# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6144 | 0 | 0.9600 | Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment. | 2019 | 30609485 |
| 6145 | 1 | 0.9569 | Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As. | 2019 | 31470481 |
| 8719 | 2 | 0.9522 | Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains. | 2021 | 33514061 |
| 6146 | 3 | 0.9515 | Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites. | 2017 | 28054716 |
| 5135 | 4 | 0.9510 | Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BACKGROUND: Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS: Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION: The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments. | 2024 | 39627700 |
| 8670 | 5 | 0.9508 | Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes. | 2023 | 37374983 |
| 6118 | 6 | 0.9506 | Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria. | 2023 | 36592848 |
| 8441 | 7 | 0.9505 | Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BACKGROUND: Salinivibrios are moderately halophilic bacteria found in salted meats, brines and hypersaline environments. We obtained three novel conspecific Salinivibrio strains closely related to S. costicola, from Socompa Lake, a high altitude hypersaline Andean lake (approx. 3,570 meters above the sea level). RESULTS: The three novel Salinivibrio spp. were extremely resistant to arsenic (up to 200 mM HAsO42-), NaCl (up to 15%), and UV-B radiation (19 KJ/m2, corresponding to 240 minutes of exposure) by means of phenotypic tests. Our subsequent draft genome ionsequencing and RAST-based genome annotation revealed the presence of genes related to arsenic, NaCl, and UV radiation resistance. The three novel Salinivibrio genomes also had the xanthorhodopsin gene cluster phylogenetically related to Marinobacter and Spiribacter. The genomic taxonomy analysis, including multilocus sequence analysis, average amino acid identity, and genome-to-genome distance revealed that the three novel strains belong to a new Salinivibrio species. CONCLUSIONS: Arsenic resistance genes, genes involved in DNA repair, resistance to extreme environmental conditions and the possible light-based energy production, may represent important attributes of the novel salinivibrios, allowing these microbes to thrive in the Socompa Lake. | 2014 | 24927949 |
| 6149 | 8 | 0.9502 | Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5 mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain. | 2023 | 36332226 |
| 5189 | 9 | 0.9501 | Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota. | 2021 | 34162403 |
| 517 | 10 | 0.9500 | Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms. Arsenic is a ubiquitous environmental toxi substance that affects human health. Compared to inorganic arsenicals, reduced organoarsenicals are more toxic, and some of them are recognized as antibiotics, such as methylarsenite [MAs(III)] and arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST). To date, organoarsenicals such as MAs(V) and roxarsone [Rox(V)] are still used in agriculture and animal husbandry. How bacteria deal with both inorganic and organoarsenic species is unclear. Recently, we identified an environmental isolate Mucilaginibacter rubeus P2 that has adapted to high arsenic and antinomy levels by triplicating an arsR-mrarsU(Bact)-arsN-arsC-(arsRhp)-hp-acr3-mrme1(Bact)-mrme2(Bact)gene cluster. Heterologous expression of mrarsM(Bact), mrarsU(Bact), mrme1(Bact) and mrme2(Bact), encoding putative arsenic resistance determinants, in the arsenic hypersensitive strain Escherichia coli AW3110 conferred resistance to As(III), As(V), MAs(III) or Rox(III). Our data suggest that metalloid exposure promotes plasticity in arsenic resistance systems, enhancing host organism adaptation to metalloid stress. | 2024 | 37865075 |
| 6086 | 11 | 0.9500 | Hybrid-genome sequence analysis of Enterobacter cloacae FACU and morphological characterization: insights into a highly arsenic-resistant strain. Many organisms have adapted to survive in environments with high levels of arsenic (As), a naturally occurring metalloid with various oxidation states and a common element in human activities. These organisms employ diverse mechanisms to resist the harmful effects of arsenic compounds. Ten arsenic-resistant bacteria were isolated from contaminated wastewater in this study. The most efficient bacterial isolate able to resist 15,000 ppm Na(2)HAsO(4)·7H(2)O was identified using the 16S rRNA gene and whole genome analysis as Enterobacter cloacae FACU. The arsenic E. cloacae FACU biosorption capability was analyzed. To further unravel the genetic determinants of As stress resistance, the whole genome sequence of E. cloacae FACU was performed. The FACU complete genome sequence consists of one chromosome (5.7 Mb) and two plasmids, pENCL 1 and pENCL 2 (755,058 and 1155666 bp, respectively). 7152 CDSs were identified in the E. cloacae FACU genome. The genome consists of 130 genes for tRNA and 21 for rRNAs. The average G + C content was found to be 54%. Sequencing analysis annotated 58 genes related to resistance to many heavy metals, including 16 genes involved in arsenic efflux transporter and arsenic reduction (five arsRDABC genes) and 42 genes related to lead, zinc, mercury, nickel, silver, copper, cadmium and chromium in FACU. Scanning electron microscopy (SEM) confirmed the difference between the morphological responses of the As-treated FACU compared to the control strain. The study highlights the genes involved in the mechanism of As stress resistance, metabolic pathways, and potential activity of E. cloacae FACU at the genetic level. | 2024 | 39320439 |
| 8704 | 12 | 0.9499 | Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation. | 2024 | 39925882 |
| 6088 | 13 | 0.9498 | Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security. | 2024 | 39278894 |
| 6350 | 14 | 0.9498 | Characterization and genomic analysis of chromate resistant and reducing Bacillus cereus strain SJ1. BACKGROUND: Chromium is a toxic heavy metal, which primarily exists in two inorganic forms, Cr(VI) and Cr(III). Chromate [Cr(VI)] is carcinogenic, mutational, and teratogenic due to its strong oxidizing nature. Biotransformation of Cr(VI) to less-toxic Cr(III) by chromate-resistant and reducing bacteria has offered an ecological and economical option for chromate detoxification and bioremediation. However, knowledge of the genetic determinants for chromate resistance and reduction has been limited so far. Our main aim was to investigate chromate resistance and reduction by Bacillus cereus SJ1, and to further study the underlying mechanisms at the molecular level using the obtained genome sequence. RESULTS: Bacillus cereus SJ1 isolated from chromium-contaminated wastewater of a metal electroplating factory displayed high Cr(VI) resistance with a minimal inhibitory concentration (MIC) of 30 mM when induced with Cr(VI). A complete bacterial reduction of 1 mM Cr(VI) was achieved within 57 h. By genome sequence analysis, a putative chromate transport operon, chrIA1, and two additional chrA genes encoding putative chromate transporters that likely confer chromate resistance were identified. Furthermore, we also found an azoreductase gene azoR and four nitroreductase genes nitR possibly involved in chromate reduction. Using reverse transcription PCR (RT-PCR) technology, it was shown that expression of adjacent genes chrA1 and chrI was induced in response to Cr(VI) but expression of the other two chromate transporter genes chrA2 and chrA3 was constitutive. In contrast, chromate reduction was constitutive in both phenotypic and gene expression analyses. The presence of a resolvase gene upstream of chrIA1, an arsenic resistance operon and a gene encoding Tn7-like transposition proteins ABBCCCD downstream of chrIA1 in B. cereus SJ1 implied the possibility of recent horizontal gene transfer. CONCLUSION: Our results indicate that expression of the chromate transporter gene chrA1 was inducible by Cr(VI) and most likely regulated by the putative transcriptional regulator ChrI. The bacterial Cr(VI)-resistant level was also inducible. The presence of an adjacent arsenic resistance gene cluster nearby the chrIA1 suggested that strong selective pressure by chromium and arsenic could cause bacterial horizontal gene transfer. Such events may favor the survival and increase the resistance level of B. cereus SJ1. | 2010 | 20723231 |
| 6106 | 15 | 0.9494 | Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance. | 2014 | 24632831 |
| 8671 | 16 | 0.9493 | Adapting to UV: Integrative Genomic and Structural Analysis in Bacteria from Chilean Extreme Environments. Extremophilic bacteria from extreme environments, such as the Atacama Desert, Salar de Huasco, and Antarctica, exhibit adaptations to intense UV radiation. In this study, we investigated the genomic and structural mechanisms underlying UV resistance in three bacterial isolates identified as Bacillus velezensis PQ169, Pseudoalteromonas sp. AMH3-8, and Rugamonas violacea T1-13. Through integrative genomic analyses, we identified key genes involved in DNA-repair systems, pigment production, and spore formation. Phylogenetic analyses of aminoacidic sequences of the nucleotide excision repair (NER) system revealed conserved evolutionary patterns, indicating their essential role across diverse bacterial taxa. Structural modeling of photolyases from Pseudoalteromonas sp. AMH3-8 and R. violacea T1-13 provided further insights into protein function and interactions critical for DNA repair and UV resistance. Additionally, the presence of a complete violacein operon in R. violacea T1-13 underscores pigment biosynthesis as a crucial protective mechanism. In B. velezensis PQ169, we identified the complete set of genes responsible for sporulation, suggesting that sporulation may represent a key protective strategy employed by this bacterium in response to environmental stress. Our comprehensive approach underscores the complexity and diversity of microbial adaptations to UV stress, offering potential biotechnological applications and advancing our understanding of microbial resilience in extreme conditions. | 2025 | 40565314 |
| 6097 | 17 | 0.9493 | Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BACKGROUND: Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. RESULTS: A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. CONCLUSION: The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques. | 2018 | 29739310 |
| 6154 | 18 | 0.9492 | Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As(5+)) and arsenite (As(3+)), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As(5+) and 10-20 mM for As(3+). Eleven isolates presented dual abilities of As(5+) reduction and As(3+) oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As(5+) and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As(3+) under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As(5+) and As(3+), respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process. | 2018 | 29476206 |
| 6089 | 19 | 0.9492 | Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China. To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China. | 2015 | 25597676 |