolutionary adaptations to metal-rich, nutrient-deficient environments. Elevated expression of resistance genes such as znuD, zntA, pbrB, and pbrT underscores the microorganisms' ability to endure these harsh conditions. These resistance genes are crucial for maintaining biodiversity, ecosystem stability, and adaptability. Our findings enhance the understanding of interactions between heavy metal contamination, microbial community structure, and resistance gene dynamics in lead-zinc tailings. Additionally, this research provides a theoretical and practical foundation for employing plant-microbial synergies in the in-situ remediation of contaminated sites. | 2025 | 40056745 |
| 7969 | 14 | 0.9117 | Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation. | 2024 | 39068965 |
| 809 | 15 | 0.9117 | Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress. | 2023 | 37844810 |
| 8671 | 16 | 0.9116 | Adapting to UV: Integrative Genomic and Structural Analysis in Bacteria from Chilean Extreme Environments. Extremophilic bacteria from extreme environments, such as the Atacama Desert, Salar de Huasco, and Antarctica, exhibit adaptations to intense UV radiation. In this study, we investigated the genomic and structural mechanisms underlying UV resistance in three bacterial isolates identified as Bacillus velezensis PQ169, Pseudoalteromonas sp. AMH3-8, and Rugamonas violacea T1-13. Through integrative genomic analyses, we identified key genes involved in DNA-repair systems, pigment production, and spore formation. Phylogenetic analyses of aminoacidic sequences of the nucleotide excision repair (NER) system revealed conserved evolutionary patterns, indicating their essential role across diverse bacterial taxa. Structural modeling of photolyases from Pseudoalteromonas sp. AMH3-8 and R. violacea T1-13 provided further insights into protein function and interactions critical for DNA repair and UV resistance. Additionally, the presence of a complete violacein operon in R. violacea T1-13 underscores pigment biosynthesis as a crucial protective mechanism. In B. velezensis PQ169, we identified the complete set of genes responsible for sporulation, suggesting that sporulation may represent a key protective strategy employed by this bacterium in response to environmental stress. Our comprehensive approach underscores the complexity and diversity of microbial adaptations to UV stress, offering potential biotechnological applications and advancing our understanding of microbial resilience in extreme conditions. | 2025 | 40565314 |
| 8651 | 17 | 0.9116 | Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility. | 2025 | 39096471 |
| 7899 | 18 | 0.9116 | Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs. | 2025 | 39423786 |
| 8644 | 19 | 0.9115 | Biotic and abiotic drivers of soil carbon, nitrogen and phosphorus and metal dynamic changes during spontaneous restoration of Pb-Zn mining wastelands. The biotic and abiotic mechanisms that drive important biogeochemical processes (carbon, nitrogen, phosphorus and metals dynamics) in metal mine revegetation remains elusive. Metagenomic sequencing was used to explored vegetation, soil properties, microbial communities, functional genes and their impacts on soil processes during vegetation restoration in a typical Pb-Zn mine. The results showed a clear niche differentiation between bacteria, fungi and archaea. Compared to bacteria and fungi, the archaea richness were more tightly coupled with natural restoration changes. The relative abundances of CAZyme-related, denitrification-related and metal resistance genes reduced, while nitrification, urease, inorganic phosphorus solubilisation, phosphorus transport, and phosphorus regulation -related genes increased. Redundancy analysis, hierarchical partitioning analysis, relative-importance analysis and partial least squares path modelling, indicated that archaea diversity, primarily influenced by available lead, directly impacts carbon dynamics. Functional genes, significantly affected by available cadmium, directly alter nitrogen dynamics. Additionally, pH affects phosphorus dynamics through changes in bacterial diversity, while metal dynamics are directly influenced by vegetation. These insights elucidate natural restoration mechanisms in mine and highlight the importance of archaea in soil processes. | 2025 | 40054196 |