AURANOFIN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
843200.9563A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria. Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi(4)MoO(9)/two-dimensional (2D) Bi(2)MoO(6), MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.202337531599
905010.9546Cationic Polysaccharide Conjugates as Antibiotic Adjuvants Resensitize Multidrug-Resistant Bacteria and Prevent Resistance. In recent years, traditional antibiotic efficacy has rapidly diminished due to the advent of multidrug-resistant (MDR) bacteria, which poses severe threat to human life and globalized healthcare. Currently, the development cycle of new antibiotics cannot match the ongoing MDR infection crisis. Therefore, novel strategies are required to resensitize MDR bacteria to existing antibiotics. In this study, novel cationic polysaccharide conjugates Dextran-graft-poly(5-(1,2-dithiolan-3-yl)-N-(2-guanidinoethyl)pentanamide) (Dex-g-PSS(n) ) is synthesized using disulfide exchange polymerization. Critically, bacterial membranes and efflux pumps are disrupted by a sub-inhibitory concentration of Dex-g-PSS(30) , which enhances rifampicin (RIF) accumulation inside bacteria and restores its efficacy. Combined Dex-g-PSS(30) and RIF prevents bacterial resistance in bacteria cultured over 30 generations. Furthermore, Dex-g-PSS(30) restores RIF effectiveness, reduces inflammatory reactions in a pneumonia-induced mouse model, and exhibits excellent in vivo biological absorption and degradation capabilities. As an antibiotic adjuvant, Dex-g-PSS(30) provides a novel resensitizing strategy for RIF against MDR bacteria and bacterial resistance. This Dex-g-PSS(30) research provides a solid platform for future MDR applications.202235962720
538020.9534In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gathered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus faecium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887, Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium. Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro screening of a drug library is a promising approach to identify effective drugs for specific bacteria.202235326755
843430.9524A potent and selective antimicrobial poly(amidoamine) dendrimer conjugate with LED209 targeting QseC receptor to inhibit the virulence genes of gram negative bacteria. The pandemic of multidrug-resistant Gram negative bacteria (GNB) is a worldwide healthcare concern, and very few antibiotics are being explored to match the clinical challenge. Recently, amino-terminated poly(amidoamine) (PAMAM) dendrimers have shown potential to function as broad antimicrobial agents. However, PAMAM displays a generation dependent cytotoxicity to mammalian cells and low selectivity on bacterial cells, which limits PAMAM to be developed as an antibacterial agent for systemic administration. We conjugated G3 PAMAM with LED209, a specific inhibitor of quorum sensor QseC of GNB, to generate a multifunctional agent PAMAM-LED209. Intriguingly, PAMAM-LED209 showed higher selectivity on GNB and lower cytotoxicity to mammalian cells, yet remained strong antibacterial activity. PAMAM-LED209 also inhibited virulence gene expression of GNB, and did not induce antibiotic-resistance. The present work firstly demonstrated that PAMAM-LED209 conjugate had a highly selective anti-GNB activity and low cytotoxicity, which offered a feasible strategy for combating multidrug-resistant GNB infections. FROM THE CLINICAL EDITOR: This research team demonstrated that a novel PAMAM-LED209 conjugate had highly selective activity against Gram-negative bacteria, coupled with low cytotoxicity, offering a potential strategy for combating multidrug-resistant infections.201525461286
843640.9517NIR-Activated Hydrogel with Dual-Enhanced Antibiotic Effectiveness for Thorough Elimination of Antibiotic-Resistant Bacteria. Antibiotic resistance has become a critical health crisis globally. Traditional strategies using antibiotics can lead to drug-resistance, while inorganic antimicrobial agents can cause severe systemic toxicity. Here, we have developed a dual-antibiotic hydrogel delivery system (PDA-Ag@Levo/CMCS), which can achieve controlled release of clinical antibiotics levofloxacin (Levo) and classic nanoscale antibiotic silver nanoparticles (AgNPs), effectively eliminating drug-resistant P. aeruginosa. Benefiting from the photothermal (PTT) effect of polydopamine (PDA), the local high temperature generated by PDA-Ag@Levo/CMCS can quickly kill bacteria through continuous and responsive release of dual-antibiotics to restore sensitivity to ineffective antibiotics. Moreover, AgNPs could significantly improve the efficiency of traditional antibiotics by disrupting bacterial membranes and reducing their toxicity to healthy tissues. A clever combination of PTT and drug-combination therapy can effectively eliminate biofilms and drug-resistant bacteria. Mechanism studies have shown that PDA-Ag@Levo might eliminate drug-resistant P. aeruginosa by disrupting biofilm formation and protein synthesis, and inhibit the resistance mutation of P. aeruginosa by promoting the expression of related genes, such as rpoS, dinB, and mutS. Collectively, the synergistic effect of this dual-antibiotic hydrogel combined with PTT provides a creative strategy for eliminating drug-resistant bacteria in chronic infection wounds.202539760335
503450.9509Resensitizing carbapenem- and colistin-resistant bacteria to antibiotics using auranofin. Global emergence of Gram-negative bacteria carrying the plasmid-borne resistance genes, bla(MBL) and mcr, raises a significant challenge to the treatment of life-threatening infections by the antibiotics, carbapenem and colistin (COL). Here, we identify an antirheumatic drug, auranofin (AUR) as a dual inhibitor of metallo-β-lactamases (MBLs) and mobilized colistin resistance (MCRs), two resistance enzymes that have distinct structures and substrates. We demonstrate that AUR irreversibly abrogates both enzyme activity via the displacement of Zn(II) cofactors from their active sites. We further show that AUR synergizes with antibiotics on killing a broad spectrum of carbapenem and/or COL resistant bacterial strains, and slows down the development of β-lactam and COL resistance. Combination of AUR and COL rescues all mice infected by Escherichia coli co-expressing MCR-1 and New Delhi metallo-β-lactamase 5 (NDM-5). Our findings provide potential therapeutic strategy to combine AUR with antibiotics for combating superbugs co-producing MBLs and MCRs.202033067430
537960.9506Membrane-Targeting Triphenylphosphonium Functionalized Ciprofloxacin for Methicillin-Resistant Staphylococcus aureus (MRSA). Multidrug-resistant (MDR) bacteria have become a severe problem for public health. Developing new antibiotics for MDR bacteria is difficult, from inception to the clinically approved stage. Here, we have used a new approach, modification of an antibiotic, ciprofloxacin (CFX), with triphenylphosphonium (TPP, PPh(3)) moiety via ester- (CFX-ester-PPh(3)) and amide-coupling (CFX-amide-PPh(3)) to target bacterial membranes. In this study, we have evaluated the antibacterial activities of CFX and its derivatives against 16 species of bacteria, including MDR bacteria, using minimum inhibitory concentration (MIC) assay, morphological monitoring, and expression of resistance-related genes. TPP-conjugated CFX, CFX-ester-PPh(3), and CFX-amide-PPh(3) showed significantly improved antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, including MDR S. aureus (methicillin-resistant S. aureus (MRSA)) strains. The MRSA ST5 5016 strain showed high antibacterial activity, with MIC values of 11.12 µg/mL for CFX-ester-PPh(3) and 2.78 µg/mL for CFX-amide-PPh(3). The CFX derivatives inhibited biofilm formation in MRSA by more than 74.9% of CFX-amide-PPh(3). In the sub-MIC, CFX derivatives induced significant morphological changes in MRSA, including irregular deformation and membrane disruption, accompanied by a decrease in the level of resistance-related gene expression. With these promising results, this method is very likely to combat MDR bacteria through a simple TPP moiety modification of known antibiotics, which can be readily prepared at clinical sites.202033143023
974670.9504Fluoroamphiphilic polymers exterminate multidrug-resistant Gram-negative ESKAPE pathogens while attenuating drug resistance. ESKAPE pathogens are a panel of most recalcitrant bacteria that could "escape" the treatment of antibiotics and exhibit high incidence of drug resistance. The emergence of multidrug-resistant (MDR) ESKAPE pathogens (particularly Gram-negative bacteria) accounts for high risk of mortality and increased resource utilization in health care. Worse still, there has been no new class of antibiotics approved for exterminating the Gram-negative bacteria for more than 50 years. Therefore, it is urgent to develop novel antibacterial agents with low resistance and potent killing efficacy against Gram-negative ESKAPE pathogens. Herein, we present a class of fluoropolymers by mimicking the amphiphilicity of cationic antimicrobial peptides. Our optimal fluoroamphiphilic polymer (PD(45)HF(5)) displayed selective antimicrobial ability for all MDR Gram-negative ESAKPE pathogens, low resistance, high in vitro cell selectivity, and in vivo curative efficacy. These findings implied great potential of fluoroamphiphilic cationic polymers as promising antibacterial agents against MDR Gram-negative ESKAPE bacteria and alleviating antibiotic resistance.202439196947
600880.9504Photopolymerized keratin-PGLa hydrogels for antibiotic resistance reversal and enhancement of infectious wound healing. Infectious wounds have become serious challenges for both treatment and management in clinical practice, so development of new antibiotics has been considered an increasingly difficult task. Here, we report the design and synthesis of keratin 31 (K31)-peptide glycine-leucine-amide (PGLa) photopolymerized hydrogels to rescue the antibiotic activity of antibiotics for infectious wound healing promotion. K31-PGLa displayed an outstanding synergistic effect with commercial antibiotics against drug-resistant bacteria by down-regulating the synthesis genes of efflux pump. Furthermore, the photopolymerized K31-PGLa/PEGDA hydrogels effectively suppressed drug-resistant bacteria growth and enhanced skin wound closure in murine. This study provided a promising alternative strategy for infectious wound treatment.202337810750
62290.9502Small-Molecule Antibiotics Inhibiting tRNA-Regulated Gene Expression Is a Viable Strategy for Targeting Gram-Positive Bacteria. Bacterial infections and the rise of antibiotic resistance, especially multidrug resistance, have generated a clear need for discovery of novel therapeutics. We demonstrated that a small-molecule drug, PKZ18, targets the T-box mechanism and inhibits bacterial growth. The T-box is a structurally conserved riboswitch-like gene regulator in the 5' untranslated region (UTR) of numerous essential genes of Gram-positive bacteria. T-boxes are stabilized by cognate, unacylated tRNA ligands, allowing the formation of an antiterminator hairpin in the mRNA that enables transcription of the gene. In the absence of an unacylated cognate tRNA, transcription is halted due to the formation of a thermodynamically more stable terminator hairpin. PKZ18 targets the site of the codon-anticodon interaction of the conserved stem I and reduces T-box-controlled gene expression. Here, we show that novel analogs of PKZ18 have improved MICs, bactericidal effects against methicillin-resistant Staphylococcus aureus (MRSA), and increased efficacy in nutrient-limiting conditions. The analogs have reduced cytotoxicity against eukaryotic cells compared to PKZ18. The PKZ18 analogs acted synergistically with aminoglycosides to significantly enhance the efficacy of the analogs and aminoglycosides, further increasing their therapeutic windows. RNA sequencing showed that the analog PKZ18-22 affects expression of 8 of 12 T-box controlled genes in a statistically significant manner, but not other 5'-UTR regulated genes in MRSA. Very low levels of resistance further support the existence of multiple T-box targets for PKZ18 analogs in the cell. Together, the multiple targets, low resistance, and synergy make PKZ18 analogs promising drugs for development and future clinical applications.202033077662
8435100.9501Antimicrobial Zeolitic Imidazolate Frameworks with Dual Mechanisms of Action. The horizontal transfer of drug-resistant genes and the formation of biofilm barriers have threatened the therapeutic efficacy of conventional antibiotic drugs. Development of non-antibiotic agents with high delivery efficiency through bacterial biofilms is urgently required. A pyrithione (PT)-loading zeolitic imidazolate framework (ZIF-8@PT) is synthesized to destroy biofilms and improve the sensitivity of bacteria to PT. ZIF-8@PT can target and destroy the biofilm as well as the cell membrane, promoting the intracellular delivery of PT and possibly its interaction with SmpB, a protein that could regulate the drug resistance of bacteria. ZIF-8@PT effectively suppresses abdominal infections induced by multiresistant Aeromonas veronii C4 in rodent models without systemic toxicity. ZIF-8@PT promises wide applications in treating infections caused by multidrug-resistant bacteria through a dual mechanism of action.202336815744
9765110.9498Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as bla(NDM), mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs.202337235051
9772120.9496Naringenin Microsphere as a Novel Adjuvant Reverses Colistin Resistance via Various Strategies against Multidrug-Resistant Klebsiella pneumoniae Infection. The efficacy of colistin, the last option against multidrug-resistant (MDR) Gram-negative bacteria, is severely threatened by the prevalence of plasmid- or chromosome-mediated colistin resistance genes. Herein, naringenin has dramatically restored colistin sensitivity against colistin-resistant Klebsiella pneumoniae infection without affecting bacterial viability, inducing resistance and causing obvious cell toxicity. Mechanism analysis reveals that naringenin potentiates colistin activity by multiple strategies including inhibition of mobilized colistin resistance gene activity, repression of two-component system regulation, and acceleration of reactive oxygen species-mediated oxidative damage. A lung-targeted delivery system of naringenin microspheres has been designed to facilitate naringenin bioavailability, accompanied by an effective potentiation of colistin for Klebsiella pneumoniae infection. Consequently, a new recognition of naringenin microspheres has been elucidated to restore colistin efficacy against colistin-resistant Gram-negative pathogens, which may be an effective strategy of developing potential candidates for MDR Gram-negative bacteria infection.202236530172
8437130.9495Tocopherol polyethylene glycol succinate-modified hollow silver nanoparticles for combating bacteria-resistance. Multiple drug resistance and the increase in the appearance of superbugs together with the exceedingly scant development of new potent antibiotic drugs pose an urgent global medical threat and imminent public security crisis. In the present study, we fabricated well-dispersed tocopherol polyethylene glycol succinate (TPGS)-capped silver nanoparticles (AgNPs) of about 10 nm in size. The hollow structure of the TPGS-capped AgNPs (TPGS/AgNPs) was confirmed and applied to load antibiotics. The TPGS/AgNPs proved to be able to cross the bacterial cell wall and penetrate into bacteria, thereby delivering more of the antibiotic to the interior of bacteria and thus enhancing the in vitro antibacterial effect of the antibiotic, even overcoming the drug-resistance in drug-resistant E. coli and Acinetobacter baumannii. It was found that the TPGS modification in the TPGS/AgNPs could decrease the activity of the efflux pumps AdeABC and AdeIJK in drug-resistant Acinetobacter baumannii via inhibiting the efflux pump genes adeB and adeJ, thus increasing the accumulation of the delivered antibiotic and overcoming the drug-resistance. Tigecycline delivered by TPGS/AgNPs could effectively antagonize drug-resistance in an acute peritonitis model mice, thereby increasing the survival rate and alleviating the inflammatory response. TPGS/AgNPs were developed as a novel and effective antibiotic delivery system and TPGS was demonstrated to have great potential as a pharmaceutical excipient for use in drug-resistant infection therapy.201930968093
8433140.9494Thermoresponsive Nanostructures: From Mechano-Bactericidal Action to Bacteria Release. Overuse of antibiotics can increase the risk of notorious antibiotic resistance in bacteria, which has become a growing public health concern worldwide. Featured with the merit of mechanical rupture of bacterial cells, the bioinspired nanopillars are promising alternatives to antibiotics for combating bacterial infections while avoiding antibacterial resistance. However, the resident dead bacterial cells on nanopillars may greatly impair their bactericidal capability and ultimately impede their translational potential toward long-term applications. Here, we show that the functions of bactericidal nanopillars can be significantly broadened by developing a hybrid thermoresponsive polymer@nanopillar-structured surface, which retains all of the attributes of pristine nanopillars and adds one more: releasing dead bacteria. We fabricate this surface through coaxially decorating mechano-bactericidal ZnO nanopillars with thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm) brushes. Combining the benefits of ZnO nanopillars and PNIPAAm chains, the antibacterial performances can be controllably regulated between ultrarobust mechano-bactericidal action (∼99%) and remarkable bacteria-releasing efficiency (∼98%). Notably, both the mechanical sterilization against the live bacteria and the controllable release for the pinned dead bacteria solely stem from physical actions, stimulating the exploration of intelligent structure-based bactericidal surfaces with persistent antibacterial properties without the risk of triggering drug resistance.202134905683
9094150.9493Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria.201930632740
9092160.9493Antimicrobial and Antiviral Nanofibers Halt Co-Infection Spread via Nuclease-Mimicry and Photocatalysis. The escalating spread of drug-resistant bacteria and viruses is a grave concern for global health. Nucleic acids dominate the drug-resistance and transmission of pathogenic microbes. Here, imidazolium-type poly(ionic liquid)/porphyrin (PIL-P) based electrospun nanofibrous membrane and its cerium (IV) ion complex (PIL-P-Ce) are developed. The obtained PIL-P-Ce membrane exhibits high and stable efficiency in eradicating various microorganisms (bacteria, fungi, and viruses) and decomposing microbial antibiotic resistance genes and viral nucleic acids under light. The nuclease-mimetic and photocatalytic mechanisms of the PIL-P-Ce are elucidated. Co-infection wound models in mice with methicillin-resistant S. aureus and hepatitis B virus demonstrate that PIL-P-Ce integrate the triple effects of cationic polymer, photocatalysis, and nuclease-mimetic activities. As revealed by proteomic analysis, PIL-P-Ce shows minimal phototoxicity to normal tissues. Hence, PIL-P-Ce has potential as a "green" wound dressing to curb the spread of drug-resistant bacteria and viruses in clinical settings.202438647392
9221170.9491Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.202235025730
9222180.9486Bacterial proton motive force as an unprecedented target to control antimicrobial resistance. Novel antibacterial therapies are urgently required to tackle the increasing number of multidrug-resistant pathogens. Identification of new antimicrobial targets is critical to avoid possible cross-resistance issues. Bacterial proton motive force (PMF), an energetic pathway located on the bacterial membrane, crucially regulates various biological possesses such as adenosine triphosphate synthesis, active transport of molecules, and rotation of bacterial flagella. Nevertheless, the potential of bacterial PMF as an antibacterial target remains largely unexplored. The PMF generally comprises electric potential (ΔΨ) and transmembrane proton gradient (ΔpH). In this review, we present an overview of bacterial PMF, including its functions and characterizations, highlighting the representative antimicrobial agents that specifically target either ΔΨ or ΔpH. At the same time, we also discuss the adjuvant potential of bacterial PMF-targeting compounds. Lastly, we highlight the value of PMF disruptors in preventing the transmission of antibiotic resistance genes. These findings suggest that bacterial PMF represents an unprecedented target, providing a comprehensive approach to controlling antimicrobial resistance.202336896761
9097190.9486Antimicrobial peptides with symmetric structures against multidrug-resistant bacteria while alleviating antimicrobial resistance. In response to the dramatically increasing antimicrobial resistance, a series of new symmetric peptides were designed and synthesized in this study by a "WWW" motif as the symmetric center, arginine as the positive charge amino acid and the terminus symmetrically tagged with hydrophobic amino acids. Amongst the new symmetric peptide FRRW (FRRWWWRRF-NH(2)) presented the highest cell selectivity for bacteria over mammalian cell and exerted excellent antimicrobial potential against a broad of bacteria, especially difficult-to-kill multidrug-resistant strains clinical isolates. FRRW also displayed perfect stability in physiological salt ions and rapid killing speed as well as acted on multiple mechanisms including non-receptor mediated membrane and intra-molecular mechanisms. Importantly, FRRW emerged a low tendency of resistance in contrast to traditional antibiotics ciprofloxacin and gentamicin. What's more, FRRW could resist or alleviate or even reverse the ciprofloxacin- and gentamicin-resistance by changing the permeability of bacterial membrane and inhibiting the efflux pumps of bacteria. Furthermore, FRRW exhibited remarkable effectiveness and higher safety in vivo than polymyxin B. In summary, the new symmetric peptide FRRW was promised to be as a new antimicrobial candidate for overcoming the increasing bacterial resistance.202133610592