# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8821 | 0 | 0.9315 | Aromatics valorization to polyhydroxyalkanoate by the ligninolytic bacteria isolated from soil sample. Polyhydroxyalkanoates (PHA) are ecofriendly alternatives to conventional plastics due to their biodegradable nature. However, the high production cost limits their applications. Exploring novel bacteria with ligninolytic potential would be crucial to advance cost-effective PHA synthesis. The current study aims to unveil soil bacteria capable of aromatics valorization to PHA. Considering this, six aromatics resistance bacteria from a soil sample were isolated through culture acclimatization strategy and their growth was analyzed in various lignin model compounds. Ralstonia sp. BPSS-1 and Arthrobacter sp. BPSS-3 presented high-cell-densities in 4-hydroxybenzoic acid (4-HBA) and benzoate, respectively. Fluorescence microscopy confirmed the strains to be PHA positive and were subsequently evaluated for PHA synthesis from 4-HBA and benzoate at a concentration of 2 g L(-1) in a nitrogen-limited M9 medium. However, applying a co-feeding strategy by the integration of 4-HBA and benzoate further increased the substrates consumption efficiency, biomass and PHA titer compared to single carbon sources. The maximum dry cell weight (DCW) and PHA yield by Ralstonia sp. BPSS-1 through the substrate co-feeding under optimized fermentation conditions was 0.69 ± 0.03, and 0.4 ± 0.02 g L(-1), respectively. The draft genome analysis confirmed the genes involved in aromatic degradation. Besides, the proposed metabolic pathway was validated by studying the expression level of key genes, analyzing key intermediates and associated enzymes activities. The FTIR, (1)H NMR and GC-MS determined the PHA functional group, chemical structure and monomers analysis, respectively. Overall, the current study highlighted the aromatic valorization potential of newly isolated PHA producing bacteria for sustainable biomanufacturing. | 2025 | 40032105 |
| 523 | 1 | 0.9307 | Sulfide-carbonate-mineralized functional bacterial consortium for cadmium removal in flue gas. Sulfide-carbonate-mineralized functional bacterial consortium was constructed for flue gas cadmium biomineralization. A membrane biofilm reactor (MBfR) using the bacterial consortium containing sulfate reducing bacteria (SRB) and denitrifying bacteria (DNB) was investigated for flue gas cadmium (Cd) removal. Cadmium removal efficiency achieved 90%. The bacterial consortium containing Citrobacter, Desulfocurvus and Stappia were dominated for cadmium resistance-nitrate-sulfate reduction. Under flue gas cadmium stress, ten cadmium resistance genes (czcA, czcB, czcC, czcD, cadA, cadB, cadC, cueR, copZ, zntA), and seven genes related to sulfate reduction, increased in abundance; whereas others, nine genes related to denitrification, decreased, indicating that cadmium stress was advantageous to sulfate reduction in the competition with denitrification. A bacterial consortium could capable of simultaneously cadmium resistance, sulfate reduction and denitrification. Microbial induced carbonate precipitation (MICP) and biological adsorption process would gradually yield to sulfide-mineralized process. Flue gas cadmium could transform to Cd-EPS, cadmium carbonate (CdCO(3)) and cadmium sulfide (CdS) bioprecipitate. The functional bacterial consortium was an efficient and eco-friendly bifunctional bacterial consortium for sulfide-carbonate-mineralized of cadmium. This provides a green and low-carbon advanced treatment technology using sulfide-carbonate-mineralized functional bacterial consortium for the removal of cadmium or other hazardous heavy metal contaminants in flue gas. | 2024 | 39019186 |
| 23 | 2 | 0.9298 | Ectopic expression of Hrf1 enhances bacterial resistance via regulation of diterpene phytoalexins, silicon and reactive oxygen species burst in rice. Harpin proteins as elicitor derived from plant gram negative bacteria such as Xanthomonas oryzae pv. oryzae (Xoo), Erwinia amylovora induce disease resistance in plants by activating multiple defense responses. However, it is unclear whether phytoalexin production and ROS burst are involved in the disease resistance conferred by the expression of the harpin(Xoo) protein in rice. In this article, ectopic expression of hrf1 in rice enhanced resistance to bacterial blight. Accompanying with the activation of genes related to the phytoalexin biosynthesis pathway in hrf1-transformed rice, phytoalexins quickly and consistently accumulated concurrent with the limitation of bacterial growth rate. Moreover, the hrf1-transformed rice showed an increased ability for ROS scavenging and decreased hydrogen peroxide (H(2)O(2)) concentration. Furthermore, the localization and relative quantification of silicon deposition in rice leaves was detected by scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDS). Finally, the transcript levels of defense response genes increased in transformed rice. These results show a correlation between Xoo resistance and phytoalexin production, H(2)O(2), silicon deposition and defense gene expression in hrf1-transformed rice. These data are significant because they provide evidence for a better understanding the role of defense responses in the incompatible interaction between bacterial disease and hrf1-transformed plants. These data also supply an opportunity for generating nonspecific resistance to pathogens. | 2012 | 22970151 |
| 7873 | 3 | 0.9296 | Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems. | 2023 | 36996986 |
| 7829 | 4 | 0.9294 | Insights into capture-inactivation/oxidation of antibiotic resistance bacteria and cell-free antibiotic resistance genes from waters using flexibly-functionalized microbubbles. The spread of antibiotic resistance in the aquatic environment severely threatens the public health and ecological security. This study investigated simultaneously capturing and inactivating/oxidizing the antibiotic resistant bacteria (ARB) and cell-free antibiotic resistance genes (ARGs) in waters by flexibly-functionalized microbubbles. The microbubbles were obtained by surface-modifying the bubbles with coagulant (named as coagulative colloidal gas aphrons, CCGAs) and further encapsulating ozone in the gas core (named as coagulative colloidal ozone aphrons, CCOAs). CCGAs removed 92.4-97.5% of the sulfamethoxazole-resistant bacteria in the presence of dissolved organic matter (DOM), and the log reduction of cell-free ARGs (particularly, those encoded in plasmid) reached 1.86-3.30. The ozone release from CCOAs led to efficient in-situ oxidation: 91.2% of ARB were membrane-damaged and inactivated. In the municipal wastewater matrix, the removal of ARB increased whilst that of cell-free ARGs decreased by CCGAs with the DOM content increasing. The ozone encapsulation into CCGAs reinforced the bubble performance. The predominant capture mechanism should be electrostatic attraction between bubbles and ARB (or cell-free ARGs), and DOM enhanced the sweeping and bridging effect. The functionalized microbubble technology can be a promising and effective barrier for ARB and cell-free ARGs with shortened retention time, lessened chemical doses and simplified treatment unit. | 2022 | 35063836 |
| 7897 | 5 | 0.9291 | Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system. | 2023 | 37437616 |
| 9989 | 6 | 0.9288 | Molecular Insights into Fungal Innate Immunity Using the Neurospora crassa - Pseudomonas syringae Model. Recent comparative genomics and mechanistic analyses support the existence of a fungal immune system. Fungi encode genes with features similar to non-self recognition systems in plants, animals, and bacteria. However, limited functional or mechanistic evidence exists for the surveillance-system recognition of heterologous microbes in fungi. We found that Neurospora species coexist with Pseudomonas in their natural environment. We leveraged two model organisms, Neurospora crassa and Pseudomonas syringae DC3000 (PSTDC3000) to observe immediate fungal responses to bacteria. PSTDC3000 preferentially surrounds N. crassa cells on a solid surface, causing environmental dependent growth responses, bacterial proliferation and varying fungal fitness. Specifically, the Type III secretion system (T3SS) ΔhrcC mutant of PSTDC3000 colonized N. crassa hyphae less well. To dissect initial cellular signaling events within the population of germinated asexual spores (germlings), we performed transcriptomics on N. crassa after PSTDC3000 inoculation. Upon contact with live bacteria, a subpopulation of fungal germlings initiate a response as early as ten minutes post-contact revealing transcriptional differentiation of Reactive Oxygen Species (ROS) mechanisms, trace metal warfare, cell wall remodeling dynamics, multidrug-efflux transporters, secondary metabolite synthesis, and excretion. We dissected mutants of plausible receptors, signaling pathways, and responses that N. crassa uses to detect and mount a defense against PSTDC3000 and found seven genes that influence resistant and susceptibility phenotypes of N. crassa to bacterial colonization. Mutants in genes encoding a ctr copper transporter ( tcu-1 ), ferric reductase ( fer-1 ), superoxide reductase ( sod-2 ), multidrug resistance transporter ( mdr-6 ), a secreted lysozyme-Glycoside hydrolase ( lyz ) and the Woronin body tether leashin (NCU02793, lah-1 and lah-2 ) showed a significant reduction of growth in the presence of bacteria, allowing the bacteria to fully take over the fungal mycelium faster than wildtype. In this study we provide a bacterial-fungal model system within Dikarya that allows us to begin to dissect signaling pathways of the putative fungal immune system. | 2025 | 39896647 |
| 7828 | 7 | 0.9283 | Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water. | 2024 | 38669989 |
| 11 | 8 | 0.9277 | Diffusible signal factor primes plant immunity against Xanthomonas campestris pv. campestris (Xcc) via JA signaling in Arabidopsis and Brassica oleracea. BACKGROUND: Many Gram-negative bacteria use quorum sensing (QS) signal molecules to monitor their local population density and to coordinate their collective behaviors. The diffusible signal factor (DSF) family represents an intriguing type of QS signal to mediate intraspecies and interspecies communication. Recently, accumulating evidence demonstrates the role of DSF in mediating inter-kingdom communication between DSF-producing bacteria and plants. However, the regulatory mechanism of DSF during the Xanthomonas-plant interactions remain unclear. METHODS: Plants were pretreated with different concentration of DSF and subsequent inoculated with pathogen Xanthomonas campestris pv. campestris (Xcc). Pathogenicity, phynotypic analysis, transcriptome combined with metabolome analysis, genetic analysis and gene expression analysis were used to evaluate the priming effects of DSF on plant disease resistance. RESULTS: We found that the low concentration of DSF could prime plant immunity against Xcc in both Brassica oleracea and Arabidopsis thaliana. Pretreatment with DSF and subsequent pathogen invasion triggered an augmented burst of ROS by DCFH-DA and DAB staining. CAT application could attenuate the level of ROS induced by DSF. The expression of RBOHD and RBOHF were up-regulated and the activities of antioxidases POD increased after DSF treatment followed by Xcc inoculation. Transcriptome combined with metabolome analysis showed that plant hormone jasmonic acid (JA) signaling involved in DSF-primed resistance to Xcc in Arabidopsis. The expression of JA synthesis genes (AOC2, AOS, LOX2, OPR3 and JAR1), transportor gene (JAT1), regulator genes (JAZ1 and MYC2) and responsive genes (VSP2, PDF1.2 and Thi2.1) were up-regulated significantly by DSF upon Xcc challenge. The primed effects were not observed in JA relevant mutant coi1-1 and jar1-1. CONCLUSION: These results indicated that DSF-primed resistance against Xcc was dependent on the JA pathway. Our findings advanced the understanding of QS signal-mediated communication and provide a new strategy for the control of black rot in Brassica oleracea. | 2023 | 37404719 |
| 7935 | 9 | 0.9276 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 22 | 10 | 0.9273 | A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H(2)O(2)) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future. | 2022 | 36438094 |
| 7898 | 11 | 0.9270 | Effects of graphite and Mn ore media on electro-active bacteria enrichment and fate of antibiotic and corresponding resistance gene in up flow microbial fuel cell constructed wetland. This study assessed the influence of substrate type on pollutants removal, antibiotic resistance gene (ARG) fate and bacterial community evolution in up-flow microbial fuel cell constructed wetlands (UCW-MFC) with graphite and Mn ore electrode substrates. Better COD removal and higher bacterial community diversity and electricity generation performance were achieved in Mn ore constructed UCW-MFC (Mn). However, the lower concentration of sulfadiazine (SDZ) and the total abundances of ARGs were obtained in the effluent in the graphite constructed UCW-MFC (s), which may be related to higher graphite adsorption and filter capacity. Notably, both reactors can remove more than 97.8% of ciprofloxacin. In addition, significant negative correlations were observed between SDZ, COD concentration, ARG abundances and bacterial a-diversity indices. The LEfse analysis revealed significantly different bacterial communities due to the substrate differences in the two reactors, and Geobacter, a typical model electro-active bacteria (EAB), was greatly enriched on the anode of UCW-MFC (Mn). In contrast, the relative abundance of methanogens (Methanosaeta) was inhibited. PICRUSt analysis results further demonstrated that the abundance of extracellular electron transfer related functional genes was increased, but the methanogen function genes and multiple antibiotic resistance genes in UCW-MFC (Mn) anode were reduced. Redundancy analyses indicated that substrate type, antibiotic accumulation and bacterial community were the main factors affecting ARGs. Moreover, the potential ARG hosts and the co-occurrence of ARGs and intI1 were revealed by network analysis. | 2019 | 31442759 |
| 7854 | 12 | 0.9268 | Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment. | 2023 | 36738938 |
| 7853 | 13 | 0.9267 | Natural pyrite and ascorbic acid co-enhance periodate activation for inactivation of antibiotic resistant bacteria and inhibition of resistance genes transmission: A green disinfection process dominated by singlet oxygen. The transmission of antibiotic resistance genes (ARGs) and the propagation of antibiotic resistant bacteria (ARB) threaten public health security and human health, and greener and more efficient disinfection technologies are expected to be discovered for wastewater treatment. In this study, natural pyrite and ascorbic acid (AA) were proposed as environmental-friendly activator and reductant for periodate (PI) activation to inactivate ARB. The disinfection treatment of PI/pyrite/AA system could inactivate 5.62 log ARB within 30 min, and the lower pH and higher PI and natural pyrite dosage could further boost the disinfection efficiency. The (1)O(2) and SO(4)(•-) were demonstrated to be crucial for the inactivation of ARB in PI/pyrite/AA system. The disinfection process destroyed the morphological structure of ARB, inducing oxidative stress and stimulating the antioxidant system. The PI/pyrite/AA system effectively reduced the intracellular and extracellular DNA concentration and ARGs abundance, inhibiting the propagation of ARGs. The presence of AA facilitated the activation of PI with natural pyrite and significantly increased the concentration of Fe(2+) in solution. The reusability of natural pyrite, the safety of the disinfection by-products and the inhibition of ARB regeneration indicated the application potential of PI/pyrite/AA system in wastewater disinfection. | 2024 | 39038380 |
| 7858 | 14 | 0.9267 | Photocatalytic Reactive Ultrafiltration Membrane for Removal of Antibiotic Resistant Bacteria and Antibiotic Resistance Genes from Wastewater Effluent. Biological wastewater treatment is not effective in removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In this study, we fabricated a photocatalytic reactive membrane by functionalizing polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane with titanium oxide (TiO(2)) nanoparticles for the removal of ARB and ARGs from a secondary wastewater effluent. The TiO(2)-modified PVDF membrane provided complete retention of ARB and effective photocatalytic degradation of ARGs and integrons. Specifically, the total removal efficiency of ARGs (i.e., plasmid-mediated floR, sul1, and sul2) with TiO(2)-modified PVDF membrane reached ∼98% after exposure to UV irradiation. Photocatalytic degradation of ARGs located in the genome was found to be more efficient than those located in plasmid. Excellent removal of integrons (i.e., intI1, intI2, and intI3) after UV treatment indicated that the horizontal transfer potential of ARGs was effectively controlled by the TiO(2) photocatalytic reaction. We also evaluated the antifouling properties of the TiO(2)-UF membrane to demonstrate its potential application in wastewater treatment. | 2018 | 29984583 |
| 7848 | 15 | 0.9267 | Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS(2)@GO-Based Heterogeneous Photo-Fenton Process. The co-occurrence of various chemical and biological contaminants of emerging concerns has hindered the application of water recycling. This study aims to develop a heterogeneous photo-Fenton treatment by fabricating nano pyrite (FeS(2)) on graphene oxide (FeS(2)@GO) to simultaneously remove antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and micropollutants (MPs). A facile and solvothermal process was used to synthesize new pyrite-based composites. The GO coated layer forms a strong chemical bond with nano pyrite, which enables to prevent the oxidation and photocorrosion of pyrite and promote the transfer of charge carriers. Low reagent doses of FeS(2)@GO catalyst (0.25 mg/L) and H(2)O(2) (1.0 mM) were found to be efficient for removing 6-log of ARB and 7-log of extracellular ARG (e-ARG) after 30 and 7.5 min treatment, respectively, in synthetic wastewater. Bacterial regrowth was not observed even after a two-day incubation. Moreover, four recalcitrant MPs (sulfamethoxazole, carbamazepine, diclofenac, and mecoprop at an environmentally relevant concentration of 10 μg/L each) were completely removed after 10 min of treatment. The stable and recyclable composite generated more reactive species, including hydroxyl radicals (HO(•)), superoxide radicals (O(2)(• -)), singlet oxygen ((1)O(2)). These findings highlight that the synthesized FeS(2)@GO catalyst is a promising heterogeneous photo-Fenton catalyst for the removal of emerging contaminants. | 2022 | 35759741 |
| 7855 | 16 | 0.9265 | Combat against antibiotic resistance genes during photo-treatment of magnetic Zr-MOFs@Layered double hydroxide heterojunction: Conjugative transfer risk mitigating and bacterial inactivation. The dissemination of antimicrobial resistance (AMR) in wastewater treatment poses a severe threat to the global ecological environment. This study explored the effectiveness of photocatalysis in inactivating antibiotic resistant bacteria (ARB) and quantitatively clarified the inhibiting rate of the transfer of antibiotics resistance genes (ARGs). Herein, the magnetic heterojunction as UiO-66-NH(2)@CuFe LDH-Fe(3)O(4) (UN-66@LDH-Fe) effectively facilitated the electron-hole separation and accelerated the photogenerated charge transfer, thereby guaranteeing the stable practical application in aeration tanks. Notably, the internal electric field of heterogeneous photocatalyst resulted in significant increase of ARGs inactivation, achieving 5.63 log of ARB, 3.66 log of tetA and 3.57 log of Ampr genes were photodegraded under optimal reaction conditions within 6 h. Based on the complex microbial and molecular mechanism of multiple-ARB communities inactivation in photo-treatment, the photogenerated reactive oxygen species (ROSs, ·OH and ·O(2)(-)) effectively destroyed bacterial membrane protein, thereby the intracellular ROSs and redox cycles further induced oxidative stress, attributing to the abundance reduction of ARGs and their host bacteria. Moreover, long-term (7 days) continuous operation preliminarily verified the practical potential in reducing AMR spread and developing wastewater treatment efficacy. Overall, this study presented an advantageous synergistic strategy for mitigating the AMR-associated environmental risk in wastewater treatment. | 2025 | 40188541 |
| 7833 | 17 | 0.9265 | Defect-Rich Cu(2)O Nanospheres as a Fenton-Like Catalyst for Cu(III) Generation: Enhanced Inactivation of Antibiotic-Resistant Bacteria and Genes. Cupryl species (Cu(III)) are promising oxidants for degrading recalcitrant organic contaminants and harmful microorganisms in water. In this study, defect-rich cuprous oxide (D-Cu(2)O) nanospheres (NSs) are introduced as a Fenton-like catalyst to generate Cu(III) for the inactivation of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). D-Cu(2)O, in the presence of H(2)O(2), achieved inactivation efficiencies 3.2, 3.0, and 2.4 times higher than those of control Cu(2)O for ARB, extracellular ARGs (e-ARGs), and intracellular ARGs (i-ARGs), respectively. Experimental evidence from oxidant scavenging tests, Cu(III)-periodate complexation assays, electron paramagnetic resonance (EPR), and in situ Raman spectroscopy confirmed that D-Cu(2)O significantly enhanced Cu(III) generation when reacting with H(2)O(2) compared to control Cu(2)O. Density functional theory (DFT) calculations further revealed that unsaturated copper atoms in D-Cu(2)O enhance H(2)O(2) adsorption by improving the structural accessibility of adjacent oxygen atoms. This facilitates electron transfer processes and promotes subsequent Cu(III) generation. The D-Cu(2)O/H(2)O(2) system demonstrated excellent reusability, maintaining a 4-log reduction of ARB over five cycles, and proved effective across various water matrices and microbial species. These findings highlight the potential of the D-Cu(2)O/H(2)O(2) system, driven by defect engineering, as a robust platform for enhancing water safety and advancing sustainable disinfection technologies. | 2025 | 40795282 |
| 7830 | 18 | 0.9265 | Cascade capture, oxidization and inactivation for removing multi-species pollutants, antimicrobial resistance and pathogenicity from hospital wastewater. As reservoirs of pathogens, antimicrobial resistant microorganisms and a wide variety of pollutants, hospital wastewaters (HWWs) need to be effectively treated before discharge. This study employed the functionalized colloidal microbubble technology as one-step fast HWW treatment. Inorganic coagulant (monomeric Fe(III)-coagulant or polymeric Al(III)-coagulant) and ozone were used as surface-decorator and gaseous core modifier, respectively. The Fe(III)- or Al(III)-modified colloidal gas (or, ozone) microbubbles (Fe(III)-CCGMBs, Fe(III)-CCOMBs, Al(III)-CCGMBs and Al(III)-CCOMBs) were constructed. Within 3 min, CCOMBs decreased COD(Cr) and fecal coliform concentration to the levels meeting the national discharge standard for medical organization. Regrowth of bacteria was inhibited and biodegradability of organics was increased after the simultaneous oxidation and cell-inactivation process. The metagenomics analysis further reveals that Al(III)-CCOMBs performed best in capturing the virulence genes, antibiotic resistance genes and their potential hosts. The horizontal transfer of those harmful genes could be effectively hampered thanks to the removal of mobile genetic elements. Interestingly, the virulence factors of adherence, micronutrient uptake/acquisition and phase invasion could facilitate the interface-dominated capture. Featured as cascade processes of capture, oxidation and inactivation in the one-step operation, the robust Al(III)-CCOMB treatment is recommended for the HWW treatment and the protection of downstream aquatic environment. | 2023 | 37269564 |
| 77 | 19 | 0.9264 | A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. Genes and proteins related to patatin, the major storage protein of potato tubers, have been identified in many plant species and shown to be induced by a variety of environmental stresses. The Arabidopsis patatin-like gene family (PLPs) comprises nine members, two of which (PLP2 and PLP7) are strongly induced in leaves challenged with fungal and bacterial pathogens. Here we show that accumulation of PLP2 protein in response to Botrytis cinerea or Pseudomonas syringae pv. tomato (avrRpt2) is dependent on jasmonic acid and ethylene signaling, but is not dependent on salicylic acid. Expression of a PLP2-green fluorescent protein (GFP) fusion protein and analysis of recombinant PLP2 indicates that PLP2 encodes a cytoplasmic lipid acyl hydrolase with wide substrate specificity. Transgenic plants with altered levels of PLP2 protein were generated and assayed for pathogen resistance. Plants silenced for PLP2 expression displayed enhanced resistance to B. cinerea, whereas plants overexpressing PLP2 were much more sensitive to this necrotrophic fungus. We also established a positive correlation between the level of PLP2 expression in transgenic plants and cell death or damage in response to paraquat treatment or infection by avirulent P. syringae. Interestingly, repression of PLP2 expression increased resistance to avirulent bacteria, while PLP2-overexpressing plants multiplied avirulent bacteria close to the titers reached by virulent bacteria. Collectively, the data indicate that PLP2-encoded lipolytic activity can be exploited by pathogens with different lifestyles to facilitate host colonization. In particular PLP2 potentiates plant cell death inflicted by Botrytis and reduces the efficiency of the hypersensitive response in restricting the multiplication of avirulent bacteria. Both effects are possibly mediated by providing fatty acid precursors of bioactive oxylipins. | 2005 | 16297072 |