AVERAGE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
348200.9971Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.201829751438
348510.9971Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.202133913739
777220.9971Metagenomic community composition and resistome analysis in a full-scale cold climate wastewater treatment plant. BACKGROUND: Wastewater treatment plants are an essential part of maintaining the health and safety of the general public. However, they are also an anthropogenic source of antibiotic resistance genes. In this study, we characterized the resistome, the distribution of classes 1-3 integron-integrase genes (intI1, intI2, and intI3) as mobile genetic element biomarkers, and the bacterial and phage community compositions in the North End Sewage Treatment Plant in Winnipeg, Manitoba. Samples were collected from raw sewage, returned activated sludge, final effluent, and dewatered sludge. A total of 28 bacterial and viral metagenomes were sequenced over two seasons, fall and winter. Integron-integrase genes, the 16S rRNA gene, and the coliform beta-glucuronidase gene were also quantified during this time period. RESULTS: Bacterial classes observed above 1% relative abundance in all treatments were Actinobacteria (39.24% ± 0.25%), Beta-proteobacteria (23.99% ± 0.16%), Gamma-proteobacteria (11.06% ± 0.09%), and Alpha-proteobacteria (9.18 ± 0.04%). Families within the Caudovirales order: Siphoviridae (48.69% ± 0.10%), Podoviridae (23.99% ± 0.07%), and Myoviridae (19.94% ± 0.09%) were the dominant phage observed throughout the NESTP. The most abundant bacterial genera (in terms of average percent relative abundance) in influent, returned activated sludge, final effluent, and sludge, respectively, includes Mycobacterium (37.4%, 18.3%, 46.1%, and 7.7%), Acidovorax (8.9%, 10.8%, 5.4%, and 1.3%), and Polaromonas (2.5%, 3.3%, 1.4%, and 0.4%). The most abundant class of antibiotic resistance in bacterial samples was tetracycline resistance (17.86% ± 0.03%) followed by peptide antibiotics (14.24% ± 0.03%), and macrolides (10.63% ± 0.02%). Similarly, the phage samples contained a higher prevalence of macrolide (30.12% ± 0.30%), peptide antibiotic (10.78% ± 0.13%), and tetracycline (8.69% ± 0.11%) resistance. In addition, intI1 was the most abundant integron-integrase gene throughout treatment (1.14 × 10(4) gene copies/mL) followed by intI3 (4.97 × 10(3) gene copies/mL) while intI2 abundance remained low (6.4 × 10(1) gene copies/mL). CONCLUSIONS: Wastewater treatment successfully reduced the abundance of bacteria, DNA phage and antibiotic resistance genes although many antibiotic resistance genes remained in effluent and biosolids. The presence of integron-integrase genes throughout treatment and in effluent suggests that antibiotic resistance genes could be actively disseminating resistance between both environmental and pathogenic bacteria.202235033203
350630.9970Occurrence and distribution of antibiotic resistance genes in sediments in a semi-enclosed continental shelf sea. Extensive and improper overuse of antibiotics resulted in the prevalence of antibiotic resistance genes (ARGs). As the typical semi-enclosed continental shelf sea, the Bohai Sea has been considered as one of the most polluted marine areas in China. However, no comprehensive investigation on the spatial distribution of ARGs in sediments from the Bohai Sea has been reported. A large-scale sampling was performed in the Bohai Sea areas. The abundances of ARGs (6 classes, 29 ARG subtypes), class 1 integron-integrase gene (intI1), hmt-DNA and 16S rRNA gene were evaluated. IntI1 was detected with higher abundances in coastal areas ranging from 2.8 × 10(5) to 2.5 × 10(8) copies/g. The total ARGs abundances varied over 3 orders of magnitude in different sampling sites with the maximum at 4.9 × 10(8) copies/g. Sulfonamides resistance genes were ubiquitous and abundant with the abundances ranging from 5.7 × 10(4) to 1.8 × 10(7) copies/g, and quinolones resistance genes varied greatly in different samples. The contour map demonstrated that ARGs were more abundant in the Laizhou Bay, the south of Bohai Bay and the eastern of central sea basin. Most of the target ARG subtypes were detected with 100% detection frequencies. The genes of sul1, sul2 and tetX were detected with both higher absolute and relative abundance, while the abundance of β-lactams ARG subtypes was lower. Principal component analysis (PCA) and redundancy analysis (RDA) indicated that no significant differences in the ARGs abundance existed in different samples, and the sediment qualities played important roles in the distribution of ARGs. Bacterial communities were investigated and 768 strong and significant connections between ARGs and bacteria were identified. The possible hosts of ARGs were revealed by network analysis with higher relative abundance in coastal areas than the sea.202032325606
349940.9970Diverse and abundant antibiotic resistance genes in mangrove area and their relationship with bacterial communities - A study in Hainan Island, China. Antibiotic resistance genes (ARGs) are emerging contaminants in the environment and have been highlighted as a worldwide environmental and health concern. As important participants in the biogeochemical cycles, mangrove ecosystems are subject to various anthropogenic disturbances, and its microbiota may be affected by various contaminants such as ARGs. This study selected 13 transects of mangrove-covered areas in Hainan, China for sediment sample collection. The abundance and diversity of ARGs and mobile genetic elements (MGEs) were investigated using high-throughput quantitative polymerase chain reaction (HT-qPCR), and high-throughput sequencing was used to study microbial structure and diversity. A total of 179 ARGs belonging to 9 ARG types were detected in the study area, and the detection rates of vanXD and vatE-01 were 100%. The abundance of ARGs was 8.30 × 10(7)-6.88 × 10(8) copies per g sediment (1.27 × 10(-2)-3.39 × 10(-2) copies per 16S rRNA gene), which was higher than similar studies, and there were differences in the abundance of ARGs in these sampling transects. The multidrug resistance genes (MRGs) accounted for the highest proportion (69.0%), which indicates that the contamination of ARGs in the study area was very complicated. The ARGs significantly positively correlated with MGEs, which showed that the high level of ARGs was related to its self-enhancement. The dominant bacteria at the genus level were Desulfococcus, Clostridium, Rhodoplanes, Bacillus, Vibrio, Enterococcus, Sedimentibacter, Pseudoalteromonas, Paracoccus, Oscillospira, Mariprofundus, Sulfurimonas, Aminobacterium, and Novosphingobium. There was a significant positive correlation between 133 bacterial genera and some ARGs. Chthoniobacter, Flavisolibacter, Formivibrio, Kaistia, Moryella, MSBL3, Perlucidibaca, and Zhouia were the main potential hosts of ARGs in the sediments of Hainan mangrove area, and many of these bacteria are important participants in biogeochemical cycles. The results contribute to our understanding of the distribution and potential hosts of ARGs and provide a scientific basis for the protection and management of Hainan mangrove ecosystem.202133652188
773850.9969The microbiome and its association with antibiotic resistance genes in the hadal biosphere at the Yap Trench. The hadal biosphere, the deepest part of the ocean, is known as the least-explored aquatic environment and hosts taxonomically diverse microbial communities. However, the microbiome and its association with antibiotic resistance genes (ARGs) in the hadal ecosystem remain unknown. Here, we profiled the microbiome diversity and ARG occurrence in seawater and sediments of the Yap Trench (YT) using metagenomic sequencing. Within the prokaryote (bacteria and archaea) lineages, the main components of bacteria were Gammaproteobacteria (77.76 %), Firmicutes (8.36 %), and Alphaproteobacteria (2.25 %), whereas the major components of archaea were Nitrososphaeria (6.51 %), Nanoarchaeia (0.42 %), and Thermoplasmata (0.25 %), respectively. Taxonomy of viral contigs showed that the classified viral communities in YT seawater and sediments were dominated by Podoviridae (45.96 %), Siphoviridae (29.41 %), and Myoviridae (24.63 %). A large majority of viral contigs remained uncharacterized and exhibited endemicity. A total of 48 ARGs encoding resistance to 12 antibiotic classes were identified and their hosts were bacteria and viruses. Novel ARG subtypes mexF(YTV-1), mexF(YTV-2), mexF(YTV-3), vanR(YTV-1), vanS(YTV-1) (carried by unclassified viruses), and bacA(YTB-1) (carried by phylum Firmicutes) were detected in seawater samples. Overall, our findings imply that the hadal environment of the YT is a repository of viral and ARG diversity.202235870206
348360.9969Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 10(6) ± 1.6 × 10(6) copies/mL in the western Pacific Ocean, with the highest value (7.8 × 10(6) copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.202235085628
349670.9969Comparative metagenomic dataset of hospital effluent microbiome from rural and urban hospitals in West Bengal. The unsafe disposal of hospital effluents contributes to gross contamination of water bodies with antibiotic residues, antibiotic resistance genes and antibiotic resistance bacteria. This study reports the microbial community profile of hospital wastes collected from various regions of West Bengal, India, using 16S rRNA gene amplicon sequencing. The data set Liquid Sludge (LS) contains 15,372,973 reads with an average length of 301 bps with average 52 ± 5% GC content. The data set Solid Sludge (SS) contains 16,071,594 reads with an average length of 301 bps with average 53 ± 4% GC content. Data of this study are available at NCBI BioProject (PRJNA360379). In sample LS, an abundance of 19.3% for the members of Bacteroidetes was observed. In sample SS, an abundance of 19.7% for the members of Euryarchaeota was observed.201931440549
349780.9969Biomarkers of antibiotic resistance genes during seasonal changes in wastewater treatment systems. To evaluate the seasonal distribution of antibiotic resistance genes (ARGs) and explore the reason for their patterns in different seasons and different systems, two wastewater treatment systems were selected and analyzed using high-throughput qPCR. Linear discriminant analysis (LDA) effect size (LEfSe) was used to discover the differential ARGs (biomarkers) and estimate the biomarkers' effect size. We found that the total absolute abundances of ARGs in inflows and excess sludge samples had no obvious seasonal fluctuations, while those in winter outflow samples decreased in comparison with the inflow samples. Eleven differentially abundant ARGs (biomarker genes, BmGs) (aadA5-02, aac-6-II, cmlA1-01, cmlA1-02, blaOXA10-02, aadA-02, tetX, aadA1, ereA, qacEΔ1-01, and blaTEM) in summer samples and 10 BmGs (tet-32, tetA-02, aacC2, vanC-03, aac-6-I1, tetE, ermB, mefA, tnpA - 07, and sul2) in winter samples were validated. According to 16S rRNA gene sequencing, the relative abundance of bacteria at the phylum level exhibited significant seasonal changes in outflow water (OW), and biomarker bacteria (BmB) were discovered at the family (or genus) level. Synechococcus and vadinCA02 are BmB in summer, and Trichococcus, Lactococcus, Pelosinus, Janthinobacterium, Nitrosomonadaceae and Sterolibacterium are BmB in winter. In addition, BmB have good correlations with BmGs in the same season, which indicates that bacterial community changes drive different distributions of ARGs during seasonal changes and that LEfSe is an acute and effective method for finding significantly different ARGs and bacteria between two or more classes. In conclusion, this study demonstrated the seasonal changes of BmGs and BmB at two wastewater treatment systems.201829169020
350190.9968Microbial community and antibiotic resistance gene distribution in food waste, anaerobic digestate, and paddy soil. The study assessed the occurrence and distribution of microbial community and antibiotic resistance genes (ARGs) in food waste, anaerobic digestate, and paddy soil samples, and revealed the potential hosts of ARGs and factors influencing their distribution. A total of 24 bacterial phyla were identified, of which 16 were shared by all samples, with Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria accounting for 65.9-92.3 % of the total bacterial community. Firmicutes was the most abundant bacteria in food waste and digestate samples, accounting for 33-83 % of the total microbial community. However, in paddy soil samples with digestate, Proteobacteria had the highest relative abundance of 38-60 %. Further, 22 ARGs were detected in food waste and digestate samples, with multidrug, macrolide-lincosamide-streptogramin (MLS), bacitracin, aminoglycoside, tetracycline, vancomycin, sulfonamide, and rifamycin resistance genes being the most abundant and shared by all samples. The highest total relative abundance of ARGs in food waste, digestate, and soil without and with digestate was detected in samples from January 2020, May 2020, October 2019, and May 2020, respectively. The MLS, vancomycin, tetracycline, aminoglycoside, and sulfonamide resistance genes had higher relative abundance in food waste and anaerobic digestate samples, whereas multidrug, bacteriocin, quinolone, and rifampin resistance genes were more abundant in paddy soil samples. Redundancy analysis demonstrated that aminoglycoside, tetracycline, sulfonamide, and rifamycin resistance genes were positively correlated with total ammonia nitrogen and pH of food waste and digestate samples. Vancomycin, multidrug, bacitracin, and fosmidomycin resistance genes had positive correlations with potassium, moisture, and organic matter in soil samples. The co-occurrence of ARG subtypes with bacterial genera was investigated using network analysis. Actinobacteria, Proteobacteria, Bacteroidetes, and Acidobacteria were identified as potential hosts of multidrug resistance genes.202337196953
7773100.9968Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07).201222369865
7160110.9968High-throughput profiling of antibiotic resistance genes in the Yellow River of Henan Province, China. Profiling antibiotic resistance genes (ARGs) in the Yellow River of China's Henan Province is essential for understanding the health risks of antibiotic resistance. The profiling of ARGs was investigated using high-throughput qPCR from water samples in seven representative regions of the Yellow River. The absolute and relative abundances of ARGs and moble genetic elements (MGEs) were higher in summer than in winter (ANOVA, p < 0.001). The diversity and abundance of ARGs were higher in the Yellow River samples from PY and KF than the other sites. Temperature (r = 0.470 ~ 0.805, p < 0.05) and precipitation (r = 0.492 ~ 0.815, p < 0.05) positively influenced the ARGs, while pH had a negative effect (r = - 0.462 ~ - 0.849, p < 0.05). Network analysis indicated that the pathogenic bacteria Rahnella, Bacillus, and Shewanella were the possible hub hosts of ARGs, and tnpA1 was the potential MGE hub. These findings provide insights into the factors influencing ARG dynamics and the complex interaction among the MGEs, pathogenic bacteria and environmental parameters in enriching ARGs in the Yellow River of Henan Province.202439080455
7237120.9968Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes. The anoxic-oxic (A/O) wastewater treatment process that is widely used in pig farms in China is an important repository for antibiotic resistance genes (ARGs). However, the distribution of ARGs and their hosts in the A/O process has not been well characterized. In this study, the wastewaters in the anoxic and oxic tanks for A/O processes were collected from 38 pig farms. The concentrations of 20 subtypes of ARGs, 5 denitrification-related genes, 2 integrons, and bacterial community composition were investigated. Bacterial genome binning was performed using metagenome sequencing. In this study, 20 subtypes of ARGs and integrons were detected in all sampling sites. A total of 16 of the 20 subtypes of ARGs were detected with the highest abundance in anoxic tanks, and sul1 was detected with a maximum average abundance of 19.21 ± 0.24 log(10) (copies/mL). Cooccurrence patterns were observed for some genes in the pig farm A/O process, such as sul1 and intl1, sul1 and tetG, and tetO and tetW. There was a significant cooccurrence pattern between the dominant denitrifying bacteria and some ARGs (bla(TEM), ermB, tetC, tetH and tetQ), so the dominant denitrifying bacteria were considered to be potential ARG hosts. In addition, 170 highly abundant bacterial genome bins were assembled and further confirmed that the denitrifying bacteria Brachymonas, Candidatus Competibacter, Thiobacillus and Steroidobacter were the important ARG hosts in the pig farm A/O process, providing a useful reference for the surveillance and risk management of ARGs in pig farm wastewater.202032615347
3481130.9968Antibiotics and Antibiotic Resistance Genes in Sediment of Honghu Lake and East Dongting Lake, China. Sediment is an ideal medium for the aggregation and dissemination of antibiotics and antibiotic resistance genes (ARGs). The levels of antibiotics and ARGs in Honghu Lake and East Dongting Lake of central China were investigated in this study. The concentrations of eight antibiotics (four sulfonamides and four tetracyclines) in Honghu Lake were in the range 90.00-437.43 μg kg(-1) (dry weight (dw)) with mean value of 278.21 μg kg(-1) dw, which was significantly higher than those in East Dongting Lake (60.02-321.04 μg kg(-1) dw, mean value of 195.70 μg kg(-1) dw). Among the tested three sulfonamide resistance genes (sul) and eight tetracycline resistance genes (tet), sul1, sul2, tetA, tetC, and tetM had 100 % detection frequency in sediment samples of East Dongting Lake, while only sul1, sul2, and tetC were observed in all samples of Honghu Lake. The relative abundance of sul2 was higher than that of sul1 at p < 0.05 level in both lakes. The relative abundance of tet genes in East Dongting Lake was in the following order: tetM > tetB > tetC > tetA. The relative abundance of sul1, sul2, and tetC in East Dongting Lake was significantly higher than those in Honghu Lake. The abundance of background bacteria may play an important role in the horizontal spread of sul2 and tetC genes in Honghu Lake and sul1 in East Dongting Lake, respectively. Redundancy analysis indicated that tetracyclines may play a more important role than sulfonamides in the abundance of sul1, sul2, and tetC gens in Honghu Lake and East Dongting Lake.201627418176
8016140.9968Transmission and retention of antibiotic resistance genes (ARGs) in chicken and sheep manure composting. Transmission of ARGs during composting with different feedstocks (i.e., sheep manure (SM), chicken manure (CM) and mixed manure (MM, SM:CM = 3:1 ratio) was studied by metagenomic sequencing. 53 subtypes of ARGs for 22 types of antibiotics were identified as commonly present in these compost mixes; among them, CM had higher abundance of ARGs, 1.69 times than that in SM, while the whole elimination rate of CM, MM and SM were 55.2%, 54.7% and 42.9%, respectively. More than 50 subtypes of ARGs (with 8.6%, 11.4% and 20.9% abundance in the initial stage in CM, MM and SM composting) were "diehard" ARGs, and their abundance grew significantly to 56.5%, 63.2% and 69.9% at the mature stage. These "diehard" ARGs were transferred from initial hosts of pathogenic and/or probiotic bacteria to final hosts of thermophilic bacteria, by horizontal gene transfer (HGT) via mobile gene elements (MGEs), and became rooted in composting products.202337196739
3484150.9967Occurrence of human pathogenic bacteria carrying antibiotic resistance genes revealed by metagenomic approach: A case study from an aquatic environment. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs are public issues that pose a high risk to aquatic environments and public health. Their diversity and abundance in water, intestine, and sediments of shrimp culture pond were investigated using metagenomic approach. A total of 19 classes of ARGs, 52 HPB species, and 7 species of HPB carrying ARGs were found. Additionally, 157, 104, and 86 subtypes of ARGs were detected in shrimp intestine, pond water, and sediment samples, respectively. In all the samples, multidrug resistance genes were the highest abundant class of ARGs. The dominant HPB was Enterococcus faecalis in shrimp intestine, Vibrio parahaemolyticus in sediments, and Mycobacterium yongonense in water, respectively. Moreover, E. faecalis (contig Intestine_364647) and Enterococcus faecium (contig Intestine_80272) carrying efrA, efrB and ANT(6)-Ia were found in shrimp intestine, Desulfosaricina cetonica (contig Sediment_825143) and Escherichia coli (contig Sediment_188430) carrying mexB and APH(3')-IIa were found in sediments, and Laribacter hongkongensis (contig Water_478168 and Water_369477), Shigella sonnei (contig Water_880246), and Acinetobacter baumannii (contig Water_525520) carrying sul1, sul2, ereA, qacH, OXA-21, and mphD were found in pond water. Mobile genetic elements (MGEs) analysis indicated that horizontal gene transfer (HGT) of integrons, insertion sequences, and plasmids existed in shrimp intestine, sediment, and water samples, and the abundance of integrons was higher than that of other two MGEs. The results suggested that HPB carrying ARGs potentially existed in aquatic environments, and that these contributed to the environment and public health risk evaluation.201930952342
7235160.9967Unveiling the characteristics of free-living and particle-associated antibiotic resistance genes associated with bacterial communities along different processes in a full-scale drinking water treatment plant. Antibiotic resistance genes (ARGs) as emerging contaminants, often co-occur with mobile genetic elements (MGEs) and are prevalent in drinking water treatment plants (DWTPs). In this study, the characteristics of free-living (FL) and particle-associated (PA) ARGs associated with bacterial communities were investigated along two processes within a full-scale DWTP. A total of 13 ARGs and two MGEs were detected. FL-ARGs with diverse subtypes and PA-ARGs with high abundances displayed significantly different structures. PA-MGEs showed a strong positive correlation with PA-ARGs. Chlorine dioxide disinfection achieved 1.47-log reduction of FL-MGEs in process A and 0.24-log reduction of PA-MGEs in process B. Notably, PA-fraction virtually disappeared after treatment, while blaTEM, sul2, mexE, mexF and IntI1 of FL-fraction remained in the finished water. Moreover, Acinetobacter lwoffii (0.04 % ∼ 45.58 %) and Acinetobacter schindleri (0.00 % ∼ 18.54 %) dominated the 16 pathogens, which were more abundant in FL than PA bacterial communities. PA bacteria exhibited a more complex structure with more keystone species than FL bacteria. MGEs contributed 20.23 % and 19.31 % to the changes of FL-ARGs and PA-ARGs respectively, and water quality was a key driver (21.73 %) for PA-ARGs variation. This study provides novel insights into microbial risk control associated with size-fractionated ARGs in drinking water.202439003808
7769170.9966Occurrence of super antibiotic resistance genes in the downstream of the Yangtze River in China: Prevalence and antibiotic resistance profiles. The super antibiotic resistance genes (SARGs) demonstrate more severe threats than other antibiotic resistance genes while have not received enough attention in the environment. The study explored the prevalence and the antibiotic tolerance profiles of two typical SARGs, MCR-1 and NDM-1, and their hosting bacteria in the downstream of the Yangtze River and the nearby wastewater treatment plant (WWTP) and drinking water treatment plant (DWTP). Results indicated that MCR-1 and NDM-1 were prevalent in the influent and biological units of the WWTP. Their hosting bacteria were effectively removed, but 2.49 × 10(8) copies/L MCR-1 and 7.00 × 10(6) copies/L NDM-1 were still persistent in the effluent. In the Yangtze River, MCR-1 and NDM-1 were detected with higher abundance and antibiotic tolerance than the WWTP effluent and were significantly affected by nearby water contamination and human activities. In the DWTP, MCR-1 and NDM-1 were detected with average values 5.56 × 10(7) copies/L and 2.14 × 10(5) copies/L in the influent. Their hosting bacteria were undetectable in the effluent, but the two SARGs were still persistent with 1.39 × 10(7) copies/L and 6.29 × 10(4) copies/L, and were greatly enriched in the sludge. Molecular ecological networks demonstrated wide hosting relationships between MCR-1/NDM-1 and bacteria community in the DWTP. Redundancy analysis found that MCR-1 positively correlated with COD and NH(3)-N, while negatively correlated with turbidity. Additionally, MCR-1 hosting bacteria positively correlated with NO(3)(-)-N and negatively correlated with COD and NH(3)-N. NDM-1 positively correlated with turbidity and NDM-1 hosting bacteria positively correlated with COD and NO(2)(-)-N. The study demonstrated that the WWTP could not effectively remove SARGs with high amount of them being discharged into the Yangtze River. Then they were transported into the DWTP and the persistent SARGs in the effluent would probably be transferred into human, thus imposing great threats on public health.201930321718
7167180.9966Occurrence and distribution of antibiotic pollution and antibiotic resistance genes in seagrass meadow sediments based on metagenomics. Seagrass meadows are one of the most important coastal ecosystems that provide essential ecological and economic services. The contamination levels of antibiotic and antibiotic resistance genes (ARGs) in coastal ecosystems are severely elevated owing to anthropogenic disturbances, such as terrestrial input, aquaculture effluent, and sewage discharge. However, few studies have focused on the occurrence and distribution of antibiotics and their corresponding ARGs in this habitat. Thus, we investigated the antibiotic and ARGs profiles, microbial communities, and ARG-carrying host bacteria in typical seagrass meadow sediments collected from Swan Lake, Caofeidian shoal harbor, Qingdao Bay, and Sishili Bay in the Bohai Sea and northern Yellow Sea. The total concentrations of 30 detected antibiotics ranged from 99.35 to 478.02 μg/kg, tetracyclines were more prevalent than other antibiotics. Metagenomic analyses showed that 342 ARG subtypes associated with 22 ARG types were identified in the seagrass meadow sediments. Multidrug resistance genes and RanA were the most dominant ARG types and subtypes, respectively. Co-occurrence network analysis revealed that Halioglobus, Zeaxanthinibacter, and Aureitalea may be potential hosts at the genus level, and the relative abundances of these bacteria were higher in Sishili Bay than those in other areas. This study provided important insights into the pollution status of antibiotics and ARGs in typical seagrass meadow sediments. Effective management should be performed to control the potential ecological health risks in seagrass meadow ecosystems.202438782270
3511190.9966Antibiotics and their associations with antibiotic resistance genes and microbial communities in estuarine and coastal sediment of Quanzhou Bay, Southeast China. The antibiotic concentrations spanned from 11.2 to 173.8 ng/g, with quinolones and tetracyclines being observed to be prevalent. The amount of microbial biomass as determined by Phospholipid fatty acid (PLFA) ranged from 2.92 to 10.99 mg kg(-1), with G- bacteria dominating. A total of 254 distinct ARGs and 10 MEGs were identified, with multidrug ARGs having the highest relative abundance (1.18 × 10(-2) to 3.00 × 10(-1) copies/16S rRNA gene copies), while vancomycin and sulfonamide resistance genes were the least abundant. Results from canonical-correlation analyses combined with redundancy analysis indicated that macrolides were significantly related to the shifts of microbial community structure in sediments, particularly in G+ bacteria that were more sensitive to antibiotic residues. It was observed that sulfonamide ARGs had a greater correlation with residual antibiotics than other ARGs. This study provided a field evidence that multiple residual antibiotics from coastal sites could cause fundamental shifts in microbial community and their associated ARGs.202337714074