# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1 | 0 | 0.8660 | Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria. | 1999 | 10411257 |
| 9976 | 1 | 0.8608 | New ΦBT1 site-specific integrative vectors with neutral phenotype in Streptomyces. Integrative plasmids are one of the best options to introduce genes in low copy and in a stable form into bacteria. The ΦC31-derived plasmids constitute the most common integrative vectors used in Streptomyces. They integrate at different positions (attB and pseudo-attB sites) generating different mutations. The less common ΦBT1-derived vectors integrate at the unique attB site localized in the SCO4848 gene (S. coelicolor genome) or their orthologues in other streptomycetes. This work demonstrates that disruption of SCO4848 generates a delay in spore germination. SCO4848 is co-transcribed with SCO4849, and the spore germination phenotype is complemented by SCO4849. Plasmids pNG1-4 were created by modifying the ΦBT1 integrative vector pMS82 by introducing a copy of SCO4849 under the control of the promoter region of SCO4848. pNG2 and pNG4 also included a copy of the P ermE * in order to facilitate gene overexpression. pNG3 and pNG4 harboured a copy of the bla gene (ampicillin resistance) to facilitate selection in E. coli. pNG1-4 are the only integrative vectors designed to produce a neutral phenotype when they are integrated into the Streptomyces genome. The experimental approach developed in this work can be applied to create phenotypically neutral integrative plasmids in other bacteria. | 2016 | 26758297 |
| 802 | 2 | 0.8466 | YqhC regulates transcription of the adjacent Escherichia coli genes yqhD and dkgA that are involved in furfural tolerance. Previous results have demonstrated that the silencing of adjacent genes encoding NADPH-dependent furfural oxidoreductases (yqhD dkgA) is responsible for increased furfural tolerance in an E. coli strain EMFR9 [Miller et al., Appl Environ Microbiol 75:4315-4323, 2009]. This gene silencing is now reported to result from the spontaneous insertion of an IS10 into the coding region of yqhC, an upstream gene. YqhC shares homology with transcriptional regulators belonging to the AraC/XylS family and was shown to act as a positive regulator of the adjacent operon encoding YqhD and DkgA. Regulation was demonstrated by constructing a chromosomal deletion of yqhC, a firefly luciferase reporter plasmid for yqhC, and by a direct comparison of furfural resistance and NADPH-dependent furfural reductase activity. Closely related bacteria contain yqhC, yqhD, and dkgA orthologs in the same arrangement as in E. coli LY180. Orthologs of yqhC are also present in more distantly related Gram-negative bacteria. Disruption of yqhC offers a useful approach to increase furfural tolerance in bacteria. | 2011 | 20676725 |
| 10 | 3 | 0.8459 | YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance. | 2020 | 33154763 |
| 9 | 4 | 0.8405 | Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea. | 2011 | 21726385 |
| 801 | 5 | 0.8403 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |
| 529 | 6 | 0.8400 | Crystal structure of the transcriptional repressor PagR of Bacillus anthracis. PagR is a transcriptional repressor in Bacillus anthracis that controls the chromosomal S-layer genes eag and sap, and downregulates the protective antigen pagA gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 A resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 degrees. | 2010 | 19926656 |
| 803 | 7 | 0.8397 | Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus. | 1992 | 1624446 |
| 7 | 8 | 0.8390 | An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity. | 2019 | 30770836 |
| 506 | 9 | 0.8387 | A kiss of death--proteasome-mediated membrane fusion and programmed cell death in plant defense against bacterial infection. Eukaryotes have evolved various means for controlled and organized cellular destruction, known as programmed cell death (PCD). In plants, PCD is a crucial regulatory mechanism in multiple physiological processes, including terminal differentiation, senescence, and disease resistance. In this issue of Genes & Development, Hatsugai and colleagues (pp. 2496-2506) demonstrate a novel plant defense strategy to trigger bacteria-induced PCD, involving proteasome-dependent tonoplast and plasma membrane fusion followed by discharge of vacuolar antimicrobial and death-inducing contents into the apoplast. | 2009 | 19884251 |
| 391 | 10 | 0.8376 | New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in gram-negative bacteria. Three types of new variants of the broad-host-range transposon Tn5 are described. (i) Tn5-mob derivatives with the new selective resistance (R) markers GmR, SpR and TcR facilitate the efficient mobilization of replicons within a wide range of Gram-negative bacteria. (ii) Promoter probe transposons carry the promoterless reporter genes lacZ, nptII, or luc, and NmR, GmR or TcR as selective markers. These transposons can be used to generate transcriptional fusions upon insertion, thus facilitating accurate determinations of gene expression. (iii) Tn5-P-out derivatives carry the npt- or tac-promoter reading out from the transposon, and TcR, NmR or GmR genes. These variants allow the constitutive expression of downstream genes. The new Tn5 variants are available on mobilizable Escherichia coli vectors suitable as suicidal carriers for transposon mutagenesis of non-E. coli recipients and some on a phage lambda mutant to be used for transposon mutagenesis in E. coli. | 1989 | 2551782 |
| 58 | 11 | 0.8372 | A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility (S) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas-caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri (Xcc) causing canker in citrus and Xanthomonas campestris pv. vesicatoria (Xcv) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5(V 39E), CsTFIIAγ(V 39E), pepper CaTFIIAγ(V 39E), and tomato SlTFIIAγ(V 39E) also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ(V 39E)-type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops. | 2017 | 29163628 |
| 46 | 12 | 0.8370 | The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. | 2018 | 29603592 |
| 349 | 13 | 0.8369 | Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. A collection of Tn5-derived minitransposons has been constructed that simplifies substantially the generation of insertion mutants, in vivo fusions with reporter genes, and the introduction of foreign DNA fragments into the chromosome of a variety of gram-negative bacteria, including the enteric bacteria and typical soil bacteria like Pseudomonas species. The minitransposons consist of genes specifying resistance to kanamycin, chloramphenicol, streptomycin-spectinomycin, and tetracycline as selection markers and a unique NotI cloning site flanked by 19-base-pair terminal repeat sequences of Tn5. Further derivatives also contain lacZ, phoA, luxAB, or xylE genes devoid of their native promoters located next to the terminal repeats in an orientation that affords the generation of gene-operon fusions. The transposons are located on a R6K-based suicide delivery plasmid that provides the IS50R transposase tnp gene in cis but external to the mobile element and whose conjugal transfer to recipients is mediated by RP4 mobilization functions in the donor. | 1990 | 2172217 |
| 502 | 14 | 0.8366 | A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Streptomyces davawensis is the only organism known to synthesize the antibiotic roseoflavin, a riboflavin (vitamin B2) analog. Roseoflavin is converted to roseoflavin mononucleotide (RoFMN) and roseoflavin adenine dinucleotide in the cytoplasm of target cells. (Ribo-)Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for the biosynthesis and transport of riboflavin. Streptomyces davawensis is roseoflavin resistant, and the closely related bacterium Streptomyces coelicolor is roseoflavin sensitive. The two bacteria served as models to investigate roseoflavin resistance of S. davawensis and to analyze the mode of action of roseoflavin in S. coelicolor. Our experiments demonstrate that the ribB FMN riboswitch of S. davawensis (in contrast to the corresponding riboswitch of S. coelicolor) is able to discriminate between the two very similar flavins FMN and RoFMN and shows opposite responses to the latter ligands. | 2012 | 22740651 |
| 556 | 15 | 0.8366 | An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn(2+) /Cd(2+) -dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells. | 2017 | 28696001 |
| 545 | 16 | 0.8366 | Characterization of the organic hydroperoxide resistance system of Brucella abortus 2308. The organic hydroperoxide resistance protein Ohr has been identified in numerous bacteria where it functions in the detoxification of organic hydroperoxides, and expression of ohr is often regulated by a MarR-type regulator called OhrR. The genes annotated as BAB2_0350 and BAB2_0351 in the Brucella abortus 2308 genome sequence are predicted to encode OhrR and Ohr orthologs, respectively. Using isogenic ohr and ohrR mutants and lacZ promoter fusions, it was determined that Ohr contributes to resistance to organic hydroperoxide, but not hydrogen peroxide, in B. abortus 2308 and that OhrR represses the transcription of both ohr and ohrR in this strain. Moreover, electrophoretic mobility shift assays and DNase I footprinting revealed that OhrR binds directly to a specific region in the intergenic region between ohr and ohrR that shares extensive nucleotide sequence similarity with so-called "OhrR boxes" described in other bacteria. While Ohr plays a prominent role in protecting B. abortus 2308 from organic hydroperoxide stress in in vitro assays, this protein is not required for the wild-type virulence of this strain in cultured murine macrophages or experimentally infected mice. | 2012 | 22821968 |
| 64 | 17 | 0.8361 | Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding pseudomonas syringae avrRpt2 avirulence gene. Plants have evolved a large number of disease resistance genes that encode proteins containing conserved structural motifs that function to recognize pathogen signals and to initiate defense responses. The Arabidopsis RPS2 gene encodes a protein representative of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of plant resistance proteins. RPS2 specifically recognizes Pseudomonas syringae pv. tomato strains expressing the avrRpt2 gene and initiates defense responses to bacteria carrying avrRpt2, including a hypersensitive cell death response (HR). We present an in planta mutagenesis experiment that resulted in the isolation of a series of rps2 and avrRpt2 alleles that disrupt the RPS2-avrRpt2 gene-for-gene interaction. Seven novel avrRpt2 alleles incapable of eliciting an RPS2-dependent HR all encode proteins with lesions in the C-terminal portion of AvrRpt2 previously shown to be sufficient for RPS2 recognition. Ten novel rps2 alleles were characterized with mutations in the NBS and the LRR. Several of these alleles code for point mutations in motifs that are conserved among NBS-LRR resistance genes, including the third LRR, which suggests the importance of these motifs for resistance gene function. | 2001 | 11204781 |
| 117 | 18 | 0.8358 | Acyl depsipeptide (ADEP) resistance in Streptomyces. ADEP, a molecule of the acyl depsipeptide family, has an antibiotic activity with a unique mode of action. ADEP binding to the ubiquitous protease ClpP alters the structure of the enzyme. Access of protein to the ClpP proteolytic chamber is therefore facilitated and its cohort regulatory ATPases (ClpA, ClpC, ClpX) are not required. The consequent uncontrolled protein degradation in the cell appears to kill the ADEP-treated bacteria. ADEP is produced by Streptomyces hawaiiensis. Most sequenced genomes of Streptomyces have five clpP genes, organized as two distinct bicistronic operons, clpP1clpP2 and clpP3clpP4, and a single clpP5 gene. We investigated whether the different Clp proteases are all sensitive to ADEP. We report that ClpP1 is a target of ADEP whereas ClpP3 is largely insensitive. In wild-type Streptomyces lividans, clpP3clpP4 expression is constitutively repressed and the reason for the maintenance of this operon in Streptomyces has been elusive. ClpP activity is indispensable for survival of actinomycetes; we therefore tested whether the clpP3clpP4 operon, encoding an ADEP-insensitive Clp protease, contributes to a mechanism of ADEP resistance by target substitution. We report that in S. lividans, inactivation of ClpP1ClpP2 production or protease activity is indeed a mode of resistance to ADEP although it is neither the only nor the most frequent mode of resistance. The ABC transporter SclAB (orthologous to the Streptomyces coelicolor multidrug resistance pump SCO4959-SCO4960) is also able to confer ADEP resistance, and analysis of strains with sclAB deletions indicates that there are also other mechanisms of ADEP resistance. | 2011 | 21636652 |
| 392 | 19 | 0.8356 | Stable Tagging of Rhizobium meliloti with the Firefly Luciferase Gene for Environmental Monitoring. A system for stable tagging of gram-negative bacteria with the firefly luciferase gene, luc, is described. A previously constructed fusion constitutively expressing luc from the lambdap(R) promoter was used. Stable integration into the bacterial genome was achieved by use of mini-Tn5 delivery vectors. The procedure developed was applied for tagging of representative gram-negative bacteria, such as Escherichia coli, Rhizobium meliloti, Pseudomonas putida, and Agrobacterium tumefaciens. The system permitted the detection of tagged R. meliloti in the presence of more than 10 CFU per plate without the use of any selective markers (such as antibiotic resistance genes). No significant differences in growth rates or soil survival were found between the marked strain and the wild-type strain. Studies of bioluminescent R. meliloti also revealed a good correlation between cell biomass and bioluminescence. The firefly luciferase tagging system is an easy, safe, and sensitive method for the detection and enumeration of bacteria in the environment. | 1993 | 16349015 |