# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6144 | 0 | 0.9235 | Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment. | 2019 | 30609485 |
| 6145 | 1 | 0.9195 | Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As. | 2019 | 31470481 |
| 517 | 2 | 0.9150 | Adaptation to metal(loid)s in strain Mucilaginibacter rubeus P2 involves novel arsenic resistance genes and mechanisms. Arsenic is a ubiquitous environmental toxi substance that affects human health. Compared to inorganic arsenicals, reduced organoarsenicals are more toxic, and some of them are recognized as antibiotics, such as methylarsenite [MAs(III)] and arsinothricin (2-amino-4-(hydroxymethylarsinoyl)butanoate, or AST). To date, organoarsenicals such as MAs(V) and roxarsone [Rox(V)] are still used in agriculture and animal husbandry. How bacteria deal with both inorganic and organoarsenic species is unclear. Recently, we identified an environmental isolate Mucilaginibacter rubeus P2 that has adapted to high arsenic and antinomy levels by triplicating an arsR-mrarsU(Bact)-arsN-arsC-(arsRhp)-hp-acr3-mrme1(Bact)-mrme2(Bact)gene cluster. Heterologous expression of mrarsM(Bact), mrarsU(Bact), mrme1(Bact) and mrme2(Bact), encoding putative arsenic resistance determinants, in the arsenic hypersensitive strain Escherichia coli AW3110 conferred resistance to As(III), As(V), MAs(III) or Rox(III). Our data suggest that metalloid exposure promotes plasticity in arsenic resistance systems, enhancing host organism adaptation to metalloid stress. | 2024 | 37865075 |
| 522 | 3 | 0.9121 | Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination. | 2024 | 39382695 |
| 514 | 4 | 0.9119 | The organoarsenical biocycle and the primordial antibiotic methylarsenite. Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle. | 2016 | 27730229 |
| 513 | 5 | 0.9113 | New mechanisms of bacterial arsenic resistance. Arsenic is the most pervasive environmental substance and is classified by the International Agency for Research on Cancer as a Group 1 human carcinogen. Nearly every organism has resistance pathways for inorganic arsenic, and in bacteria, their genes are found in arsenic resistance (ars) operons. Recently, a parallel pathway for organic arsenicals has been identified. The ars genes responsible for the organoarsenical detoxification includes arsM, which encodes an As(III) S-adenosylmethionine methyltransferase, arsI, which encodes a C-As bond lyase, and arsH, which encodes a methylarsenite oxidase. The identification and properties of arsM, arsI and arsH are described in this review. | 2016 | 27105594 |
| 5135 | 6 | 0.9105 | Arsenotrophic Achromobacter aegrifaciens strains isolated from arsenic contaminated tubewell water and soil sources shared similar genomic potentials. BACKGROUND: Arsenic (As), found in diverse ecosystems, poses major public health risks in various parts of the world. Arsenotrophic bacteria in contaminated environments help reduce toxicity by converting arsenite (AsIII) to less harmful arsenate (AsV). We assumed that Achromobacter aegrifaciens strains from As-contaminated tubewell water and soil would share similar genomic characteristics associated with arsenic detoxification and bioremediation. To investigate this, we employed both culture-dependent and culture-independent viz. whole genome sequencing (WGS) methods to thoroughly elucidate the phenotypic and genotypic features of two A. aegrifaciens strains isolated from As-contaminated tubewell water (BAW48) and soil (BAS32) samples collected in the Bogura district of Bangladesh. RESULTS: Both BAW48 and BAS32 isolates demonstrated As(III) oxidation in the KMNO4 test, which was corroborated by molecular analysis confirming the presence of aioA and arsB genes in both strains. These strains were found to be phylogenetically related to many strains of Achromobacter spp., isolated from biological inorganic reactors, environmental soils, sediments and human clinical samples across diverse geographical regions. Moreover, both strains possessed distinct heavy metal resistance genes conferring resistance to Co, Zn, Cu, Cd, Hg, As, and Cr. Three As gene clusters such as As(III) oxidizing aioBA, As(III) reducing arsRCDAB and the MMA(III) oxidizing ars resistance gene (arsHCsO) cluster were predicted in both genomes of A. aegrifaciens. Further genomic analyses revealed similar profiles in both strains, with mobile genetic elements, antimicrobials and heavy metal resistance genes, virulence genes, and metabolic features. Pangenome and synteny analysis showed that the two genomes are evolutionary distinct from other strains, but closely related to one another. CONCLUSION: The genomic data confirmed that A. aegrifaciens strains can oxidize As(III) and detoxify heavy metals like As, suggesting their potential for As detoxification and bioremediation. These findings align with our assumption and provide a basis for developing sustainable solutions for bioremediation efforts in As-contaminated environments. | 2024 | 39627700 |
| 6146 | 7 | 0.9103 | Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites. | 2017 | 28054716 |
| 510 | 8 | 0.9099 | ArsZ from Ensifer adhaerens ST2 is a novel methylarsenite oxidase. Trivalent methylarsenite [MAs(III)] produced by biomethylation is more toxic than inorganic arsenite [As(III)]. Hence, MAs(III) has been proposed to be a primordial antibiotic. Other bacteria evolved mechanisms to detoxify MAs(III). In this study, the molecular mechanisms of MAs(III) resistance of Ensifer adhaerens ST2 were investigated. In the chromosome of E. adhaerens ST2 is a gene encoding a protein of unknown function. Here, we show that this gene, designated arsZ, encodes a novel MAs(III) oxidase that confers resistance by oxidizing highly toxic MAs(III) to relatively nontoxic MAs(V). Two other genes, arsRK, are adjacent to arsZ but are divergently encoded in the opposite direction. Heterologous expression of arsZ in Escherichia coli confers resistance to MAs(III) but not to As(III). Purified ArsZ catalyses thioredoxin- and NAPD(+) -dependent oxidation of MAs(III). Mutational analysis of ArsZ suggests that Cys59 and Cys123 are involved in the oxidation of MAs(III). Expression of arsZ, arsR and arsK genes is induced by MAs(III) and As(III) and is likely controlled by the ArsR transcriptional repressor. These results demonstrate that ArsZ is a novel MAs(III) oxidase that contributes to E. adhaerens tolerance to environmental organoarsenicals. The arsZRK operon is widely present in bacteria within the Rhizobiaceae family. | 2022 | 35355385 |
| 511 | 9 | 0.9094 | Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Arsenic can be biomethylated to form a variety of organic arsenicals differing in toxicity and environmental mobility. Trivalent methylarsenite (MAs(III)) produced in the methylation process is more toxic than inorganic arsenite (As(III)). MAs(III) also serves as a primitive antibiotic and, consequently, some environmental microorganisms have evolved mechanisms to detoxify MAs(III). However, the mechanisms of MAs(III) detoxification are not well understood. In this study, we identified an arsenic resistance (ars) operon consisting of three genes, arsRVK, that contribute to MAs(III) resistance in Ensifer adhaerens ST2. ArsV is annotated as an NADPH-dependent flavin monooxygenase with unknown function. Expression of arsV in the arsenic hypersensitive Escherichia coli strain AW3110Δars conferred resistance to MAs(III) and the ability to oxidize MAs(III) to MAs(V). In the presence of NADPH and either FAD or FMN, purified ArsV protein was able to oxidize both MAs(III) to MAs(V) and Sb(III) to Sb(V). Genes with arsV-like sequences are widely present in soils and environmental bacteria. Metagenomic analysis of five paddy soils showed the abundance of arsV-like sequences of 0.12-0.25 ppm. These results demonstrate that ArsV is a novel enzyme for the detoxification of MAs(III) and Sb(III) and the genes encoding ArsV are widely present in soil bacteria. | 2022 | 33769668 |
| 139 | 10 | 0.9093 | The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut. Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms. | 2022 | 36058313 |
| 8670 | 11 | 0.9084 | Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes. | 2023 | 37374983 |
| 6154 | 12 | 0.9082 | Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arsenic contamination is an important environmental problem around the world since its high toxicity, and bacteria resist to this element serve as valuable resource for its bioremediation. Aiming at searching the arsenic-resistant bacteria and determining their resistant mechanism, a total of 27 strains isolated from roots of Prosopis laevigata and Spharealcea angustifolia grown in a heavy metal-contaminated region in Mexico were investigated. The minimum inhibitory concentration (MIC) and transformation abilities of arsenate (As(5+)) and arsenite (As(3+)), arsenophore synthesis, arsenate uptake, and cytoplasmatic arsenate reductase (arsC), and arsenite transporter (arsB) genes were studied for these strains. Based on these results and the 16S rDNA sequence analysis, these isolates were identified as arsenic-resistant endophytic bacteria (AREB) belonging to the genera Arthrobacter, Bacillus, Brevibacterium, Kocuria, Microbacterium, Micrococcus, Pseudomonas, and Staphylococcus. They could tolerate high concentrations of arsenic with MIC from 20 to > 100 mM for As(5+) and 10-20 mM for As(3+). Eleven isolates presented dual abilities of As(5+) reduction and As(3+) oxidation. As the most effective strains, Micrococcus luteus NE2E1 reduced 94% of the As(5+) and Pseudomonas zhaodongensis NM2E7 oxidized 46% of As(3+) under aerobic condition. About 70 and 44% of the test strains produced arsenophores to chelate As(5+) and As(3+), respectively. The AREB may absorb arsenate via the same receptor of phosphate uptake or via other way in some case. The cytoplasmic arsenate reductase and alternative arsenate reduction pathways exist in these AREB. Therefore, these AREB could be candidates for the bioremediation process. | 2018 | 29476206 |
| 6097 | 13 | 0.9081 | Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator. BACKGROUND: Alleviating arsenic (As) contamination is a high-priority environmental issue. Hyperaccumulator plants may harbor endophytic bacteria able to detoxify As. Therefore, we investigated the distribution, diversity, As (III) resistance levels, and resistance-related functional genes of arsenite-resistant bacterial endophytes in Pteris vittata L. growing in a lead-zinc mining area with different As contamination levels. RESULTS: A total of 116 arsenite-resistant bacteria were isolated from roots of P. vittata with different As concentrations. Based on the 16S rRNA gene sequence analysis of representative isolates, the isolates belonged to Proteobacteria, Actinobacteria, and Firmicutes. Major genera found were Agrobacterium, Stenotrophomonas, Pseudomonas, Rhodococcus, and Bacillus. The most highly arsenite-resistant bacteria (minimum inhibitory concentration > 45 mM) were isolated from P. vittata with high As concentrations and belonged to the genera Agrobacterium and Bacillus. The strains with high As tolerance also showed high levels of indole-3-acetic acid (IAA) production and carried arsB/ACR3(2) genes. The arsB and ACR3(2) were most likely horizontally transferred among the strains. CONCLUSION: The results of this study suggest that P. vittata plants with high As concentrations may select diverse arsenite-resistant bacteria; this diversity might, at least partly, be a result of horizontal gene transfer. These diverse endophytic bacteria are potential candidates to enhance phytoremediation techniques. | 2018 | 29739310 |
| 3062 | 14 | 0.9081 | Characterization of organotin-resistant bacteria from boston harbor sediments. Organotins are widely used in agriculture and industry. They are toxic to a variety of organisms including bacteria, although little is known of their physiology and ecology. Bacteria resistant to six organotins-tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and monophenyltin (MPT)-were isolated from Boston Harbor sediments, Massachusetts, USA. Bacteria resistant to each of the organotins, except DPT, were isolated directly from estuarine sediments. Viability of the organotin-resistant bacteria on serial transfer in the laboratory ranged from 80 to 91%. Each isolate was screened for resistance to the other organotins. All of 250 isolates were resistant to at least two organotins. No DPT-resistant isolates were found on initial isolation on DPT, although there was DPT resistance among the other organotin-resistant bacteria. Eighty percent of TBT-resistant bacteria were TPT-resistant, suggesting that antifouling paints containing TPT will not be a suitable substitute for TBT in paints designed to inhibit microbial biofilms. Debutylation reduced toxicity in some cases while dephenylation did not. Thus, even though trisubstituted organotins are generally believed to be more toxic than di- or monosubstituted organotins, this may not always be the case, and more than one mechanism of resistance may be involved. All the bacteria were resistant to at least six of eight heavy metals tested, suggesting that resistance to heavy metals may be associated with resistance to organotins. | 1998 | 9732471 |
| 363 | 15 | 0.9079 | Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III]. | 2015 | 25753102 |
| 8719 | 16 | 0.9078 | Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains. | 2021 | 33514061 |
| 581 | 17 | 0.9076 | Inorganic polyphosphates and heavy metal resistance in microorganisms. The mechanisms of heavy metal resistance in microbial cells involve multiple pathways. They include the formation of complexes with specific proteins and other compounds, the excretion from the cells via plasma membrane transporters in case of procaryotes, and the compartmentalization of toxic ions in vacuoles, cell wall and other organelles in case of eukaryotes. The relationship between heavy metal tolerance and inorganic polyphosphate metabolism was demonstrated both in prokaryotic and eukaryotic microorganisms. Polyphosphates, being polyanions, are involved in detoxification of heavy metals through complex formation and compartmentalization. The bacteria and fungi cultivated in the presence of some heavy metal cations contain the enhanced levels of polyphosphate. In bacteria, polyphosphate sequesters heavy metals; some of metal cations stimulate an exopolyphosphatase activity, which releases phosphate from polyphosphates, and MeHPO(4)(-) ions are then transported out of the cells. In fungi, the overcoming of heavy metal stresses is associated with the accumulation of polyphosphates in cytoplasmic inclusions, vacuoles and cell wall and the formation of cation/polyphosphate complexes. The effects of knockout mutations and overexpression of the genes encoding polyphosphate-metabolizing enzymes on heavy metal resistance are discussed. | 2018 | 30151754 |
| 8704 | 18 | 0.9076 | Unraveling nitrogen metabolism, cold and stress adaptation in polar Bosea sp. PAMC26642 through comparative genome analysis. Nitrogen metabolism, related genes, and other stress-resistance genes are poorly understood in Bosea strain. To date, most of the research work in Bosea strains has been focused on thiosulfate oxidation and arsenic reduction. This work aimed to better understand and identify genomic features that enable thiosulfate-oxidizing lichen-associated Bosea sp. PAMC26642 from the Arctic region of Svalbard, Norway, to withstand harsh environments. Comparative genomic analysis was performed using various bioinformatics tools to compare Bosea sp. PAMC26642 with other strains of the same genus, emphasizing nitrogen metabolism and stress adaptability. During genomic analysis of Bosea sp. PAMC26642, assimilatory nitrogen metabolic pathway and its associated enzymes such as nitrate reductase, NAD(P)H-nitrite reductase, ferredoxin-nitrite reductase, glutamine synthetase, glutamine synthase, and glutamate dehydrogenase were identified. In addition, carbonic anhydrase, cyanate lyase, and nitronate monooxygenase were also identified. Furthermore, the strain demonstrated nitrate reduction at two different temperatures (15°C and 25°C). Enzymes associated with various stress adaptation pathways, including oxidative stress (superoxide dismutase, catalase, and thiol peroxidase), osmotic stress (OmpR), temperature stress (Csp and Hsp), and heavy metal resistance, were also identified. The average Nucleotide Identity (ANI) value is found to be below the threshold of 94-95%, indicating this bacterium might be a potential new species. This study is very helpful in determining the diversity of thiosulfate-oxidizing nitrate-reducing bacteria, as well as their ability to adapt to extreme environments. These bacteria can be used in the future for environmental, biotechnological, and agricultural purposes, particularly in processes involving sulfur and nitrogen transformation. | 2024 | 39925882 |
| 8640 | 19 | 0.9075 | Comparative genomics reveals the acquisition of mobile genetic elements by the plant growth-promoting Pantoea eucrina OB49 in polluted environments. Heavy metal-tolerant plant growth-promoting bacteria (PGPB) have gained popularity in bioremediation in recent years. A genome-assisted study of a heavy metal-tolerant PGPB Pantoea eucrina OB49 isolated from the rhizosphere of wheat grown on a heavy metal-contaminated site is presented. Comparative pan-genome analysis indicated that OB49 acquired heavy metal resistance genes through horizontal gene transfer. On contigs S10 and S12, OB49 has two arsRBCH operons that give arsenic resistance. On the S12 contig, an arsRBCH operon was discovered in conjunction with the merRTPCADE operon, which provides mercury resistance. P. eucrina OB49 may be involved in an ecological alternative for heavy metal remediation and growth promotion of wheat grown in metal-polluted soils. Our results suggested the detection of mobile genetic elements that harbour the ars operon and the fluoride resistance genes adjacent to the mer operon. | 2023 | 36792019 |