ATLANTIC - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
307200.9901Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans.202133872913
765610.9891The host-specific resistome in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) revealed by metagenomic sequencing. Investigation of feces of wildlife, which is considered as reservoirs, melting pots, vectors and secondary sources of antimicrobial resistance genes (ARGs), provides insights into the risks and ecology of ARGs in the environment. Here, we investigated microbiomes, virulence factor genes (VFGs) of bacterial pathogens, and resistomes in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) using shotgun metagenome sequencing. As expected, the taxonomic compositions of bacteria were significantly different between the animals. Importantly, we found that the compositions of ARGs were also significantly different between the animals. We detected ARGs including iri, tetA(P), tetB(P), floR, sulII, strA, strB, tetW and tetY. Some of them were significantly more abundant in either of the host animals, such as strA, strB and tetY in Eurasian otters, and tetA(P), tetW and iri in leopard cats. We also found that some ARGs were selectively correlated to particular VFGs-related bacteria, such as tetA(P) and tetB(P) to Clostridium, and iri to Mycobacterium. We also found that there were positive correlations between Acinetobacter and ARGs of multiple antimicrobial classes. The host-specific resistomes and VFGs-related bacteria may be due to differences in the host's gut microbiome, diet and/or habitat, but further investigation is needed. Overall, this study provided important baseline information about the resistomes of the wildlife in Korea, which may help the conservation of these endangered species and assessment of human health risks posed by ARGs and bacterial pathogens from wildlife.202235399616
307620.9891Antimicrobial resistance genes (ARGs) in sea surface aerosols over the Atlantic Ocean. The large-scale abundance and distribution of antibiotic resistance genes (ARGs) within the atmosphere remains poorly documented, particularly over oceans. This study explores bacterial loads, diversity, and associated antimicrobial resistance genes in aerosols over the North Atlantic Ocean. Aerosol samples were collected from a ship during a cruise from Brest (France) to Woods Hole (USA) for 24-h periods using a mast-mounted system, with additional one-hour spot samples taken daily and nightly using high-flow rates samplers. The airborne concentrations of bacteria along with 21 ARG subtypes as indicators of key resistance families were monitored using qPCR. These were related to the bacterial diversity obtained from same samples through ribosomal gene amplicon sequencing, and to the geographical origin of the air masses estimated using atmospheric dynamics models. Total ARG concentrations ranged from background concentrations of a few copies to >10(5) copies/m(3) of air. Near coasts, macrolide and tetracycline resistance genes were dominant (up to 93 % and 38 % of the total ARG monitored here, respectively). While sulfonamide resistance genes were also detected further offshore, those related to transposases and β-lactamases were detected only sporadically. The multiple observed correlations between the aforementioned gene concentrations in the air and potential soil-derived microorganisms may be indicative of continental inputs. Conversely, the prevalence of quinolone resistance (qepA) in the air over the open ocean points toward a contribution from marine surfaces, supported by associations between several ARGs and marine microorganisms including cyanobacteria. These may thus act as environmental reservoirs of ARGs, and sources for further environmental spread notably by air means.202541106010
349830.9891Comparative study on the bacterial diversity and antibiotic resistance genes of urban landscape waters replenished by reclaimed water and surface water in Xi'an, China. Pathogenic bacteria and antibiotic resistance genes (ARGs) in urban landscape waters may pose a potential threat to human health. However, the investigation of their occurrence in the urban landscape waters replenished by reclaimed water (RW) and surface water (SW) is still insufficient. The water samples collected from six urban landscape waters replenished by RW or SW were used to analyze bacterial diversity using high-throughput sequencing of 16S rRNA gene and to detect 18 ARGs and 2 integron-integrase genes by means of quantitative PCR array. Results indicated that Proteobacteria was the dominant phylum in all six urban landscape waters. The bacterial species richness was lower in urban landscape waters replenished by RW than that by SW. Sulfonamide resistance genes (sulI and sulIII) were the major ARGs in these urban landscape waters. No significant difference in the relative abundance of sulfonamide resistance genes, tetracycline resistance genes, and most of beta-lactam resistance genes was observed between RW-replenished and SW-replenished urban landscape waters. By contrast, the relative abundance of bla(ampC) gene and qnrA gene in RW-replenished urban landscape waters was significantly higher than that in SW-replenished urban landscape waters (p < 0.05), which suggested that use of RW may increase the amount of specific ARGs to urban landscape waters. Interestingly, among six urban landscape waters, RW-replenished urban landscape waters had a relatively rich variety of ARGs (12-15 of 18 ARGs) but a low relative abundance of ARGs (458.90-1944.67 copies/16S × 10(6)). The RW replenishment was found to have a certain impact on the bacterial diversity and prevalence of ARGs in urban landscape waters, which provide new insight into the effect of RW replenishment on urban landscape waters.202133786766
181140.9890Abundance of clinically relevant antimicrobial resistance genes in the golden jackal (Canis aureus) gut. The spread of antimicrobial resistance (AMR) is a critical One Health issue. Wildlife could act as reservoirs or vehicles of AMR bacteria (ARBs) and AMR genes (ARGs) but are relatively understudied. We sought to investigate clinically relevant ARGs in golden jackals (Canis aureus) thriving near human settlements in Israel. Fecal samples were collected from 111 jackals across four regions over a 10-month period. Various animal and spatio-temporal metadata were collected. Samples were analyzed by quantitative PCR (qPCR) for beta-lactamases (blaTEM, blaCTX-M15, and blaSHV), qnrS and int1. A subset of samples was subject to shotgun metagenomic sequencing followed by resistome and microbiome analyses. qPCR detected a high prevalence of ARGs, including beta-lactamases (blaTEM-1, 96.4%; blaCTX-M-15, 51.4%, blaSHV, 15.3%), fluoroquinolone resistance (qnrS, 87.4%), and class 1 integrons (Int1, 94.6%). The blaTEM-1 gene was found to be more prevalent in adult jackals compared to younger ones. Metagenomic analysis of a subset of samples revealed a diverse gut microbiome harboring a rich resistome with tetracycline resistance genes being the most prevalent. Metagenome-assembled genome analysis further identified several ARGs associated with clinically relevant bacteria. These findings highlight the potential role of golden jackals as reservoirs for AMR and emphasize the need for ongoing surveillance to better understand AMR transmission dynamics at the wildlife-human interface. IMPORTANCE: The research highlights the potential role of the golden jackals as reservoirs for antimicrobial resistance (AMR). The high prevalence of clinically relevant AMR genes in these jackals emphasizes the need for ongoing surveillance and monitoring to better understand AMR transmission dynamics at the wildlife-human interface.202539945541
320350.9889Intestinal microbiota and high-risk antibiotic resistance genes in wild birds with varied ecological traits: Insights from opportunistic direct sampling in Tianjin, China. Within One Health framework, the dissemination of antibiotic resistance genes (ARGs) and pathogenic bacteria by wild birds has attracted increasing attention. In this study, gut samples of wild birds opportunistically collected in Tianjin, China, situated along the East Asian-Australasian Flyway, were used to ascertain the realistic distribution of bacteria and ARGs in their intestinal tracts. These birds have different dietary habits (herbivore, carnivore, and omnivore) and residency statuses (resident and migratory birds). Using 16S rRNA gene sequencing and qPCR, we analyzed microbial communities and the abundance of high-risk ARGs and mobile genetic elements (MGEs). Birds with distinct ecological traits exhibited significant variations in gut bacterial composition, yet similar microbial diversity. Shigella sp. emerged as the core intestinal pathogen, with a mean relative abundance 2.57 to 1466 times higher than that of other pathogenic bacteria, and its concentration correlated with the host's trophic level as indicated by the δ(15)N values. The distribution of ARGs and MGEs also varied with bird ecological traits. All 10 targeted high-risk ARGs were detected in carnivores or passage migrants, while migratory birds carried significantly greater abundance of intI1 than residents (p < 0.05). The potential of migratory birds to harbor and disseminate pathogenic bacteria and ARGs cannot be ignored. Network analysis revealed bla(TEM-1) presence in multiple core microorganisms, positively associated with Clostridioides difficile, emphasizing its risk potential. Positive dfrA12-intI1 correlation across trophic levels suggests potential for intI1-mediated transmission. Our study underscores the high potential risk posed by wild birds in carrying ARGs and pathogenic microorganisms, emphasizing the importance of further research and surveillance in this field.202439305975
260360.9889Characterization of antimicrobial resistance genes in Enterobacteriaceae carried by suburban mesocarnivores and locally owned and stray dogs. The role of wildlife in the dissemination of antimicrobial-resistant bacteria and antimicrobial resistance genes (ARGs) in the environment is of increasing concern. We investigated the occurrence, richness and transmissibility potential of ARGs detected in the faeces of three mesocarnivore species: the coyote (Canis latrans), raccoon (Procyon lotor) and Virginia opossum (Didelphis virginiana), and of stray and owned dogs in suburban Chicago, IL, USA. Rectal swabs were collected from live-captured coyotes (n = 32), raccoons (n = 31) and Virginia opossums (n = 22). Fresh faecal samples were collected from locally owned (n = 13) and stray dogs (n = 18) and from the live-captured mesocarnivores, when available. Faecal samples and rectal swabs were enriched to select for Enterobacteriaceae and pooled by mesocarnivore species and dog type (owned or stray). Pooled enriched samples were then analysed for the presence of ARGs using shotgun sequencing. The three mesocarnivore and stray dog samples had twice as many unique ARGs compared to the owned dog sample, which was partly driven by a greater richness of beta-lactamase genes (genes conferring resistance to penicillins and cephalosporins). Raccoon and stray dog samples had the most ARGs in common, suggesting possible exposure to similar environmental sources of ARGs. In addition to identifying clinically relevant ARGs (e.g. bla(CMY) and qnrB), some ARGs were linked to the class 1 integrase gene, intI1, which may indicate anthropogenic origin. Findings from this pilot investigation suggest that the microbial communities of suburban mesocarnivores and stray dogs can host ARGs that can confer resistance to several antimicrobials used in human and veterinary medicine.202032034890
260570.9888Satellite tracking of gulls and genomic characterization of faecal bacteria reveals environmentally mediated acquisition and dispersal of antimicrobial-resistant Escherichia coli on the Kenai Peninsula, Alaska. Gulls (Larus spp.) have frequently been reported to carry Escherichia coli exhibiting antimicrobial resistance (AMR E. coli); however, the pathways governing the acquisition and dispersal of such bacteria are not well described. We equipped 17 landfill-foraging gulls with satellite transmitters and collected gull faecal samples longitudinally from four locations on the Kenai Peninsula, Alaska to assess: (a) gull attendance and transitions between sites, (b) spatiotemporal prevalence of faecally shed AMR E. coli, and (c) genomic relatedness of AMR E. coli isolates among sites. We also sampled Pacific salmon (Oncorhynchus spp.) harvested as part of personal-use dipnet fisheries at two sites to assess potential contamination with AMR E. coli. Among our study sites, marked gulls most commonly occupied the lower Kenai River (61% of site locations) followed by the Soldotna landfill (11%), lower Kasilof River (5%) and upper Kenai River (<1%). Gulls primarily moved between the Soldotna landfill and the lower Kenai River (94% of transitions among sites), which were also the two locations with the highest prevalence of AMR E. coli. There was relatively high spatial and temporal variability in AMR E. coli prevalence in gull faeces and there was no evidence of contamination on salmon harvested in personal-use fisheries. We identified E. coli sequence types and AMR genes of clinical importance, with some isolates possessing genes associated with resistance to as many as eight antibiotic classes. Our findings suggest that gulls acquire AMR E. coli at habitats with anthropogenic inputs and subsequent movements may represent pathways through which AMR is dispersed.201930980689
708180.9888Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters.202032806354
312090.9888Bacterial communities and prevalence of antibiotic resistance genes carried within house flies (Diptera: Muscidae) associated with beef and dairy cattle farms. House flies (Musca domestica Linnaeus) are vectors of human and animal pathogens at livestock operations. Microbial communities in flies are acquired from, and correlate with, their local environment. However, variation among microbial communities carried by flies from farms in different geographical areas is not well understood. We characterized bacterial communities of female house flies collected from beef and dairy farms in Oklahoma, Kansas, and Nebraska using 16S rDNA amplicon sequencing and PCR. Bacterial community composition in house flies was affected by farm type and location. While the shared number of taxa between flies from beef or dairy farms was low, those taxa accounted >97% of the total bacterial community abundance. Bacterial species richness was 4% greater in flies collected from beef than in those collected from dairy farms and varied by farm type within states. Several potential pathogenic taxa were highly prevalent, comprising a core bacterial community in house flies from cattle farms. Prevalence of the pathogens Moraxella bovis and Moraxella bovoculi was greater in flies from beef farms relative to those collected on dairy cattle farms. House flies also carried bacteria with multiple tetracycline and florfenicol resistance genes. This study suggests that the house flies are significant reservoirs and disseminators of microbial threats to human and cattle health.202337612042
3112100.9888Farm-to-fork changes in poultry microbiomes and resistomes in Maputo City, Mozambique. Increasing demand for poultry has spurred poultry production in low- and middle-income countries like Mozambique. Poultry may be an important source of foodborne, antimicrobial-resistant bacteria to consumers in settings with limited water, sanitation, and hygiene infrastructure. The Chicken Exposures and Enteric Pathogens in Children Exposed through Environmental Pathways (ChEEP ChEEP) study was conducted in Maputo City, Mozambique from 2019 to 2021 to quantify enteric pathogen exposures along the supply chain for commercial and local (i.e., scavenger) chicken breeds. Here, we performed metagenomic sequencing of total DNA from banked ChEEP ChEEP samples to characterize fecal and carcass microbiomes and resistome diversity between chicken breeds and along the supply chain. Fecal samples (n = 26) were collected from commercial and local chickens at production sites and markets and carcass (n = 49) and rinse bucket samples (n = 26) from markets. We conducted taxonomic profiling and identified antimicrobial resistance genes (ARGs) from metagenomic sequence data, focusing especially on potential human pathogens and "high-risk" ARGs. We estimated alpha diversity for each sample and compared by site and breed. We estimated Bray-Curtis dissimilarity between samples and examined clustering. We found that commercial and local chickens harbored distinct fecal potential pathogens and resistomes at production and market sites. Many potentially pathogenic bacteria and ARGs present in chicken fecal samples are also present on carcasses sold to consumers. Finally, commercial chicken carcasses contain high-risk ARGs that are not necessarily introduced from chicken feces. These results indicate markets are an important site of exposure to potentially pathogenic bacteria and high-risk ARGs. IMPORTANCE: While chicken eggs and meat are a critical protein source in low-income settings, antibiotics are routinely fed to chickens with consequences for selection of antimicrobial resistance. Evaluating how poultry gut bacterial communities, including potential human pathogens and high-risk antimicrobial resistance genes, differ from farm to market could help identify where to target interventions to minimize transmission risks to human populations. In this study in Maputo City, Mozambique, we found compositional differences between commercial and local chicken breeds at production and market sites. We also found that while all potentially pathogenic bacteria and many high-risk antimicrobial resistance genes persisted from production and market through processing, some resistance genes were detected on carcass samples only after processing, suggesting human or environmental contamination is occurring within markets. Overall, our findings indicate that open-air markets may represent a critical juncture for human exposures to pathogens and antimicrobial resistance genes from poultry and poultry products.202539699181
6835110.9887Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics.202539488451
3483120.9887Abundance and diversity of antibiotic resistance genes and bacterial communities in the western Pacific and Southern Oceans. This study investigated the abundance and diversity of antibiotic resistance genes (ARGs) and the composition of bacterial communities along a transect covering the western Pacific Ocean (36°N) to the Southern Ocean (74°S) using the Korean icebreaker R/V Araon (total cruise distance: 14,942 km). The relative abundances of ARGs and bacteria were assessed with quantitative PCR and next generation sequencing, respectively. The absolute abundance of ARGs was 3.0 × 10(6) ± 1.6 × 10(6) copies/mL in the western Pacific Ocean, with the highest value (7.8 × 10(6) copies/mL) recorded at a station in the Tasman Sea (37°S). The absolute abundance of ARGs in the Southern Ocean was 1.8-fold lower than that in the western Pacific Ocean, and slightly increased (0.7-fold) toward Terra Nova Bay in Antarctica, possibly resulting from natural terrestrial sources or human activity. β-Lactam and tetracycline resistance genes were dominant in all samples (88-99%), indicating that they are likely the key ARGs in the ocean. Correlation and network analysis showed that Bdellovibrionota, Bacteroidetes, Cyanobacteria, Margulisbacteria, and Proteobacteria were positively correlated with ARGs, suggesting that these bacteria are the most likely ARG carriers. This study highlights the latitudinal profile of ARG distribution in the open ocean system and provides insights that will help in monitoring emerging pollutants on a global scale.202235085628
3500130.9886Shifts in bacterial communities and antibiotic resistance genes in surface water and gut microbiota of guppies (Poecilia reticulata) in the upper Rio Uberabinha, Brazil. Anthropogenic activities especially water pollution can affect the diversity and composition of microbial communities and promote the spread of antibiotic resistance genes (ARGs). In this study, water samples and guppies (Poecilia reticulata) were sampled from six sampling sites along the Uberabinha River in southeastern Brazil, both microbial communities and ARGs of surface waters and intestinal microbiota of guppies (Poecilia reticulata) were detected. According to the results of 16S rRNA amplicon sequencing, Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria were dominant phyla in both water and intestinal microbiota, but the abundance of putative pathogens was higher at heavily polluted sites. Up to 83% of bacteria in intestinal microbiota originated from water microbiota; this proportion was relatively higher in less polluted compared to polluted environments. ARGs providing resistance of tetracyclines and quinolones were dominant in both water and gut microbiota. The relative abundances of class I integrons and ARGs were as high as 1.74 × 10(-1)/16S rRNA copies and 3.61 × 10(-1)/16S rRNA copies, respectively, at heavily polluted sites. Correlation analysis suggests that integrons and bacteria play key roles in explaining the widespread occurrence of ARGs in the surface, but not in intestinal microbiota. We could rule out the class I integrons a potential intermediary bridge for ARGs between both types of microbiomes. Our results highlight the tight link in microbial communities and ARGs between ambient microbiota of stream ecosystems and intestinal microbiota of fish. Our study could have far-reaching consequences for fisheries and consumer safety and calls for investigations of gut microbiota of target species of both commercial fisheries and recreational (hobby) angling.202133497859
3079140.9886Quantification of antibiotic resistance genes (ARGs) in clouds at a mountain site (puy de Dôme, central France). Antibiotic resistance in bacteria is becoming a major sanitary concern worldwide. The extensive use of large quantities of antibiotics to sustain human activity has led to the rapid acquisition and maintenance of antibiotic resistant genes (ARGs) in bacteria and to their spread into the environment. Eventually, these can be disseminated over long distances by atmospheric transport. Here, we assessed the presence of ARGs in clouds as an indicator of long-distance travel potential of antibiotic resistance in the atmosphere. We hypothesized that a variety of ARGs can reach the altitude of clouds mainly located within the free troposphere. Once incorporated in the atmosphere, they are efficiently transported and their respective concentrations should differ depending on the sources and the geographical origin of the air masses. We deployed high-flow rate impingers and collected twelve clouds between September 2019 and October 2021 at the meteorological station of the puy de Dôme summit (1465 m a.s.l., France). Total airborne bacteria concentration was assessed by flow cytometry, and ARGs subtypes of the main families of antibiotic resistance (quinolone, sulfonamide, tetracycline; glycopeptide, aminoglycoside, β-lactamase, macrolide) including one mobile genetic element (transposase) were quantified by qPCR. Our results indicate the presence of 29 different ARGs' subtypes at concentrations ranging from 1.01 × 10(3) to 1.61 × 10(4) copies m(-3) of air. Clear distinctions could be observed between clouds in air masses transported over marine areas (Atlantic Ocean) and clouds influenced by continental surfaces. Specifically, quinolones (mostly qepA) resistance genes were prevalent in marine clouds (54 % of the total ARGs on average), whereas higher contributions of sulfonamide, tetracycline; glycopeptide, β-lactamase and macrolide were found in continental clouds. This study constitutes the first evidence for the presence of microbial ARGs in clouds at concentrations comparable to other natural environments. This highlights the atmosphere as routes for the dissemination of ARGs at large scale.202336587700
3078150.9886Microbiome of Dipteran vectors associated with integron and antibiotic resistance genes in South Korea. The spread of antibiotic resistance genes (ARGs) across the environment and the role that organisms that interact with humans play as reservoirs of resistant bacteria pose important threats to public health. Flies are two-winged insects composing the order Diptera, which includes synanthropic species with significant ecological roles as pollinators, vectors, and decomposers. Here, we used iSeq100 metabarcoding to characterize the microbiome of six dipteran species in South Korea: Lucilia sericata, Lucilia illustris, Culex pipiens, Aedes vexans, Psychoda alternata and Clogmia albipunctata. We profiled a panel of common ARGs and performed correlation network analysis of the microbiome and resistome to identify co-occurrence patterns of bacterial amplicon sequence variants (ASVs) and resistance genes. We detected blaTEM, ermB, tetB, tetC, aac(6')-Ib-cr, cat2, sul1, qepA, int1 and int2, but no blaSHV, mecA, tetA or cat1. Notably, co-occurrence analysis showed highly mobile genes such as qepA, ermB and sul1 were associated with integron of class 1 integrase presence. These, along with aac(6')-Ib-cr were detected at higher rates across multiple species. Microbiome composition was distinct across species. Amplicon sequence variants (ASVs) of Pseudomonas, Corynebacterium, Clostridium, Ignatzschineria, Bacteroides, Streptococcus, Treponema and Dietzia showed strong co-occurrence with multiple ARGs. This study contributes to the understanding of the role of dipterans as reservoirs of antibiotic resistance.202541046045
3542160.9886Fecal indicators, pathogens, antibiotic resistance genes, and ecotoxicity in Galveston Bay after Hurricane Harvey. Unprecedented rainfall after Hurricane Harvey caused a catastrophic flood in the southern coast of Texas, and flushed significant floodwater and sediments into Galveston Bay, the largest estuary along the Texas Gulf Coast. This study investigated the immediate and long-term (6 months post-Harvey) fecal indicators, pathogenic bacteria, antibiotic resistance genes (ARGs), and ecotoxicity in the Galveston Bay. Dramatic decrease of salinity profile to zero, increased levels of fecal indicator bacteria and pathogenic bacteria, and detection of various ARGs were observed in the water and sediment samples collected 2 weeks post-Harvey. High levels of Bla(TEM) and cytotoxicity measured by yeast bioluminescent assay (BLYR) were also observed especially near the river mouths. While Vibrio spp. was dominant in water, much higher abundance of fecal indicator bacteria and pathogen were detected in the sediments. A decreasing trend of Bla(TEM) and cytotoxicity was observed in March 2018 samples, suggesting the Bay has returned to its pre-hurricane conditions 6 months post-Harvey. Interestingly, the abundance of fecal indicator bacteria and pathogens were shifted dramatically according to high-streamflow and low-streamflow seasons in the Bay. The data are useful to construct the model of risk assessment in coastal estuaries system and predict the effects of extreme flooding events in the future.202133445049
6836170.9885Microbiome and antibiotic resistome in household dust from Beijing, China. We spend ever-increasing time indoors along with urbanization; however, the geographical distribution patterns of microbiome and antibiotic resistome, and their driving forces in household environment remains poorly characterized. Here, we surveyed the bacterial and fungal communities, and the resistome in settled dust gathered from 82 homes located across Beijing, China, employing Illumina sequencing and high-throughput quantitative PCR techniques. There was no clear geographical distribution pattern in dust-related bacterial communities although a slight but significant (P < 0.05) distance-decay relationship occurred in its community similarity; by contrast, a relatively distinct geographical clustering and a stronger distance-decay relationship were observed in fungal communities at the local scale. The cross-domain (bacteria versus fungi) relationships in the microbiome of the dust samples were mostly observed as robust co-occurrence correlations. The bacterial communities were dominated by Proteobacteria and Actinobacteria phyla, with human skin, soil and plants being potential major sources. The fungal communities largely comprised potential allergens (a median 61% of the fungal sequences), with Alternaria genus within Ascomycota phylum being the most predominant taxa. The profile of dust-related bacterial communities was mainly affected by housing factors related to occupants and houseplants, while that of fungal communities was determined by georeferenced environmental factors, particularly vascular plant diversity. Additionally, a great diversity (1.96 on average for Shannon index) and normalized abundance (2.22 copies per bacterial cell on average) of antibiotic resistance genes were detected across the dust samples, with the dominance of genes resistant to vancomycin and Macrolide-Lincosamide-Streptogramin B. The resistome profile exhibited no distinct geographical pattern, and was primarily driven by certain bacterial phyla and occupancy-related factors. Overall, we underline the significance of anthropogenic impacts and house location in structuring bacterial and fungal communities inside homes, respectively, and suggest that household dust is an overlooked reservoir for antibiotic resistance.202032248025
3114180.9885Spatial and temporal dynamics of microbiomes and resistomes in broiler litter stockpiles. Farmers apply broiler chicken litter to soils to enrich organic matter and provide crops with nutrients, following varying periods of stockpiling. However, litter frequently harbors fecal-derived microbial pathogens and associated antibiotic resistance genes (ARGs), and may be a source of microbial contamination of produce. We coupled a cutting-edge Loop Genomics long-read 16S rRNA amplicon-sequencing platform with high-throughput qPCR that targeted a suite of ARGs, to assess temporal (five time points over a 60-day period) and spatial (top, middle and bottom layers) microbiome and resistome dynamics in a broiler litter stockpile. We focused on potentially pathogenic species from the Enterobacteriaceae, Enterococcaceae and Staphylococcaceae families associated with food-borne disease. Bacterial diversity was significantly lower in the middle of the stockpile, where targeted pathogens were lowest and Bacillaceae were abundant. E. coli was the most abundant Enterobacteriaceae species, and high levels of the opportunistic pathogen Enterococcus faecium were detected. Correlation analyses revealed that the latter was significantly associated with aminoglycoside (aac(6')-Ib(aka aacA4), aadA5), tetracycline (tetG), vancomycin (vanC), phenicol (floR) and MLSB (mphB) resistance genes. Staphylococcaceae were primarily non-pathogenic, but extremely low levels of the opportunistic pathogen S. aureus were detected, as was the opportunistic pathogen S. saprophyticus, which was linked to vancomycin (vanSA, vanC1), MLSB (vatE, ermB) and tetracycline (tetK) resistance genes. Collectively, we found that stockpile microbiomes and resistomes are strongly dictated by temporal fluctuations and spatial heterogeneity. Insights from this study can be exploited to improve stockpile management practice to support sustainable antimicrobial resistance mitigation policies in the future.202134900133
3115190.9885Characterisation of the gut microbiome and surveillance of antibiotic resistance genes in green sea turtles (Chelonia mydas). Green sea turtles (Chelonia mydas) are globally endangered marine herbivores that maintain the health of seagrass and coastal ecosystems. Their populations are declining due to human activities, including environmental pollution, which can disrupt gut microbial communities and compromise nutrition, immunity, and overall health. In this study, cloacal swabs from 139 green sea turtles categorised as captive juveniles, captive adults and wild stranded animals in the Gulf of Thailand, were analysed via shotgun metagenomic sequencing to elucidate bacterial taxonomic diversity and ARG profiles. In captive juveniles, Pseudomonadota was the most abundant phylum, followed by Ascomycota and Basidiomycota. In captive adults, Pseudomonadota exhibited an even greater predominance, with only minor contributions from unclassified bacteria and other taxa. In wild stranded green sea turtles, Pseudomonadota was dominant in their gut microbiome, but this was accompanied by notable levels of Actinomycetota, Bacteroidota, and Bacillota. Stranded turtles exhibited highest microbial diversity and variability, while captive adult turtles showed the lowest. Resistome profiling also revealed significant differences in the relative abundance of antibiotic resistance genes across all three groups. MacB (macrolide resistance) was the most abundant gene overall, with the highest abundance observed in juveniles (4.8 %). Stranded turtles exhibited elevated levels of TetA(58) (tetracycline resistance, 2.6 %) and msbA (nitroimidazole resistance, 2.2 %), while adults showed the greatest enrichment of Ecol_fabG_TRC (triclosan resistance, 3.8 %) and TxR (tetracycline resistance, 3.6 %). These data demonstrate that marked variability existed in the gut microbiome and resistome of green sea turtles across different life stages in captive or wild environments. This offers critical insights for the development of targeted conservation strategies and health management practices for both wild and captive green sea turtles. Strategies to mitigate the spread of antibiotic resistance should be developed.202541075532