# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6378 | 0 | 0.9842 | Metagenomics reveals the divergence of gut microbiome composition and function in two common pika species (Ochotona curzoniae and Ochotona daurica) in China. Gut microbiome plays crucial roles in animal adaptation and evolution. However, research on adaptation and evolution of small wild high-altitude mammals from the perspective of gut microbiome is still limited. In this study, we compared differences in intestinal microbiota composition and function in Plateau pikas (Ochotona curzoniae) and Daurian pikas (O. daurica) using metagenomic sequencing. Our results showed that microbial community structure had distinct differences in different pika species. Prevotella, Methanosarcina, Rhizophagus, and Podoviridae were abundant bacteria, archaea, eukaryotes, and viruses in Plateau pikas, respectively. However, Prevotella, Methanosarcina, Ustilago, and Retroviridae were dominated in Daurian pikas. Functional pathways related to carbohydrate metabolism that refer to the utilization of pectin, hemicellulose, and debranching enzymes were abundant in Plateau pikas, while the function for degradation of chitin, lignin, and cellulose was more concentrated in Daurian pikas. Pika gut had abundant multidrug resistance genes, followed by glycopeptide and beta-lactamase resistance genes, as well as high-risk antibiotic resistance genes, such as mepA, tetM, and bacA. Escherichia coli and Klebsiella pneumoniae may be potential hosts of mepA. This research provided new insights for adaptation and evolution of wild animals from perspective of gut microbiome and broadened our understanding of high-risk antibiotic resistance genes and potential pathogens of wild animals. | 2024 | 39500545 |
| 6377 | 1 | 0.9842 | Comparative metagenomics and characterization of antimicrobial resistance genes in pasteurized and homemade fermented Arabian laban. The aim of this study was to investigate bacterial diversity and function in a fermented milk drink called laban, which is traditionally served in the Middle East, Africa, and Indian subcontinent. Pasteurized laban (LBP) and unpasteurized, homemade, raw laban (LBR) underwent 16S rRNA gene amplicon and shotgun sequencing to analyze their bacterial community, presence of antimicrobial resistance genes (ARGs), and metabolic pathways. This study highlighted relatively greater diversity in LBR bacterial populations compared to LBP, despite containing similar major taxa that consisted primarily of Firmicutes followed by Proteobacteria, Bacteroidetes, and Actinobacteria. The dominant species, Streptococcus thermophilus, was relatively more abundant in LBP (80.7%) compared to LBR (47.9%). LBR had increased diversity and higher relative abundance of several known probiotic bacteria, such as Streptococcus salivarius and Lactococcus lactis, whereas Lactobacillus acidophilus was detected at a higher abundance in LBP. Pathogens like Acinetobacter baumannii, Streptococcus pneumoniae, Streptococcus pyogenes, and Escherichia coli had lower abundance in LBP compared to LBR. Thirty-three ARGs were detected in LBR compared to nine in LBP and are responsible for resistance to 11 classes of antibiotics. A significant proportion of the metagenomes from both types of laban were assigned to housekeeping functions, such as amino acid metabolism, translation, membrane transport, and carbohydrate metabolism. LBR demonstrated increased diversity in probiotics and metabolic functions compared to LBP. However, the relatively high diversity of pathogenic and opportunistic bacteria and ARGs in LBR raises safety concerns and highlights the need for a more hygienic environment for the processing of homemade fermented dairy foods. | 2020 | 33233218 |
| 6390 | 2 | 0.9838 | Shotgun metagenome sequencing of a Sudanese toombak snuff tobacco: genetic attributes of a high tobacco-specific nitrosamine containing smokeless tobacco product. The most alarming aspect of the Sudanese toombak smokeless tobacco is that it contains high levels of highly toxic tobacco-specific nitrosamines (TSNAs). Understanding the microbiology of toombak is of relevance because TSNAs are an indirect result of microbial-mediated nitrate reductions. We conducted shotgun metagenomic sequencing on a toombak product for which relevant features are presented here. The microbiota was composed of over 99% Bacteria. The most abundant taxa included Actinobacteria, specifically the genera Enteractinococcus and Corynebacterium, while Firmicutes were represented by the family Bacillaceae and the genus Staphylococcus. Selected gene targets were nitrate reduction and transport, antimicrobial resistance, and other genetic transference mechanisms. Canonical nitrate reduction and transport genes (i.e. nar) were found for Enteractinococcus and Corynebacterium while various species of Staphylococcus exhibited a notable number of antimicrobial resistance and genetic transference genes. The nitrate reduction activity of the microbiota in toombak is suspected to be a contributing factor to its high levels of TSNAs. Additionally, the presence of antimicrobial resistance and transference genes could contribute to deleterious effects on oral and gastrointestinal health of the end user. Overall, the high toxicity and increased incidences of cancer and oral disease of toombak users warrants further investigation into the microbiology of toombak. | 2022 | 34862647 |
| 7660 | 3 | 0.9836 | Metagenomic Insights into the Microbiome and Resistance Genes of Traditional Fermented Foods in Arabia. This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects. | 2023 | 37761051 |
| 6080 | 4 | 0.9836 | Metagenomic Insights into the Taxonomic and Functional Features of Traditional Fermented Milk Products from Russia. Fermented milk products (FMPs) contain probiotics that are live bacteria considered to be beneficial to human health due to the production of various bioactive molecules. In this study, nine artisanal FMPs (kefir, ayran, khurunga, shubat, two cottage cheeses, bryndza, khuruud and suluguni-like cheese) from different regions of Russia were characterized using metagenomics. A metagenomic sequencing of ayran, khurunga, shubat, khuruud and suluguni-like cheese was performed for the first time. The taxonomic profiling of metagenomic reads revealed that Lactococcus species, such as Lc. lactis and Lc. cremoris prevailed in khuruud, bryndza, one sample of cottage cheese and khurunga. The latter one together with suluguni-like cheese microbiome was dominated by bacteria, affiliated to Lactobacillus helveticus (32-35%). In addition, a high proportion of sequences belonging to the genera Lactobacillus, Lactococcus and Streptococcus but not classified at the species level were found in the suluguni-like cheese. Lactobacillus delbrueckii, as well as Streptococcus thermophilus constituted the majority in another cottage cheese, kefir and ayran metagenomes. The microbiome of shubat, produced from camel's milk, was significantly distinctive, and Lentilactobacillus kefiri, Lactobacillus kefiranofaciens and Bifidobacterium mongoliense represented the dominant components (42, 7.4 and 5.6%, respectively). In total, 78 metagenome-assembled genomes with a completeness ≥ 50.2% and a contamination ≤ 8.5% were recovered: 61 genomes were assigned to the Enterococcaceae, Lactobacillaceae and Streptococcaceae families (the Lactobacillales order within Firmicutes), 4 to Bifidobacteriaceae (the Actinobacteriota phylum) and 2 to Acetobacteraceae (the Proteobacteria phylum). A metagenomic analysis revealed numerous genes, from 161 to 1301 in different products, encoding glycoside hydrolases and glycosyltransferases predicted to participate in lactose, alpha-glucans and peptidoglycan hydrolysis as well as exopolysaccharides synthesis. A large number of secondary metabolite biosynthetic gene clusters, such as lanthipeptides, unclassified bacteriocins, nonribosomal peptides and polyketide synthases were also detected. Finally, the genes involved in the synthesis of bioactive compounds like β-lactones, terpenes and furans, nontypical for fermented milk products, were also found. The metagenomes of kefir, ayran and shubat was shown to contain either no or a very low count of antibiotic resistance genes. Altogether, our results show that traditional indigenous fermented products are a promising source of novel probiotic bacteria with beneficial properties for medical and food industries. | 2023 | 38276185 |
| 7659 | 5 | 0.9832 | New insights of bacterial communities in fermented vegetables from shotgun metagenomics and identification of antibiotic resistance genes and probiotic bacteria. Consumption of fermented foods has grown worldwide due to the purported health benefits. It is thus critical to understand fermented foods microbiome that mainly influences the quality and safety of these foods. This study identified bacterial communities, including functional profiles of probiotics and antimicrobial resistance genes (ARGs), in pickled vegetables commonly consumed in the Middle Eastern, African, and Asian sub-continent regions. Eighteen samples from six pickled vegetables were collected from local markets in Saudi Arabia and analyzed using shotgun metagenomic sequencing. Statistical analyses revealed significant distance and separate clustering of bacterial communities among the different pickle types. Species of Levilactobacillus namurensis, Lentilactobacillus buchneri, Lentilactobacillus parafarraginis, Lactiplantibacillus pentosus, Pectobacterium carotovorum, Leuconostoc carnosum, Weissella confuse were found in a range of dominance in most of the samples. Binning revealed 33 high-quality, metagenome-assembled genomes (MAGs), including 4 MAGs representing putatively novel species of Lactobacillus, Alcanivorax, and Dichelobacter. Moreover, 285 ARGs and variants produce resistance against 20 classes of antibiotics were retrieved, mostly from Enterobacteriaceae contigs. The metagenomes harbored relatively high abundances of carbohydrate fermentation enzymes, as well as metabolic pathways for amino acid metabolism, cofactors and vitamins biosynthesis. Overall, by providing a comprehensive overview of bacterial communities and probiotic bacteria in pickled vegetables, the results suggest the need for more hygienic processing to avoid Enterobacteriaceae contamination and ARG spread. | 2022 | 35761518 |
| 6379 | 6 | 0.9832 | Shotgun metagenome guided exploration of anthropogenically driven resistomic hotspots within Lonar soda lake of India. Anthropogenic activities mediated antibiotic resistance genes (ARGs) in the pristine aquatic bodies (lakes) is raising concern worldwide. Long read shotgun sequencing was used to assess taxonomic diversity, distribution of ARGs and metal resistance genes (MRGs) and mobile genetic elements (MGEs) in six sites within hypersaline Lonar soda lake (India) prone to various anthropogenic activities. Proteobacteria and Euryarchaeota were dominant phyla under domain Bacteria and Archaea respectively. Higher abundance of Bacteroidetes was pragmatic at sites 18LN5 and 18LN6. Functional analysis indicated 26 broad-spectrum ARGs types, not reported earlier in this ecosystem. Abundant ARG types identified were multidrug efflux, glycopepetide, bacitracin, tetracycline and aminogylcoside resistance. Sites 18LN1 and 18LN5 depicted 167 and 160 different ARGs subtypes respectively and rpoB2, bcrA, tetA(48), mupA, ompR, patA, vanR and multidrug ABC transporter genes were present in all samples. The rpoB2 gene was dominant in 18LN1, whereas bcrA gene in 18LN2-18LN6 sites. Around 24 MRGs types were detected with higher abundance of arsenic in 18LN1 and copper in 18LN2-18LN6, signifying metal contamination linked to MRGs. The bacterial taxa Pseudomonas, Thioalkalivibrio, Burkholderia, Clostridium, Paenibacillus, Bacillus and Streptomyces were significantly associated with ARGs. This study highlights the resistomic hotspots in the lake for deploying policies for conservation efforts. | 2020 | 32155479 |
| 3093 | 7 | 0.9831 | Prevalence of antibiotic resistance and virulence genes in the biofilms from an aquifer recharged with stormwater. An improved understanding of the diversity and composition of microbial communities carrying antibiotic resistance genes (ARGs) and virulence genes (VGs) in aquifers recharged with stormwater is essential to comprehend potential human health risks from water reuse. A high-throughput functional gene array was used to study the prevalence of ARGs and VGs in aquifer biofilms (n = 27) taken from three boreholes over three months. Bacterial genera annotated as opportunistic pathogens such as Aeromonas, Burkholderia, Pseudomonas, Shewanella, and Vibrio were ubiquitous and abundant in all biofilms. Bacteria from clinically relevant genera, Campylobacter, Enterobacter, Klebsiella, Mycobacterium, Mycoplasma, and Salmonella were detected in biofilms. The mean travel time of stormwater from the injection well to P1 and P3 boreholes was 260 and 360 days respectively. The presence of ARGs and VGs in the biofilms from these boreholes suggest a high spatial movement of ARGs and VGs in the aquifer. The ARGs with the highest abundance were small multidrug resistance efflux pumps (SMR) and multidrug efflux (Mex) followed by β-lactamase C genes. β- lactamase C encoding genes were primarily detected in Enterobacteriaceae, Pseudomonadaceae, Bacillaceae, and Rhodobacteraceae families. The VGs encoding siderophores, including aerobactin (iro and iuc genes), followed by pilin, hemolysin, and type III secretion were ubiquitous. Canonical correspondence analysis suggested that Total Organic Carbon (TOC), Dissolved Organic Carbon (DOC), turbidity, and Fe concentration has a significant impact on the microbial community structure of bacteria carrying ARGs and VGs. Post abstraction treatment of groundwater may be prudent to improve water security and reduce potential health risks. | 2020 | 32798893 |
| 6971 | 8 | 0.9830 | Spontaneous fermentation mitigates the frequency of genes encoding antimicrobial resistance spreading from the phyllosphere reservoir to the diet. The phyllosphere microbiome of vegetable products constitutes an important reservoir for multidrug resistant bacteria and Antibiotic Resistance Genes (ARG). Vegetable products including fermented products such as Paocai therefore may serve as a shuttle for extrinsic microorganisms with ARGs into the gut of consumers. Here we study the effect of fermentation on Paocai ARG dissemination by metagenomic analysis. Microbial abundance and diversity of the Paocai microbiome were diminished during fermentation, which correlated with the reduction of abundance in ARGs. Specifically, as fermentation progressed, Enterobacterales overtook Pseudomonadales as the predominant ARG carriers, and Lactobacillales and Enterobacteriales became the determinants of Paocai resistome variation. Moreover, the dual effect of microbes and metal resistance genes (MRGs) was the major contributor driving Paocai resistome dynamics. We recovered several metagenome-assembled genomes (MAGs) carrying acquired ARGs in the phyllosphere microbiome. ARGs of potential clinical and epidemiological relevance such as tet M and emrB-qacA, were mainly hosted by non-dominant bacterial genera. Overall, our study provides evidence that changes in microbial community composition by fermentation aid in constraining ARG dispersal from raw ingredients to the human microbiome but does not eliminate them. | 2024 | 38677439 |
| 7643 | 9 | 0.9830 | Heterofermentative Lentilactobacillus buchneri and low dry matter reduce high-risk antibiotic resistance genes in corn silage by regulating pathogens and mobile genetic element. The study of antibiotic resistance in the silage microbiome has attracted initial attention. However, the influences of lactic acid bacteria inoculants and dry matter (DM) content on antibiotic resistance genes (ARGs) reduction in whole-plant corn silage remain poorly studied. This study accessed the ARGs' risk and transmission mechanism in whole-plant corn silage with different DM levels and treated with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. The macrolide and tetracycline were the main ARGs in corn silage. The dominant species (Lent. buchneri and Lactobacillus acetotolerans) were the main ARGs carriers in whole-plant corn silage. The application of Lent. buchneri increased total ARGs abundance regardless of corn DM. Whole-plant corn silage with 30 % DM reduced the abundances of integrase and plasmid compared with 40 % DM. The correlation and structural equation model analysis demonstrated that bacterial community succession, resulting from changes in DM content, was the primary driving factor influencing the ARGs distribution in whole-plant corn silage. Interestingly, whole-plant corn silage inoculated with Lent. buchneri reduced abundances of high-risk ARGs (mdtG, mepA, tetM, mecA, vatE and tetW) by regulating pathogens (Escherichia coli), mobile genetic elements (MGEs) genes (IS3 and IS1182), and this effect was more pronounced at 30 % DM level. In summary, although whole-plant corn silage inoculated with Lent. buchneri increased the total ARGs abundance at both DM levels, it decreased the abundance of high-risk ARGs by reducing the abundances of the pathogens and MGEs, and this effect was more noticeable at 30 % DM level. | 2024 | 39241365 |
| 8653 | 10 | 0.9828 | Mining-related multi-resistance genes in sulfate-reducing bacteria treatment of typical karst nonferrous metal(loid) mine tailings in China. Management of tailings at metal mine smelter sites can reduce the potential hazards associated with exposure to toxic metal(loid)s and residual organic flotation reagents. In addition, microbes in the tailings harboring multi-resistance genes (e.g., tolerance to multiple antimicrobial agents) can cause high rates of morbidity and global economic problems. The potential co-selection mechanisms of antibiotic resistance genes (ARGs) and metal(loid) resistance genes (MRGs) during tailings sulfate-reducing bacteria (SRB) treatment have been poorly investigated. Samples were collected from a nonferrous metal mine tailing site treated with an established SRB protocol and were analyzed for selected geochemical properties and high throughput sequencing of 16S rRNA gene barcoding. Based on the shotgun metagenomic analysis, the bacterial domain was dominant in nonferrous metal(loid)-rich tailings treated with SRB for 12 months. KEGGs related to ARGs and MRGs were detected. Thiobacillus and Sphingomonas were the main genera carrying the bacA and mexEF resistance operons, along with Sulfuricella which were also found as the main genera carrying MRGs. The SRB treatment may mediate the distribution of numerous resistance genes. KOs based on the metagenomic database indicated that ARGs (mexNW, merD, sul, and bla) and MRGs (czcABCR and copRS genes) were found on the same contig. The SRB strains (Desulfosporosinus and Desulfotomaculum), and the acidophilic strain Acidiphilium significantly contributed to the distribution of sul genes. The functional metabolic pathways related to siderophores metabolism were largely from anaerobic genera of Streptomyces and Microbacterium. The presence of arsenate reductase, metal efflux pump, and Fe transport genes indicated that SRB treatment plays a key role in the metal(loid)s transformation. Overall, our findings show that bio-treatment is an effective tool for managing ARGs/MRGs and metals in tailings that contain numerous metal(loid) contaminants. | 2023 | 37707732 |
| 7170 | 11 | 0.9828 | Effect of cattle farm exposure on oropharyngeal and gut microbial communities and antibiotic resistance genes in workers. Livestock farms are recognized as the main sources of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) with potential implications for human health. In this study, we systematically analyzed microbiome composition, distribution of ARGs and mobile genetic elements (MGEs) in the oropharynx and gut of workers in cattle farms and surrounding villagers, cattle feces and farm air, and the relationship of microbial communities among farm air, cattle feces and farmworkers (oropharynx and gut). Exposure to the farm environment may have remodeled farmworkers' oropharynx and gut microbiota, with reduced microbial diversity (P < 0.05) and enrichment of some opportunistic pathogenic bacteria like Shigella, Streptococcus, and Neisseria in the oropharynx. Meanwhile, compared with villagers, ARG abundance in oropharynx of farmworkers increased significantly (P < 0.05), but, no significant difference in gut (P > 0.05). Microbial composition and ARG profile in farmworkers might be influenced by working time and work type, ARG abundance in farmworkers' gut was positively correlated with working time (P < 0.01), and higher ARG abundance was found in the oropharynx of drovers. The network analysis revealed that 4 MGEs (tnpA-01, tnpA-04, Tp614, and IS613), 5 phyla (e.g. Bacteroidetes, Fusobacteria, and TM7), and 6 genera were significantly associated with 37 ARGs (ρ > 0.6, P < 0.01). Overall, our results indicated that farm exposure may have affected the microbial composition and increased ARG abundance of farmworkers. Transmission of some ARGs may have occurred among the environment, animals and humans via host bacteria, which might pose a potential threat to human health. | 2022 | 34600986 |
| 7008 | 12 | 0.9828 | Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes of bacterial communities and ARG profiles in food crops produced with contaminated soils and waters. This study examined the level and type of ARGs and bacterial community composition in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may have lower risks of producing food crops with high abundance of ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of changes were observed. MGE intl1 was consistently more abundant with pharmaceutical exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, there were significant interplays among bacteria community, antibiotic concentrations, and ARG abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ). | 2019 | 31336252 |
| 4689 | 13 | 0.9827 | Abundant resistome determinants in rhizosphere soil of the wild plant Abutilon fruticosum. A metagenomic whole genome shotgun sequencing approach was used for rhizospheric soil micribiome of the wild plant Abutilon fruticosum in order to detect antibiotic resistance genes (ARGs) along with their antibiotic resistance mechanisms and to detect potential risk of these ARGs to human health upon transfer to clinical isolates. The study emphasized the potential risk to human health of such human pathogenic or commensal bacteria, being transferred via food chain or horizontally transferred to human clinical isolates. The top highly abundant rhizospheric soil non-redundant ARGs that are prevalent in bacterial human pathogens or colonizers (commensal) included mtrA, soxR, vanRO, golS, rbpA, kdpE, rpoB2, arr-1, efrA and ileS genes. Human pathogenic/colonizer bacteria existing in this soil rhizosphere included members of genera Mycobacterium, Vibrio, Klebsiella, Stenotrophomonas, Pseudomonas, Nocardia, Salmonella, Escherichia, Citrobacter, Serratia, Shigella, Cronobacter and Bifidobacterium. These bacteria belong to phyla Actinobacteria and Proteobacteria. The most highly abundant resistance mechanisms included antibiotic efflux pump, antibiotic target alteration, antibiotic target protection and antibiotic inactivation. antimicrobial resistance (AMR) families of the resistance mechanism of antibiotic efflux pump included resistance-nodulation-cell division (RND) antibiotic efflux pump (for mtrA, soxR and golS genes), major facilitator superfamily (MFS) antibiotic efflux pump (for soxR gene), the two-component regulatory kdpDE system (for kdpE gene) and ATP-binding cassette (ABC) antibiotic efflux pump (for efrA gene). AMR families of the resistance mechanism of antibiotic target alteration included glycopeptide resistance gene cluster (for vanRO gene), rifamycin-resistant beta-subunit of RNA polymerase (for rpoB2 gene) and antibiotic-resistant isoleucyl-tRNA synthetase (for ileS gene). AMR families of the resistance mechanism of antibiotic target protection included bacterial RNA polymerase-binding protein (for RbpA gene), while those of the resistance mechanism of antibiotic inactivation included rifampin ADP-ribosyltransferase (for arr-1 gene). Better agricultural and food transport practices are required especially for edible plant parts or those used in folkloric medicine. | 2023 | 37646836 |
| 7667 | 14 | 0.9826 | Metagenomics uncovers microbiome and resistome in soil and reindeer faeces from Ny-Ålesund (Svalbard, High Arctic). Research on the microbiome and resistome in polar environments, such as the Arctic, is crucial for understanding the emergence and spread of antibiotic resistance genes (ARGs) in the environment. In this study, soil and reindeer faeces samples collected from Ny-Ålesund (Svalbard, High Arctic) were examined to analyze the microbiome, ARGs, and biocide/metal resistance genes (BMRGs). The dominant phyla in both soil and faeces were Pseudomonadota, Actinomycetota, and Bacteroidota. A total of 2618 predicted Open Reading Frames (ORFs) containing antibiotic resistance genes (ARGs) were detected. These ARGs belong to 162 different genes across 17 antibiotic classes, with rifamycin and multidrug resistance genes being the most prevalent. We focused on investigating antibiotic resistance mechanisms in the Ny-Ålesund environment by analyzing the resistance genes and their biological pathways. Procrustes analysis demonstrated a significant correlation between bacterial communities and ARG/BMRG profiles in soil and faeces samples. Correlation analysis revealed that Pseudomonadota contributed most to multidrug and triclosan resistance, while Actinomycetota were predominant contributors to rifamycin and aminoglycoside resistance. The geochemical factors, SiO(4)(2-) and NH(4)(+), were found to significantly influence the microbial composition and ARG distribution in the soil samples. Analysis of ARGs, BMRGs, virulence factors (VFs), and pathogens identified potential health risks associated with certain bacteria, such as Cryobacterium and Pseudomonas, due to the presence of different genetic elements. This study provided valuable insights into the molecular mechanisms and geochemical factors contributing to antibiotic resistance and enhanced our understanding of the evolution of antibiotic resistance genes in the environment. | 2024 | 39159777 |
| 7675 | 15 | 0.9826 | Metagenomics Reveals the Diversity and Taxonomy of Carbohydrate-Active Enzymes and Antibiotic Resistance Genes in Suancai Bacterial Communities. Suancai, as a traditional fermented food in China with reputed health benefits, has piqued global attention for many years. In some circumstances, the microbial-driven fermentation may confer health (e.g., probiotics) or harm (e.g., antibiotic resistance genes) to the consumers. To better utilize beneficial traits, a deeper comprehension of the composition and functionality of the bacterial species harboring enzymes of catalytically active is required. On the other hand, ingestion of fermented food increases the likelihood of microbial antibiotic resistance genes (ARGs) spreading in the human gastrointestinal tract. Besides, the diversity and taxonomic origin of ARGs in suancai are little known. In our study, a metagenomic approach was employed to investigate distribution structures of CAZymes and ARGs in main bacterial species in suancai. Functional annotation using the CAZy database identified a total of 8796 CAZymes in metagenomic data. A total of 83 ARGs were detected against the CARD database. The most predominant ARG category is multidrug-resistant genes. The ARGs of antibiotic efflux mechanism are mostly in Proteobacteria. The resistance mechanism of ARGs in Firmicutes is primarily antibiotic inactivation, followed by antibiotic efflux. Due to the abundance of species with different ARGs, strict quality control including microbial species, particularly those with lots of ARGs, is vital for decreasing the risk of ARG absorption via consumption. Ultimately, we significantly widen the understanding of suancai microbiomes by using metagenomic sequencing to offer comprehensive information on the microbial functional potential (including CAZymes and ARGs content) of household suancai. | 2022 | 35627157 |
| 7656 | 16 | 0.9826 | The host-specific resistome in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) revealed by metagenomic sequencing. Investigation of feces of wildlife, which is considered as reservoirs, melting pots, vectors and secondary sources of antimicrobial resistance genes (ARGs), provides insights into the risks and ecology of ARGs in the environment. Here, we investigated microbiomes, virulence factor genes (VFGs) of bacterial pathogens, and resistomes in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) using shotgun metagenome sequencing. As expected, the taxonomic compositions of bacteria were significantly different between the animals. Importantly, we found that the compositions of ARGs were also significantly different between the animals. We detected ARGs including iri, tetA(P), tetB(P), floR, sulII, strA, strB, tetW and tetY. Some of them were significantly more abundant in either of the host animals, such as strA, strB and tetY in Eurasian otters, and tetA(P), tetW and iri in leopard cats. We also found that some ARGs were selectively correlated to particular VFGs-related bacteria, such as tetA(P) and tetB(P) to Clostridium, and iri to Mycobacterium. We also found that there were positive correlations between Acinetobacter and ARGs of multiple antimicrobial classes. The host-specific resistomes and VFGs-related bacteria may be due to differences in the host's gut microbiome, diet and/or habitat, but further investigation is needed. Overall, this study provided important baseline information about the resistomes of the wildlife in Korea, which may help the conservation of these endangered species and assessment of human health risks posed by ARGs and bacterial pathogens from wildlife. | 2022 | 35399616 |
| 6053 | 17 | 0.9826 | Probiotic properties of lactic acid bacteria isolated from water-buffalo mozzarella cheese. This study evaluated the probiotic properties (stability at different pH values and bile salt concentration, auto-aggregation and co-aggregation, survival in the presence of antibiotics and commercial drugs, study of β-galactosidase production, evaluation of the presence of genes encoding MapA and Mub adhesion proteins and EF-Tu elongation factor, and the presence of genes encoding virulence factor) of four LAB strains (Lactobacillus casei SJRP35, Leuconostoc citreum SJRP44, Lactobacillus delbrueckii subsp. bulgaricus SJRP57 and Leuconostoc mesenteroides subsp. mesenteroides SJRP58) which produced antimicrobial substances (antimicrobial peptides). The strains survived the simulated GIT modeled in MRS broth, whole and skim milk. In addition, auto-aggregation and the cell surface hydrophobicity of all strains were high, and various degrees of co-aggregation were observed with indicator strains. All strains presented low resistance to several antibiotics and survived in the presence of commercial drugs. Only the strain SJRP44 did not produce the β-galactosidase enzyme. Moreover, the strain SJRP57 did not show the presence of any genes encoding virulence factors; however, the strain SJRP35 presented vancomycin resistance and adhesion of collagen genes, the strain SJRP44 harbored the ornithine decarboxylase gene and the strain SJRP58 generated positive results for aggregation substance and histidine decarboxylase genes. In conclusion, the strain SJRP57 was considered the best candidate as probiotic cultures for further in vivo studies and functional food products development. | 2014 | 25117002 |
| 7670 | 18 | 0.9826 | Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim's Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment. | 2020 | 32363769 |
| 7740 | 19 | 0.9825 | Diversity, functions, and antibiotic resistance genes of bacteria and fungi are examined in the bamboo plant phyllosphere that serve as food for the giant pandas. The phyllosphere of bamboo is rich in microorganisms that can disrupt the intestinal microbiota of the giant pandas that consume them, potentially leading to their death. In the present study, the abundance, diversity, biological functions (e.g., KEGG and CAZyme), and antibiotic resistance genes (ARGs) of bacteria and fungi in two bamboo species phyllosphere (Chimonobambusa szechuanensis, CS; Bashania fangiana, BF) in Daxiangling Nature Reserve (an important part of the Giant Panda National Park) were investigated respectively by amplicon sequencing of the whole 16S rRNA and ITS1-ITS2 genes on PacBio Sequel and whole-metagenome shotgun sequencing on Illumina NovaSeq 6000 platform. The results suggested that there were respectively 18 bacterial and 34 fungi biomarkers between the phyllosphere of the two species of bamboo. Beta diversity of bacteria and fungi communities exited between the two bamboos according to the (un)weighted UniFrac distance matrix. Moreover, the functional analysis showed that the largest relative abundance was found in the genes related to metabolism and global and overview maps. Glycoside hydrolases (GHs) and glycosyl transferases (GTs) have a higher abundance in two bamboo phyllospheres. Co-occurrence network modeling suggested that bacteria and fungi communities in CS phyllosphere employed a much more complex metabolic network than that in BF, and the abundance of multidrug, tetracycline, and glycopeptide resistance genes was higher and closely correlated with other ARGs. This study references the basis for protecting bamboo resources foraged by wild giant pandas and predicts the risk of antibiotic resistance in bamboo phyllosphere bacterial and fungal microbiota in the Giant Panda National Park, China. | 2025 | 39168909 |