# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1400 | 0 | 0.8978 | Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli. | 2022 | 35147175 |
| 1409 | 1 | 0.8962 | Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria. | 2021 | 33617559 |
| 1425 | 2 | 0.8958 | Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control. | 2024 | 39172656 |
| 1480 | 3 | 0.8956 | Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis. | 2024 | 38456690 |
| 1428 | 4 | 0.8947 | Carbapenem-resistant Gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. We aimed to identify the carbapenem-resistant Gram-negative bacteria (GNB) causing catheter-related bloodstream infections (CRBSI) in intensive care units (ICU) in a tertiary care Egyptian hospital, to study their resistance mechanisms by phenotypic and genetic tests, and to use ERIC-PCR for assessing their relatedness. The study was conducted over 2 years in three ICUs in a tertiary care hospital in Egypt during 2015-2016. We identified 194 bloodstream infections (BSIs); 130 (67.01%) were caused by GNB, of which 57 were isolated from CRBSI patients (73.84%). Identification of isolates was performed using conventional methods and MALDI-TOF MS. Antimicrobial susceptibility testing (AST) was done by disc diffusion following CLSI guidelines. Phenotypic detection of carbapenemases enzymes activity was by modified Hodge test and the Carba-NP method. Isolates were investigated for the most common carbapenemases encoding genes bla(KPC), bla(NDM), and bla(OXA-48) using multiplex PCR. Molecular typing of carbapenem-resistant isolates was done by ERIC-PCR followed by sequencing of common resistance genes. The overall rate of CRBSI in our study was 3.6 per 1000 central venous catheter (CVC) days. Among 57 Gram-negative CRBSI isolates, Klebsiella pneumoniae (K. pneumoniae) was the most frequently isolated (27/57; 47.4%), of which more than 70% were resistant to Meropenem. Phenotypic tests for carbapenemases showed that 37.9% of isolates were positive by modified Hodge test and 63.8% by Carba-NP detection. Multiplex PCR assay detected the bla(NDM) in 28.6% of the isolates and bla(KPC) in 26.8%, bla(NDM) and bla(KPC) were detected together in the same isolate in 5.6%, while bla(OXA-48)-like were not detected. ERIC-PCR detected limited genetic relatedness between K. pneumoniae isolates. Elevated resistance rates were observed to all antibiotics including carbapenems among K. pneumoniae isolates causing CRBSI. ERIC-PCR showed that the resistant isolates were mainly polyclonal. Our results call for reinforcement of antimicrobial stewardship and measures to prevent CRBSI. | 2018 | 29936619 |
| 1389 | 5 | 0.8945 | Whole-Genome Sequencing of Gram-Negative Bacteria Isolated From Bovine Mastitis and Raw Milk: The First Emergence of Colistin mcr-10 and Fosfomycin fosA5 Resistance Genes in Klebsiella pneumoniae in Middle East. Antimicrobial resistance is a major concern in the dairy industry. This study investigated the prevalence, antimicrobial resistance phenotypes, and genome sequencing of Gram-negative bacteria isolated from clinical (n = 350) and subclinical (n = 95) bovine mastitis, and raw unpasteurized milk (n = 125). Klebsiella pneumoniae, Aeromonas hydrophila, Enterobacter cloacae (100% each), Escherichia coli (87.78%), and Proteus mirabilis (69.7%) were the most prevalent multidrug-resistant (MDR) species. Extensive drug-resistance (XDR) phenotype was found in P. mirabilis (30.30%) and E. coli (3.33%) isolates. Ten isolates (four E. coli, three Klebsiella species and three P. mirabilis) that displayed the highest multiple antibiotic resistance (MAR) indices (0.54-0.83), were exposed to whole-genome sequencing (WGS). Two multilocus sequence types (MLST): ST2165 and ST7624 were identified among the sequenced E. coli isolates. Three E. coli isolates (two from clinical mastitis and one from raw milk) belonging to ST2165 showed similar profile of plasmid replicon types: IncFIA, IncFIB, IncFII, and IncQ1 with an exception to an isolate that contained IncR, whereas E. coli ST7624 showed a different plasmid profile including IncHI2, IncHI2A, IncI1α, and IncFII replicon types. ResFinder findings revealed the presence of plasmid-mediated colistin mcr-10 and fosfomycin fosA5 resistance genes in a K. pneumoniae (K1) isolate from bovine milk. Sequence analysis of the reconstructed mcr-10 plasmid from WGS of K1 isolate, showed that mcr-10 gene was bracketed by xerC and insertion sequence IS26 on an IncFIB plasmid. Phylogenetic analysis revealed that K1 isolate existed in a clade including mcr-10-harboring isolates from human and environment with different STs and countries [United Kingdom (ST788), Australia (ST323), Malawi (ST2144), Myanmar (ST705), and Laos (ST2355)]. This study reports the first emergence of K. pneumoniae co-harboring mcr-10 and fosA5 genes from bovine milk in the Middle East, which constitutes a public health threat and heralds the penetration of the last-resort antibiotics. Hence, prudent use of antibiotics in both humans and animals and antimicrobial surveillance plans are urgently required. | 2021 | 34956131 |
| 1475 | 6 | 0.8944 | Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions. | 2020 | 32983057 |
| 1407 | 7 | 0.8943 | World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil. | 2025 | 39957800 |
| 983 | 8 | 0.8942 | Correlation between Identification of β-Lactamase Resistance Genes and Antimicrobial Susceptibility Profiles in Gram-Negative Bacteria: a Laboratory Data Analysis. We reported the frequency of resistance gene detection in Gram-negative blood culture isolates and correlated these findings with corresponding antibiograms. Data were obtained from 1045 isolates tested on the GenMark Dx ePlex Blood Culture Identification Gram-Negative Panels at the Mount Sinai Hospital Clinical Microbiology Laboratory in New York from March 2019 to February 2021. Susceptibilities were performed using Vitek 2 (bioMérieux Clinical Diagnostics) or Microscan (Beckman Coulter Inc.). bla(CTX-M) was detected in 26.4% Klebsiella pneumoniae, 23.5% Escherichia coli, and 16.4% Proteus mirabilis isolates. As would be expected, both bla(CTX-M) and bla(CTX-M) negative isolates were likely to be susceptible to newer agents while bla(CTX-M) positive isolates were more likely to be resistant to earlier generations of beta-lactam antibiotics. 3/204 bla(CTX-M)-positive isolates were found to be ceftriaxone-susceptible. Conversely, 2.8% ceftriaxone nonsusceptible strains were negative for all β-lactamase genes on the ePlex BCID-GN panel, including bla(CTX-M). The prevalence of CTX-M-producing Enterobacterales remains high in the United States. A small number of bla(CTX-M)-positive isolates were susceptible to ceftriaxone, and a small number of ceftriaxone nonsusceptible isolates were negative for bla(CTX-M). Further studies are needed to determine the optimal management when an isolate is phenotypically susceptible to ceftriaxone, but bla(CTX-M) is detected. IMPORTANCE There is limited literature on corresponding results obtained from rapid molecular diagnostics with the antibiotic susceptibility profile. We reported a correlation between the results obtained from ePlex and the antibiograms against a large collection of Gram-negative bacteria. We reported that there can be a discrepancy in a small number of cases, but the clinical significance of that is unknown. | 2022 | 35254140 |
| 2114 | 9 | 0.8942 | Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended. | 2024 | 38742235 |
| 1491 | 10 | 0.8940 | Evaluation of an expanded antibiotic resistance gene panel on prediction of antimicrobial susceptibility results for Gram-negative bacteria in blood cultures. The QIAstat-Dx BCID Panels (RUO) ("QIAstat," QIAGEN, Hilden, Germany) for identification of 13 Gram-negative bacteria and 18 antimicrobial resistance (AMR) gene groups was evaluated. The study was conducted in two phases; in phase 1, analytical performance was evaluated against 154 challenge isolates against whole genome sequencing data. In this phase, sensitivity and specificity of organism identification calls were 153/154 (99.3%) and 1,748/1,749 (99.8%), respectively. For AMR genes, sensitivity was 434/435 (99.8%) and specificity was 2,334/2,337 (99.9%). One false-negative bla(IMP), one false-positive bla(CTX-M), and two false-positive aac-6'-lb detections were noted in this challenge set of organisms. In phase 2, 101 clinical blood culture isolates of Gram-negative rods were evaluated by the multiplexed PCR versus reference broth microdilution, for the ability of identification combined with AMR genes to predict final susceptibility results. Negative predictive values were 92.8% for ampicillin resistance (100% for Escherichia coli), 93.4% for ceftriaxone, 97.4% for ceftazidime, and 98.7% for cefepime. In constrast, negative predictive values for current standard of care (identification plus detection of bla(CTX-M)) ranged from 56.5% to 88.8%. This study demonstrated additive value of additional beta-lactamase genes for bacteria isolated from blood cultures. IMPORTANCE: Prediction of Gram-negative bacteria resistance through detection of resistance genes is complex. This study evaluated a novel, direct-from-blood or bacterial isolate multiplexed PCR for the detection of 17 resistance genes, and evaluated the prediction of antimicrobial susceptibility. | 2024 | 39297627 |
| 1441 | 11 | 0.8940 | Molecular characterisation of carbapenem-resistant Klebsiella pneumoniae clinical isolates: preliminary experience from a tertiary care teaching hospital in the Himalayas. BACKGROUND: There is a lack of whole-genome sequencing (WGS) data on multidrug-resistant (MDR) bacteria from the Uttarakhand region of India. The aim of this study was to generate WGS data of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates recovered from patients in Uttarakhand's tertiary care centre. METHODS: A cross-sectional study included 29 MDR K. pneumoniae test isolates obtained from various clinical samples submitted to the bacteriology laboratory for culture and sensitivity testing from July 2018 to August 2019. After preliminary identification and antibiotic susceptibility testing, these isolates were subjected to WGS. RESULTS: A total of 27 of 29 isolates were CRKP. ST14 was the most common sequence type (n=8 [29.6%]). Carbapenem resistance was mainly encoded by OXA-48-like genes (21/27 [77.8%]). All isolates had a varied arsenal of resistance genes to different antibiotic classes. KL2 (9/27 [33.3%]) and KL51 (8/27 [29.6%]) were dominant K loci types. O1 and O2 together accounted for 88.9% (n=27) of CRKP isolates. Genes encoding yersiniabactin (ybt) and aerobactin (iuc) were identified in 88.9% (24/27) and 29.6% (8/27) of isolates. The predominant plasmid replicons present were ColKP3 (55.5%), IncFII(K) (51.8%) and IncFIB(pQil) (44.4%). CONCLUSIONS: This study emphasises the need for continued genomic surveillance of MDR bacteria that could be instrumental in developing treatment guidelines based on integrating phenotypic and molecular methods. | 2022 | 35029688 |
| 1410 | 12 | 0.8940 | A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis. | 2020 | 33087115 |
| 1418 | 13 | 0.8939 | Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran. | 2023 | 37155016 |
| 5823 | 14 | 0.8939 | Comparing Patient Risk Factor-, Sequence Type-, and Resistance Locus Identification-Based Approaches for Predicting Antibiotic Resistance in Escherichia coli Bloodstream Infections. Rapid diagnostic tests for antibiotic resistance that identify the presence or absence of antibiotic resistance genes/loci are increasingly being developed. However, these approaches usually neglect other sources of predictive information which could be identified over shorter time periods, including patient epidemiologic risk factors for antibiotic resistance and markers of lineage. Using a data set of 414 Escherichia coli isolates recovered from separate episodes of bacteremia at a single academic institution in Toronto, Ontario, Canada, between 2010 and 2015, we compared the potential predictive ability of three approaches (epidemiologic risk factor-, pathogen sequence type [ST]-, and resistance gene identification-based approaches) for classifying phenotypic resistance to three antibiotics representing classes of broad-spectrum antimicrobial therapy (ceftriaxone [a 3rd-generation cephalosporin], ciprofloxacin [a fluoroquinolone], and gentamicin [an aminoglycoside]). We used logistic regression models to generate model receiver operating characteristic (ROC) curves. Predictive discrimination was measured using apparent and corrected (bootstrapped) areas under the curves (AUCs). Epidemiologic risk factor-based models based on two simple risk factors (prior antibiotic exposure and recent prior susceptibility of Gram-negative bacteria) provided a modest predictive discrimination, with AUCs ranging from 0.65 to 0.74. Sequence type-based models demonstrated strong discrimination (AUCs, 0.83 to 0.94) across all three antibiotic classes. The addition of epidemiologic risk factors to sequence type significantly improved the ability to predict resistance for all antibiotics (P < 0.05). Resistance gene identification-based approaches provided the highest degree of discrimination (AUCs, 0.88 to 0.99), with no statistically significant benefit being achieved by adding the patient epidemiologic predictors. In summary, sequence type or other lineage-based approaches could produce an excellent discrimination of antibiotic resistance and may be improved by incorporating readily available patient epidemiologic predictors but are less discriminatory than identification of the presence of known resistance loci. | 2019 | 30894438 |
| 1454 | 15 | 0.8939 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 2196 | 16 | 0.8938 | Antibiotic resistance profiles in Gram-negative bacteria causing bloodstream and urinary tract infections in paediatric and adult patients in Ndola District, Zambia, 2020-2021. BACKGROUND: Bloodstream infections (BSIs) and urinary tract infections (UTIs) caused by antibiotic resistant bacteria (ARB) have unfavourable treatment outcomes and negative economic impacts. OBJECTIVES: The main objective of this study was to determine antibiotic resistance profiles in Gram-negative bacteria (GNB) causing BSIs and UTIs. METHOD: A prospective study from October 2020 to January 2021 at Ndola Teaching Hospital and Arthur Davison Children's Hospital in the Ndola district, Zambia. Blood and urine samples collected from inpatients and outpatients presenting with fever and/or urinary tract infection symptoms were submitted for microbiological analysis. Pathogen identification and antibiotic susceptibility was determined by the automated VITEK 2 Compact machine. Resistance genes to commonly used antibiotics were determined using polymerase chain reaction. Data were analysed using SPSS version 28.0. RESULTS: One hundred and ten GNB were isolated, E. coli (45.5%) was predominant, with varying resistance profiles to different antibiotic classes. Resistance to third-generation cephalosporin was highest in Enterobacter cloacae (75%) and Klebsiella pneumoniae (71%), respectively. Emergence of carbapenem resistance was noted with the highest being 17% in Acinetobacter baumannii. Notably, the prevalence of multi-drug resistance was 63% and extensively drug-resistance was 32%. Resistance gene determinants identified included bla (CTX-M,) qnrA and bla (NDM). CONCLUSION: High level antibiotic resistance was observed in GNB known to be prevalent causative agents of BSIs and UTIs locally in Zambia. Improving microbiology diagnostic capacity, strengthening antimicrobial stewardship programs and enforcing infection prevention and control measures are of utmost importance in promoting rational use of antibiotics and preventing the spread and emergence of resistant pathogens. | 2025 | 40585877 |
| 1478 | 17 | 0.8937 | Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals. | 2023 | 36519852 |
| 2132 | 18 | 0.8937 | Prevailing Antibiotic Resistance Patterns in Hospitalized Patients with Urinary Tract Infections in a Vietnamese Teaching Hospital (2014 - 2021). PURPOSE: In a Vietnamese teaching hospital, this study examined the prevalence and patterns of antimicrobial resistance (AMR) of common bacteria isolated from hospitalized patients with urinary tract infections (UTIs) between 2014 and 2021. METHODS: From 4060 urine samples collected, common pathogens were isolated using quantitative culture on brilliance UTI Clarity agar and blood agar. Bacterial identification, antimicrobial susceptibility testing, and multidrug resistance (MDR) classification followed standardized techniques. Bacteria with a frequency of less than 2% were excluded. Statistical analysis was performed using R software, with the chi-square test applied and significance set at p < 0.05. RESULTS: Of 4060 urine samples collected, 892 (22.0%) had positive results for common infections. Gram-negative bacteria predominated (591/892; 66.3%), with Escherichia coli being the most prevalent (336/892; 37.7%). Enterococcus spp. (152/892; 17.0%) was the leading Gram-positive pathogen. Some antibiotics had significant resistance rates, especially in Gram-negative bacteria, with ampicillin having the greatest resistance rate (92.8%). Carbapenems and nitrofurantoin remained generally effective. Among Gram-positive bacteria, high resistance was seen for macrolides ranging from 85.5% (azithromycin) to 89.8% (erythromycin), and for tetracyclines, ranging from 0% (teicoplanin) to 85.2% (tetracycline). There was no resistance to tigecycline and teicoplanin, indicating their potential efficacy against multidrug resistance (MDR) bacteria causing UTIs. MDR rates were higher in Gram-negative bacteria (64.8% versus 43.5%), with Klebsiella pneumoniae having the highest rate (78.7%). CONCLUSION: This study underscores the urgent need for ongoing surveillance of AMR patterns in Vietnam and emphasizes the significance of efficient infection prevention methods, prudent use of antibiotics, and targeted interventions to combat antimicrobial resistance. | 2025 | 39911566 |
| 1411 | 19 | 0.8937 | Detection and characterization of carbapenem resistant Gram-negative bacilli isolates recovered from hospitalized patients at Soba University Hospital, Sudan. BACKGROUND: Antimicrobial resistance (AMR) poses a complex threat to global health security and universal health coverage. Recently, nosocomial infections with carbapenemase-producing Gram-negative bacilli (GNB) is increasing worldwide. We report the molecular characterization and detection of genes associated with carbapenemase producing Gram negative bacteria isolated from hospitalized patients at Soba University Hospital (SUH) in Khartoum State, Sudan. RESULTS: Between October 2016 and February 2017, a total of 206 GNB clinical specimens were collected from hospitalized patients in SUH. Of 206 carbapenem resistance isolates, 171 (83 %) were confirmed as phenotypically resistant and 121 (58.7 %) isolates harboured one or more carbapenemase genes. New Delhi metallo-β-lactamase (NDM) types were the most predominant genes, blaNDM 107(52 %), followed by blaIMP 7 (3.4 %), blaOXA-48 5(2.4 %) and blaVIM 2 (0.9 %). Co-resistance genes with NDM producing GNB were detected in 87 (81.3 %) of all blaNDM producing isolates. NDM-1 was the most frequent subtype observed in 75 (70 %) blaNDM producing isolates. The highest percentage of resistance was recorded in ampicillin (98 %), cephalexin (93.5 %) amoxicillin clavulanic acid (90 %), cefotaxime (89.7 %), ceftriaxone (88.4 %), ceftazidime (84.2 %), sulfamethoxazole-trimethoprim (78.4 %) and nitrofurantoin (75.2 %), aztreonam (66 %) and temocillin (64 %). A close correlation between phenotypic and carbapenemase genes detection in all GNB was observed. CONCLUSIONS: The frequency of carbapenemase producing bacilli was found to be high in SUH. NDM was found to be the most prevalent carbapenemase gene among clinical isolates. Close surveillance across all hospitals in Sudan is required. The relative distribution of carbapenemase genes among GNB in nosocomial infections in Africa needs to be defined. | 2021 | 33947325 |