# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9067 | 0 | 0.9946 | PIPdb: a comprehensive plasmid sequence resource for tracking the horizontal transfer of pathogenic factors and antimicrobial resistance genes. Plasmids, as independent genetic elements, carrying resistance or virulence genes and transfer them among different pathogens, posing a significant threat to human health. Under the 'One Health' approach, it is crucial to control the spread of plasmids carrying such genes. To achieve this, a comprehensive characterization of plasmids in pathogens is essential. Here we present the Plasmids in Pathogens Database (PIPdb), a pioneering resource that includes 792 964 plasmid segment clusters (PSCs) derived from 1 009 571 assembled genomes across 450 pathogenic species from 110 genera. To our knowledge, PIPdb is the first database specifically dedicated to plasmids in pathogenic bacteria, offering detailed multi-dimensional metadata such as collection date, geographical origin, ecosystem, host taxonomy, and habitat. PIPdb also provides extensive functional annotations, including plasmid type, insertion sequences, integron, oriT, relaxase, T4CP, virulence factors genes, heavy metal resistance genes and antibiotic resistance genes. The database features a user-friendly interface that facilitates studies on plasmids across diverse host taxa, habitats, and ecosystems, with a focus on those carrying antimicrobial resistance genes (ARGs). We have integrated online tools for plasmid identification and annotation from assembled genomes. Additionally, PIPdb includes a risk-scoring system for identifying potentially high-risk plasmids. The PIPdb web interface is accessible at https://nmdc.cn/pipdb. | 2025 | 39460620 |
| 6383 | 1 | 0.9944 | Metagenomic analysis of microbiological risk in bioaerosols during biowaste valorization using Musca domestica. Bioconversion using insects has gradually become a promising technology for biowaste management and protein production. However, knowledge about microbiological risk of insect related bioaerosols is sparse and conventional methods failed to provide higher resolved information of environmental microbe. In this study, a metagenomic analysis including microorganisms, antibiotic resistance genes (ARGs), virulence factor genes (VFGs), mobile gene elements (MGEs), and endotoxin distribution in bioaerosols during biowaste conversion via Musca domestica revealed that bioaerosols in Fly rearing room possess the highest ARGs abundances and MGEs diversity. Through a metagenome-assembled genomes (MAGs)-based pipeline, compelling evidence of ARGs/VFGs host assignment and ARG-VFG co-occurrence pattern were provided from metagenomic perspective. Bioaerosols in Bioconversion and Maggot separation zone were identified to own high density of MAGs carrying both ARGs and VFGs. Bacteria in Proteobacteria, Actinobacteriota, and Firmicutes phyla were predominate hosts of ARGs and VFGs. Multidrug-Motility, Multidrug-Adherence, and Beta lactam-Motility pairs were the most common ARG-VFG co-occurrence pattern in this study. Results obtained are of great significance for microbiological risk assessment during housefly biowaste conversion process. | 2023 | 36681377 |
| 3272 | 2 | 0.9943 | Metagenome-Assembled Genomes of Pig Fecal Samples in Nine European Countries: Insights into Antibiotic Resistance Genes and Viruses. Gut microbiota plays a crucial role in the health and productivity of pigs. However, the spread of antibiotic resistance genes (ARGs) and viruses within the pig intestinal microbiota poses significant threats to animal and public health. This study utilized 181 pig samples from nine European countries and employed metagenomic assembly methods to investigate the dynamics and distribution of ARGs and viruses within the pig intestinal microbiota, aiming to observing their associations with potential bacterial hosts. We identified 4605 metagenome-assembled genomes (MAGs), corresponding to 19 bacterial phyla, 97 families, 309 genera, and a total of 449 species. Additionally, 44 MAGs were classified as archaea. Analysis of ARGs revealed 276 ARG types across 21 ARG classes, with Glycopeptide being the most abundant ARG class, followed by the class of Multidrug. Treponema D sp016293915 was identified as a primary potential bacterial host for Glycopeptide. Aligning nucleotide sequences with a viral database, we identified 1044 viruses. Among the viral genome families, Peduoviridae and Intestiviridae were the most prevalent, with CAG-914 sp000437895 being the most common potential host species for both. These findings highlight the importance of MAGs in enhancing our understanding of the gut microbiome, revealing microbial diversity, antibiotic resistance, and virus-bacteria interactions. The data analysis for the article was based on the public dataset PRJEB22062 in the European Nucleotide Archive. | 2024 | 39770612 |
| 5464 | 3 | 0.9943 | Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BACKGROUND: Drug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data. RESULTS: Alcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and β-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3. CONCLUSIONS: The present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs. | 2022 | 35443609 |
| 3269 | 4 | 0.9941 | Exploring antibiotic resistance genes, mobile gene elements, and virulence gene factors in an urban freshwater samples using metagenomic analysis. Antibiotic resistance genes (ARGs) and antimicrobial resistance elements (AMR) are novel environmental contaminants that pose a significant risk to human health globally. Freshwater contains a variety of microorganisms that might affect human health; its quality must be assessed before use. However, the dynamics of mobile genetic elements (MGEs) and ARG propagation in freshwater have rarely been studied in Singapore. Therefore, this study used metagenomics to compare diversity, virulence factor composition, and ARG and MGE co-occurrence with bacterial communities in paired (n = 8) environmental freshwater samples. KneadData, FMAP, and Kraken2 were used for bioinformatics analysis and R (v4.1.1) for statistical analysis. Sequence reads with a total of 9043 species were taxonomically classified into 66 phyla, 130 classes, 261 orders, 584 families, and 2477 genera. Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes were found the Phyla in all samples. Analysis of QIIME output by PICRUSt and ß-diversity showed unique clusters and functional microbial community structures. A total of 2961 ARGs were found that conferred resistance to multidrug, aminoglycosides, tetracyclines, elfamycins, and more. The classified ARG mechanism revealed significant distribution of virulence factors in bacterial cells. Transposes and transposon were highly correlated to ARG gene transfer. Co-occurrence network analysis showed several MGEs appear to use the same ARGs (intI and rho) and were dominant in all samples. Furthermore, ARGs are also highly correlated with bacteria like Campylobacter and Escherichia. This study enhances the understanding of antibiotic risk assessment and provides a new perspective on bacterial assembly contamination and the functional prevalence of ARGs and MGEs with antibiotic resistance bacteria. Moreover, it raises public awareness because these contaminants put people's lives at risk of acquiring bacterial infections. In addition, it can also help propose hybrid water treatment approaches. | 2023 | 35939194 |
| 7737 | 5 | 0.9941 | Distinctive signatures of pathogenic and antibiotic resistant potentials in the hadal microbiome. BACKGROUND: Hadal zone of the deep-sea trenches accommodates microbial life under extreme energy limitations and environmental conditions, such as low temperature, high pressure, and low organic matter down to 11,000 m below sea level. However, microbial pathogenicity, resistance, and adaptation therein remain unknown. Here we used culture-independent metagenomic approaches to explore the virulence and antibiotic resistance in the hadal microbiota of the Mariana Trench. RESULTS: The results indicate that the 10,898 m Challenger Deep bottom sediment harbored prosperous microbiota with contrasting signatures of virulence factors and antibiotic resistance, compared with the neighboring but shallower 6038 m steep wall site and the more nearshore 5856 m Pacific basin site. Virulence genes including several famous large translocating virulence genes (e.g., botulinum neurotoxins, tetanus neurotoxin, and Clostridium difficile toxins) were uniquely detected in the trench bottom. However, the shallower and more nearshore site sediment had a higher abundance and richer diversity of known antibiotic resistance genes (ARGs), especially for those clinically relevant ones (e.g., fosX, sul1, and TEM-family extended-spectrum beta-lactamases), revealing resistance selection under anthropogenic stresses. Further analysis of mobilome (i.e., the collection of mobile genetic elements, MGEs) suggests horizontal gene transfer mediated by phage and integrase as the major mechanism for the evolution of Mariana Trench sediment bacteria. Notably, contig-level co-occurring and taxonomic analysis shows emerging evidence for substantial co-selection of virulence genes and ARGs in taxonomically diverse bacteria in the hadal sediment, especially for the Challenger Deep bottom where mobilized ARGs and virulence genes are favorably enriched in largely unexplored bacteria. CONCLUSIONS: This study reports the landscape of virulence factors, antibiotic resistome, and mobilome in the sediment and seawater microbiota residing hadal environment of the deepest ocean bottom on earth. Our work unravels the contrasting and unique features of virulence genes, ARGs, and MGEs in the Mariana Trench bottom, providing new insights into the eco-environmental and biological processes underlying microbial pathogenicity, resistance, and adaptative evolution in the hadal environment. | 2022 | 35468809 |
| 7741 | 6 | 0.9940 | Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin). | 2017 | 28229558 |
| 7699 | 7 | 0.9940 | Effects of different assembly strategies on gene annotation in activated sludge. Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments. | 2024 | 38734289 |
| 3116 | 8 | 0.9940 | Prediction of Antibiotic Resistance Genes in Cyanobacterial Strains by Whole Genome Sequencing. Cyanobacteria are ubiquitous in freshwater environments, but their role in aquatic resistome remains unclear. In this work, we performed whole genome sequencing on 43 cyanobacterial strains isolated from Portuguese fresh/wastewaters. From 43 available non-axenic unicyanoabacterial cultures (containing only one cyanobacterial strain and their co-occurring bacteria), it was possible to recover 41 cyanobacterial genomes from the genomic assemblies using a genome binning software, 26 of which were classified as high-quality based on completeness, contamination, N50 and contig number thresholds. By using the comprehensive antibiotic resistance database (CARD) on the assembled samples, we detected four antibiotic resistance gene (ARG) variants, conferring resistance in pathogenic bacteria to tetracyclines, fluoroquinolones (adeF-type) and macrolides (ermF-type, mefC-type and mphG-type). Among these, adeF-type was the most prevalent gene, found across 11 cyanobacterial genomes from the Nostocales order. Planktothrix presented the highest variety of close ARG matches, with hits for the macrolide resistance genes ermF-type, mefC-type and mphG-type. An analysis of the genomic assemblies also revealed an additional 12 ARGs in bacteria from the phyla Firmicutes, Proteobacteria and Bacteroidetes, present in the cyanobacterial cultures, foreseeing the horizontal gene transfer of ARGs with cyanobacteria. Additionally, more than 200 partial ARGs were detected on each recovered cyanobacterial genome, allowing for future studies of antibiotic resistance genotype/phenotype in cyanobacteria. These findings highlight the importance of further efforts to understand the role of cyanobacteria on the aquatic resistome from a One Health perspective. | 2025 | 40572139 |
| 7664 | 9 | 0.9940 | A catalog of metagenome-assembled genomes from Amazonian forest and pasture soils. The Amazon rainforest is facing multifaceted anthropogenic pressures, and we previously showed that forest-to-pasture conversion has led to soil microbial communities with distinct genomic traits. Here, we present 69 archaeal and bacterial metagenome-assembled genomes and detail their virulence- and antimicrobial resistance-associated genes. | 2025 | 41036867 |
| 3231 | 10 | 0.9940 | Diversity analysis and metagenomic insights into antibiotic and metal resistance among Himalayan hot spring bacteriobiome insinuating inherent environmental baseline levels of antibiotic and metal tolerance. OBJECTIVES: Mechanisms of occurrence and expression of antibiotic resistance genes (ARGs) in thermophilic bacteria are still unknown owing to limited research and data. In this research, comparative profiling of ARGs and metal tolerance genes among thermophilic bacteria has been done by functional metagenomic methods. METHODS: Shotgun metagenomic sequence data were generated using Illumina HiSeq 4000. Putative ARGs from the PROKKA predicted genes were identified with the ardbAnno V.1.0 script available from the ARDB (Antibiotic Resistance Genes Database) consortium using the non-redundant resistance genes as a reference. Putative metal resistance genes (MRGs) were identified by using BacMetScan V.1.0. The whole-genome sequencing for bacterial isolates was performed using Illumina HiSeq 4000 sequencing technology with a paired-end sequencing module. RESULTS: Metagenomic analysis showed the dominance of Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes in two hot springs of Sikkim. ARG analysis through shotgun gene sequencing was found to be negative in the case of thermophilic bacteria. However, few genes were detected but they showed maximum similarity with mesophilic bacteria. Concurrently, MRGs were also detected in the metagenome sequence of isolates from hot springs. Detection of MRGs and absence of ARGs investigated by whole-genome sequencing in the reference genome sequence of thermophilic Geobacillus also conveyed the same message. CONCLUSION: The study of ARGs and MRGs (Heavy metal resistance gene) among culturable and non-culturable bacteria from the hot springs of Sikkim via metagenomics showed a preferential selection of MRGs over ARGs. The absence of ARGs also does not support the co-selection of ARGs and MRGs in these environments. This evolutionary selection of metal resistance over antibiotic genes may have been necessary to survive in the geological craters which have an abundance of different metals from earth sediments rather than antibiotics. Furthermore, the selection could be environment driven depending on the susceptibility of ARGs in a thermophilic environments as it reduces the chances of horizontal gene transfer. | 2020 | 32344121 |
| 7674 | 11 | 0.9939 | Insights into gut microbiomes in stem cell transplantation by comprehensive shotgun long-read sequencing. The gut microbiome is a diverse ecosystem, dominated by bacteria; however, fungi, phages/viruses, archaea, and protozoa are also important members of the gut microbiota. Exploration of taxonomic compositions beyond bacteria as well as an understanding of the interaction between the bacteriome with the other members is limited using 16S rDNA sequencing. Here, we developed a pipeline enabling the simultaneous interrogation of the gut microbiome (bacteriome, mycobiome, archaeome, eukaryome, DNA virome) and of antibiotic resistance genes based on optimized long-read shotgun metagenomics protocols and custom bioinformatics. Using our pipeline we investigated the longitudinal composition of the gut microbiome in an exploratory clinical study in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT; n = 31). Pre-transplantation microbiomes exhibited a 3-cluster structure, characterized by Bacteroides spp. /Phocaeicola spp., mixed composition and Enterococcus abundances. We revealed substantial inter-individual and temporal variabilities of microbial domain compositions, human DNA, and antibiotic resistance genes during the course of alloHSCT. Interestingly, viruses and fungi accounted for substantial proportions of microbiome content in individual samples. In the course of HSCT, bacterial strains were stable or newly acquired. Our results demonstrate the disruptive potential of alloHSCTon the gut microbiome and pave the way for future comprehensive microbiome studies based on long-read metagenomics. | 2024 | 38374282 |
| 3173 | 12 | 0.9939 | Antibiotic-resistant bacteria in marine productive zones of the eastern Arabian Sea: Implications for human and environmental health. The increasing threat of antibiotic resistance is a major global concern affecting human and environmental health. Marine environments, though underexplored, are emerging as significant reservoirs for antibiotic resistance genes (ARGs). This study provides genome-resolved shotgun metagenomic insights into the seasonal and spatial dynamics of ARGs in the chlorophyll maximum zones of the eastern Arabian Sea, focusing on bacterial communities from coastal (30 m) and offshore (600 m) depths. Using a shotgun metagenomic approach, 31 potential ARGs were identified across both non-monsoon and monsoon seasons, with higher abundance observed in offshore stations during the non-monsoon season. Multidrug resistance genes such as blaEFM-1, catB2 and mexK, conferring resistance to carbapenems, chloramphenicol and multiple antibiotics, were prevalent in taxa like Staphylococcus sp., Qipengyuania sp. and Alcanivorax sp. Clinically relevant taxa, including Pseudomonas sp. and Staphylococcus sp., harbored ARGs, which may raise concerns regarding potential seafood-mediated ARG transmission. The significant enrichment and co-localization of mobile genetic elements (MGEs) with ARGs suggest enhanced horizontal gene transfer among native marine bacteria in the offshore environments. However, the limited distribution of ARGs and the absence of associated MGEs during the monsoon season may result from dilution caused by freshwater influx. Comparative functional analysis revealed stress-related functional enrichment in ARG-carrying metagenomic assembled genomes, suggesting environmental stress may enhance the spread of ARGs within offshore microbial communities. These findings challenge the coastal-centric view of marine antibiotic resistance by identifying offshore waters as underrecognized ARG reservoirs. Establishing a genomic baseline for One Health ARG surveillance, this study underscores the urgent need to integrate offshore regions into global monitoring frameworks to protect marine ecosystems and safeguard public health. | 2025 | 40633655 |
| 7698 | 13 | 0.9939 | Detecting horizontal gene transfer with metagenomics co-barcoding sequencing. Horizontal gene transfer (HGT) is the process through which genetic information is transferred between different genomes and that played a crucial role in bacterial evolution. HGT can enable bacteria to rapidly acquire antibiotic resistance and bacteria that have acquired resistance is spreading within the microbiome. Conventional methods of characterizing HGT patterns include short-read metagenomic sequencing (short-reads mNGS), long-read sequencing, and single-cell sequencing. These approaches present several limitations, such as short-read fragments, high amounts of input DNA, and sequencing costs, respectively. Here, we attempt to circumvent present limitations to detect HGT by developing a metagenomics co-barcode sequencing workflow (MECOS) and applying it to the human and mouse gut microbiomes. In addition to that, we have over 10-fold increased contig length compared to short-reads mNGS; we also obtained exceeding 30 million paired reads with co-barcode information. Applying the novel bioinformatic pipeline, we integrated this co-barcoding information and the context information from long reads, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Specifically, we detected approximately 3,000 HGT blocks in individual samples, encompassing ~6,000 genes and ~100 taxonomic groups, including loci conferring tetracycline resistance through ribosomal protection. MECOS provides a valuable tool for investigating HGT and advance our understanding on the evolution of natural microbial communities within hosts.IMPORTANCEIn this study, to better identify horizontal gene transfer (HGT) in individual samples, we introduce a new co-barcoding sequencing system called metagenomics co-barcoding sequencing (MECOS), which has three significant improvements: (i) long DNA fragment extraction, (ii) a special transposome insertion, (iii) hybridization of DNA to barcode beads, and (4) an integrated bioinformatic pipeline. Using our approach, we have over 10-fold increased contig length compared to short-reads mNGS, and observed over 50-fold HGT events after we corrected the potential wrong HGT events. Our results indicate the presence of approximately 3,000 HGT blocks, involving roughly 6,000 genes and 100 taxonomic groups in individual samples. Notably, these HGT events are predominantly enriched in genes that confer tetracycline resistance via ribosomal protection. MECOS is a useful tool for investigating HGT and the evolution of natural microbial communities within hosts, thereby advancing our understanding of microbial ecology and evolution. | 2024 | 38315121 |
| 7668 | 14 | 0.9938 | Taxonomic and functional profiling of microbial community in municipal solid waste dumpsite. Understanding the microbial ecology of landfills is crucial for improving waste management strategies and utilizing the potential of these microbial communities for biotechnological applications. This study aimed to conduct a comprehensive taxonomic and functional profiling of the microbial community present in the Addis Ababa municipal solid waste dumpsite using a shotgun metagenomics sequencing approach. The taxonomic analysis of the sample revealed the significant presence of bacteria, with the Actinomycetota (56%), Pseudomonadota (23%), Bacillota (3%), and Chloroflexota (3%) phyla being particularly abundant. The most abundant KEGG categories were carbohydrates metabolism, membrane transport, signal transduction, and amino acid metabolism. The biodegradation and metabolism of xenobiotics, as well as terpenoids and polyketides, were also prevalent. Moreover, the Comprehensive Antibiotic Resistance Database (CARD) identified 52 antibiotic resistance gene (ARG) subtypes belonging to 14 different drug classes, with the highest abundances observed for glycopeptide, phosphonic acid, and multidrug resistance genes. Actinomycetota was the dominant phylum harboring ARGs, followed by Pseudomonadota and Chloroflexota. This study offers valuable insights into the taxonomic and functional diversity of the microbial community in the Addis Ababa municipal solid waste dumpsite. It sheds light on the widespread presence of metabolically versatile microbes, antibiotic resistance genes, mobile genetic elements, and pathogenic bacteria. This understanding can contribute to the creation of efficient waste management strategies and the investigation of possible biotechnological uses for these microbial communities. | 2024 | 39551884 |
| 6835 | 15 | 0.9938 | Metagenomic profiling of antibiotic resistance genes and their associations with the bacterial community along the Kanda River, an urban river in Japan. Antibiotic resistance genes (ARGs) present in urban rivers have the potential to disseminate antibiotic-resistant bacteria into other environments, posing significant threats to both ecological and public health. Although metagenomic analyses have been widely employed to detect ARGs in rivers, our understanding of their dynamics across different seasons in diverse watersheds remains limited. In this study, we performed a comprehensive genomic analysis of the Kanda River in Japan at 11 sites from upstream to estuary throughout the year to assess the spread of ARGs and their associations with bacterial communities. Analysis of 110 water samples using the 16S rRNA gene revealed variations in bacterial composition corresponding to seasonal changes in environmental parameters along the river. Shotgun metagenomics-based profiling of ARGs in 44 water samples indicated higher ARG abundance downstream, particularly during the summer. Weighted gene co-expression network analysis (WGCNA) linking bacterial lineages and ARGs revealed that 12 ARG subtypes co-occurred with 128 amplicon sequence variants (ASVs). WGCNA suggested potential hosts for ErmB, ErmF, ErmG, tetQ, tet (W/N/W), aadA2, and adeF, including gut-associated bacteria (e.g., Prevotella, Bacteroides, Arcobacter) and indigenous aquatic microbes (e.g., Limnohabitans and C39). In addition, Pseudarcobacter (a later synonym of Arcobater) was identified as a host for adeF, which was also confirmed by single cell genomics. This study shows that ARG distribution in urban rivers is affected by seasonal and geographical factors and demonstrates the importance of monitoring rivers using multiple types of genome sequencing, including 16S rRNA gene sequencing, metagenomics, and single cell genomics. | 2025 | 39488451 |
| 3260 | 16 | 0.9938 | Profiles of phage in global hospital wastewater: Association with microbial hosts, antibiotic resistance genes, metal resistance genes, and mobile genetic elements. Hospital wastewater (HWW) is known to host taxonomically diverse microbial communities, yet limited information is available on the phages infecting these microorganisms. To fill this knowledge gap, we conducted an in-depth analysis using 377 publicly available HWW metagenomic datasets from 16 countries across 4 continents in the NCBI SRA database to elucidate phage-host dynamics and phage contributions to resistance gene transmission. We first assembled a metagenomic HWW phage catalog comprising 13,812 phage operational taxonomic units (pOTUs). The majority of these pOTUs belonged to the Caudoviricetes order, representing 75.29 % of this catalog. Based on the lifestyle of phages, we found that potentially virulent phages predominated in HWW. Specifically, 583 pOTUs have been predicted to have the capability to lyse 81 potentially pathogenic bacteria, suggesting the promising role of HWW phages as a viable alternative to antibiotics. Among all pOTUs, 1.56 % of pOTUs carry 108 subtypes of antibiotic resistance genes (ARGs), 0.96 % of pOTUs carry 76 subtypes of metal resistance genes (MRGs), and 0.96 % of pOTUs carry 22 subtypes of non-phage mobile genetic elements (MGEs). Predictions indicate that certain phages carrying ARGs, MRGs, and non-phage MGEs could infect bacteria hosts, even potential pathogens. This suggests that phages in HWW may contribute to the dissemination of resistance-associated genes in the environment. This meta-analysis provides the first global catalog of HWW phages, revealing their correlations with microbial hosts and pahge-associated ARGs, MRG, and non-phage MGEs. The insights gained from this research hold promise for advancing the applications of phages in medical and industrial contexts. | 2024 | 38513871 |
| 9081 | 17 | 0.9938 | Identification and reconstruction of novel antibiotic resistance genes from metagenomes. BACKGROUND: Environmental and commensal bacteria maintain a diverse and largely unknown collection of antibiotic resistance genes (ARGs) that, over time, may be mobilized and transferred to pathogens. Metagenomics enables cultivation-independent characterization of bacterial communities but the resulting data is noisy and highly fragmented, severely hampering the identification of previously undescribed ARGs. We have therefore developed fARGene, a method for identification and reconstruction of ARGs directly from shotgun metagenomic data. RESULTS: fARGene uses optimized gene models and can therefore with high accuracy identify previously uncharacterized resistance genes, even if their sequence similarity to known ARGs is low. By performing the analysis directly on the metagenomic fragments, fARGene also circumvents the need for a high-quality assembly. To demonstrate the applicability of fARGene, we reconstructed β-lactamases from five billion metagenomic reads, resulting in 221 ARGs, of which 58 were previously not reported. Based on 38 ARGs reconstructed by fARGene, experimental verification showed that 81% provided a resistance phenotype in Escherichia coli. Compared to other methods for detecting ARGs in metagenomic data, fARGene has superior sensitivity and the ability to reconstruct previously unknown genes directly from the sequence reads. CONCLUSIONS: We conclude that fARGene provides an efficient and reliable way to explore the unknown resistome in bacterial communities. The method is applicable to any type of ARGs and is freely available via GitHub under the MIT license. | 2019 | 30935407 |
| 3179 | 18 | 0.9938 | Deciphering the mobility, pathogenic hosts, and co-selection of antibiotic resistance genes in untreated wastewater from three different hospitals. OBJECTIVE: Antibiotic resistance genes (ARGs) in hospital wastewater pose significant environmental and public health risks, yet the co-selection mechanisms involving metal/biocide resistance genes (MRGs/BRGs) and the role of mobile genetic elements (MGEs) remain poorly characterized. This study aimed to comprehensively assess the abundance, mobility, pathogenic hosts, and co-selection patterns of ARGs, MRGs, and BRGs in untreated wastewater from three types of hospitals. METHODS: Untreated wastewater samples from nine sources across three hospital types (general, traditional Chinese medicine, and dental) were analyzed using metagenomic sequencing and assembly. ARGs, MRGs, and BRGs were identified via the SARG and BacMet databases. ARG hosts, mobility, and MGE co-occurrence were analyzed using PlasFlow and MOB-suite, with risk levels evaluated alongside pathogenic bacteria databases. RESULTS: A total of 1911 ARGs (222 subtypes), 1662 MRGs (167 subtypes), and 916 BRGs (139 subtypes) were detected. Tetracycline, multidrug, and β-lactam resistance genes were predominant, with 46.43 % of ARGs being plasmid-associated. Key pathogens including Klebsiella pneumoniae and Enterococcus spp. harbored high-risk ARGs such as KPC-2 and NDM-1. Notably, 76.2 % of ARGs in traditional Chinese medicine hospital wastewater were classified as high-risk. Significant co-occurrence of ARGs with MGEs (e.g., DDE recombinases) and MRGs/BRGs was observed, underscoring the role of horizontal gene transfer and co-selection. CONCLUSION: Untreated hospital wastewater represents a significant reservoir of ARGs, with risks exacerbated by pathogenic hosts, MGE-mediated HGT, and metal/biocide co-selection. These findings underscore the urgent need for optimized wastewater treatment strategies to curb the spread of antibiotic resistance and inform future intervention efforts. | 2025 | 41067299 |
| 6865 | 19 | 0.9938 | A metagenomic analysis framework for characterization of antibiotic resistomes in river environment: Application to an urban river in Beijing. River is considered generally as a natural reservoir of antibiotic resistance genes (ARGs) in environments. For the prevention and control of ARG risks, it is critical to comprehensively characterize the antibiotic resistomes and their associations in riverine systems. In this study, we proposed a metagenomic framework for identifying antibiotic resistomes in river sediments from multiple categories, including ARG potential, ARG hosts, pathogenicity potential, co-selection potential and gene transfer potential, and applied it to understand the presence, hosts, and co-occurrence of ARGs in the sediments of an urban river in Beijing. Results showed that a total of 203 ARG subtypes belonging to 21 ARG types were detected in the river sediments with an abundance range of 107.7-1004.1×/Gb, dominated by multidrug, macrolide-lincosamide-streptogramin, bacitracin, quinolone and sulfonamide resistance genes. Host-tracking analysis identified Dechloromonas, Pseudoxanthomonas, Arenimonas, Lysobacter and Pseudomonas as the major hosts of ARGs. A number of ARG-carrying contigs (ACCs) were annotated as fragments of pathogenic bacteria and carried multiple multidrug-ARGs. In addition, various biocide/metal resistance genes (B/MRGs) and mobile genetic elements (MGEs), including prophages, plasmids, integrons and transposons, were detected in the river sediments. More importantly, the co-occurrence analysis via ACCs showed a strong association of ARGs with B/MRGs and MGEs, indicating high potential of co-selection and active horizontal transmission for ARGs in the river environment, likely driven by the frequent impact of anthropogenic activities in that area. | 2019 | 30453138 |