# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5134 | 0 | 0.9746 | Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4. | 2025 | 39626482 |
| 3434 | 1 | 0.9738 | Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: An evaluation of the disinfection effect of sodium hypochlorite. Chlorine and its derivatives, such as sodium hypochlorite (NaClO) and chlorine dioxide, are frequently employed as disinfectants throughout the pork supply chain in China. Nevertheless, the extensive use of NaClO has the potential to cause the creation of 'chlorine-tolerant bacteria' and accelerate the evolution of antibiotic resistance. This study evaluated the efficacy of NaClO disinfection by examining alterations in the microbiome and resistome of a pork wholesale market (PWM), and bacteria isolation and analysis were performed to validate the findings. As expected, the taxonomic compositions of bacteria was significantly different before and after disinfection. Notably, Salmonella enterica (S. enterica), Salmonella bongori (S. bongori), Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) were observed on all surfaces, indicating that the application of NaClO disinfection treatment in PWM environments for pathogenic bacteria is limited. Correlations were identified between antibiotic resistance genes (ARGs) associated with aminoglycosides (aph(3'')-I, aph(6')-I), quinolone (qnrB, abaQ), polymyxin (arnA, mcr-4) and disinfectant resistance genes (emrA/BD, mdtA/B/C/E/F). Furthermore, correlations were found between risk Rank I ARGs associated with aminoglycoside (aph(3')-I), tetracycline (tetH), beta_lactam (TEM-171), and disinfectant resistance genes (mdtB/C/E/F, emrA, acrB, qacG). Importantly, we found that Acinetobacter and Salmonella were the main hosts of disinfectant resistance genes. The resistance mechanisms of the ARGs identified in PWM were dominated by antibiotic deactivation (38.7%), antibiotic efflux (27.2%), and antibiotic target protection (14.4%). The proportion of genes encoding efflux pumps in the PWM resistome increased after disinfection. Microbial cultures demonstrated that the traits of microbial contamination and antibiotic resistane were consistent with those observed by metagenomic sequencing. This study highlights the possibility of cross-resistance between NaClO disinfectants and antibiotics, which should not be ignored. | 2024 | 38382341 |
| 5378 | 2 | 0.9737 | Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria. | 2020 | 33552024 |
| 5625 | 3 | 0.9736 | Genetic characterization and comparative genomics of a multi drug resistant (MDR) Escherichia coli SCM-21 isolated from a subclinical case of bovine mastitis. Escherichia coli is one of the major pathogens causing mastitis that adversely affects the dairy industry worldwide. This study employed whole genome sequence (WGS) approach to characterize the repertoire of antibiotic resistance genes (resistome), virulence genes (virulome), phylogenetic relationship and genome wide comparison of a multi drug resistant (MDR) E. coli(SCM-21) isolated from a case of subclinical bovine mastitis in Bangalore, India. The genome of E. coli SCM- 21 was found to be of 4.29 Mb size with 50.6% GC content, comprising a resistome of 22 genes encoding beta-lactamases (bla(TEM,)bla(AmpC)), polymyxin resistance (arnA) and various efflux pumps (acr, ade, emr,rob, mac, mar, rob), attributing to the bacteria's overall antibiotic resistance genetic profile. The virulome of E. coli SCM-21 consisted of genes encoding different traits [adhesion (ecp, fim, fde), biofilm formation (csg) and toxin production (ent, esp, fep, gsp)], necessary for manifestation of the infection. Phylogenetic relationship of E. coli SCM- 21 with other global E. coli strains (n = 4867) revealed its close genetic relatedness with E. coli strains originating from different hosts of varied geographical regions [human (Germany) bos taurus (USA, Belgium and Scotland) and chicken (China)]. Further, genome wide comparative analysis with E. coli (n = 6) from human and other animal origins showed synteny across the genomes. Overall findings of this study provided a comprehensive insight of the hidden genetic determinants/power of E. coli SCM-21 that might be responsible for manifestation of mastitis and failure of antibiotic treatment. Aforesaid strain forms a reservoir of antibiotic resistance genes (ARGs) and can integrate to one health micro biosphere. | 2022 | 35397469 |
| 5380 | 4 | 0.9735 | In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gathered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus faecium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887, Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium. Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro screening of a drug library is a promising approach to identify effective drugs for specific bacteria. | 2022 | 35326755 |
| 1400 | 5 | 0.9735 | Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli. | 2022 | 35147175 |
| 5379 | 6 | 0.9731 | Membrane-Targeting Triphenylphosphonium Functionalized Ciprofloxacin for Methicillin-Resistant Staphylococcus aureus (MRSA). Multidrug-resistant (MDR) bacteria have become a severe problem for public health. Developing new antibiotics for MDR bacteria is difficult, from inception to the clinically approved stage. Here, we have used a new approach, modification of an antibiotic, ciprofloxacin (CFX), with triphenylphosphonium (TPP, PPh(3)) moiety via ester- (CFX-ester-PPh(3)) and amide-coupling (CFX-amide-PPh(3)) to target bacterial membranes. In this study, we have evaluated the antibacterial activities of CFX and its derivatives against 16 species of bacteria, including MDR bacteria, using minimum inhibitory concentration (MIC) assay, morphological monitoring, and expression of resistance-related genes. TPP-conjugated CFX, CFX-ester-PPh(3), and CFX-amide-PPh(3) showed significantly improved antibacterial activity against Gram-positive bacteria, Staphylococcus aureus, including MDR S. aureus (methicillin-resistant S. aureus (MRSA)) strains. The MRSA ST5 5016 strain showed high antibacterial activity, with MIC values of 11.12 µg/mL for CFX-ester-PPh(3) and 2.78 µg/mL for CFX-amide-PPh(3). The CFX derivatives inhibited biofilm formation in MRSA by more than 74.9% of CFX-amide-PPh(3). In the sub-MIC, CFX derivatives induced significant morphological changes in MRSA, including irregular deformation and membrane disruption, accompanied by a decrease in the level of resistance-related gene expression. With these promising results, this method is very likely to combat MDR bacteria through a simple TPP moiety modification of known antibiotics, which can be readily prepared at clinical sites. | 2020 | 33143023 |
| 1995 | 7 | 0.9729 | Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains. | 2025 | 41148367 |
| 9054 | 8 | 0.9729 | Clinically Relevant Concentrations of Polymyxin B and Meropenem Synergistically Kill Multidrug-Resistant Pseudomonas aeruginosa and Minimize Biofilm Formation. The emergence of antibiotic resistance has severely impaired the treatment of chronic respiratory infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa. Since the reintroduction of polymyxins as a last-line therapy against MDR Gram-negative bacteria, resistance to its monotherapy and recurrent infections continue to be reported and synergistic antibiotic combinations have been investigated. In this study, comprehensive in vitro microbiological evaluations including synergy panel screening, population analysis profiling, time-kill kinetics, anti-biofilm formation and membrane damage analysis studies were conducted to evaluate the combination of polymyxin B and meropenem against biofilm-producing, polymyxin-resistant MDR P. aeruginosa. Two phylogenetically unrelated MDR P. aeruginosa strains, FADDI-PA060 (MIC of polymyxin B [MIC(polymyxin B)], 64 mg/L; MIC(meropenem), 64 mg/L) and FADDI-PA107 (MIC(polymyxin B), 32 mg/L; MIC(meropenem), 4 mg/L) were investigated. Genome sequencing identified 57 (FADDI-PA060) and 50 (FADDI-PA107) genes predicted to confer resistance to a variety of antimicrobials, as well as multiple virulence factors in each strain. The presence of resistance genes to a particular antibiotic class generally aligned with MIC results. For both strains, all monotherapies of polymyxin B failed with substantial regrowth and biofilm formation. The combination of polymyxin B (16 mg/L)/meropenem (16 mg/L) was most effective, enhancing initial bacterial killing of FADDI-PA060 by ~3 log(10) CFU/mL, followed by a prolonged inhibition of regrowth for up to 24 h with a significant reduction in biofilm formation (* p < 0.05). Membrane integrity studies revealed a substantial increase in membrane depolarization and membrane permeability in the surviving cells. Against FADDI-PA107, planktonic and biofilm bacteria were completely eradicated. In summary, the combination of polymyxin B and meropenem demonstrated synergistic bacterial killing while reinstating the efficacy of two previously ineffective antibiotics against difficult-to-treat polymyxin-resistant MDR P. aeruginosa. | 2021 | 33918040 |
| 4701 | 9 | 0.9726 | Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica. | 2020 | 32097747 |
| 1212 | 10 | 0.9725 | Virulence Factors and Antimicrobial Resistance of Uropathogenic Escherichia coli EQ101 UPEC Isolated from UTI Patient in Quetta, Balochistan, Pakistan. Infectious diseases have been tremendously increasing as the organisms of even normal flora become opportunistic and cause an infection, and Escherichia coli (E. coli EQ101) is one of them. Urinary tract infections are caused by various microorganisms, but Escherichia coli is the primary cause of almost 70%-90% of all UTIs. It has multiple strains, possessing diverse virulence factors, contributing to its pathogenicity. Furthermore, these virulent strains also can cause overlapping pathogenesis by sharing resistance and virulence factors among each other. The current study is aimed at analyzing the genetic variants associated with multi-drug-resistant (MDR) E. coli using the whole genome sequencing platform. The study includes 100 uropathogenic Escherichia coli (UPEC) microorganisms obtained from urine samples out of which 44% were multi-drug-resistant (MDR) E. coli. Bacteria have been isolated and antimicrobial susceptibility test (AST) was determined by disk diffusion method on the Mueller-Hinton agar plate as recommended by the Clinical and Laboratory Standards Institute (CLSI) 2020, and one isolate has been selected which shows resistance to most of the antibiotics, and that isolate has been analyzed by whole genome sequencing (WGS), accompanied by data and phylogenetic analysis, respectively. Organisms were showing resistance against ampicillin (10 μg), cefixime (5 μg), ceftriaxone (30 μg), nalidixic acid (30 μg), ciprofloxacin (5 μg), and ofloxacin (5 μg) on antimicrobial susceptibility test. WGS were done on selected isolate which identified 25 virulence genes (air, astA, chuA, fyuA, gad, hra, iha, irp2, iss, iucC, iutA, kpsE, kpsMII_K1, lpfA, mchF, ompT, papA_F43, sat, senB, sitA, terC, traT, usp, vat, and yfcV) and seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Among resistance genes, seven genes (TolC, emrR, evgA, qacEdelta1, H-NS, cpxA, and mdtM) were identified to be involved in antibiotic efflux, three AMR genes (aadA5, mphA, and CTX-M-15) were involved in antibiotic inactivation, and two genes (sul1 and dfrA14) were found to be involved in antibiotic drug replacement. Our data identified antibiotic resistance and virulence genes of the isolate. We suggest further research work to establish region-based resistance profile in comparison with the global resistance pattern. | 2023 | 37727279 |
| 2133 | 11 | 0.9725 | Multi-drug resistant bacteria isolates from lymphatic filariasis patients in the Ahanta West District, Ghana. BACKGROUND: Antimicrobial resistance is associated with increased morbidity in secondary infections and is a global threat owning to the ubiquitous nature of resistance genes in the environment. Recent estimate put the deaths associated with bacterial antimicrobial resistance in 2019 at 4.95 million worldwide. Lymphatic filariasis (LF), a Neglected Tropical Disease (NTD), is associated with the poor living in the tropical regions of the world. LF patients are prone to developing acute dermatolymphangioadenitis (ADLA), a condition that puts them at risk of developing secondary bacterial infections due to skin peeling. ADLA particularly worsens the prognosis of patients leading to usage of antibiotics as a therapeutic intervention. This may result in inappropriate usage of antibiotics due to self-medication and non-compliance; exacerbating antimicrobial resistance in LF patients. In this perspective, we assessed the possibilities of antimicrobial resistance in LF patients. We focused on antibiotic usage, antibiotic resistance in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa isolates and looked at genes (mecA and Extended-spectrum beta-lactamase [blaCTX-M, blaSHV and blaTEM]) coding for resistance in multi-drug resistant (MDR) bacterial isolates. RESULTS: Of the sixty (60) participants, fifty-four (n = 54, 90%) were within 31-60 years of age, twenty (n = 20, 33.33%) were unemployed and thirty-eight (n = 38, 50.67%) had wounds aged (in months) seven (7) months and above. Amoxicillin (54%) and chloramphenicol (22%) were the most frequently used antibiotics for self-medication. Staphylococcus aureus isolates (n = 26) were mostly resistant to penicillin (n = 23, 88.46%) and least resistant to erythromycin (n = 2, 7.69%). Escherichia coli isolates (n = 5) were resistant to tetracycline (n = 5, 100%) and ampicillin (n = 5, 100%) but were sensitive to meropenem (n = 5, 100%). Pseudomonas aeruginosa isolates (n = 8) were most resistant to meropenem (n = 3, 37.50%) and to a lesser ciprofloxacin (n = 2, 25%), gentamicin (n = 2, 25%) and ceftazidime (n = 2, 25%). Multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA), cephalosporin resistant Escherichia coli. and carbapenem resistant Pseudomonas aeruginosa were four (n = 4, 15.38%), two (n = 2, 40%) and two (n = 2, 25%) respectively. ESBL (blaCTX-M) and mecA genes were implicated in the resistance mechanism of Escherichia coli and MRSA, respectively. CONCLUSION: The findings show presence of MDR isolates from LF patients presenting with chronic wounds; thus, the need to prioritize resistance of MDR bacteria into treatment strategies optimizing morbidity management protocols. This could guide antibiotic selection for treating LF patients presenting with ADLA. | 2022 | 36221074 |
| 6376 | 12 | 0.9725 | Mechanisms of mepA Overexpression and Membrane Potential Reduction Leading to Ciprofloxacin Heteroresistance in a Staphylococcus aureus Isolate. Heteroresistance has seriously affected the evaluation of antibiotic efficacy against pathogenic bacteria, causing misjudgment of antibiotics' sensitivity in clinical therapy, leading to treatment failure, and posing a serious threat to current medical health. However, the mechanism of Staphylococcus aureus heteroresistance to ciprofloxacin remains unclear. In this study, heteroresistance to ciprofloxacin in S. aureus strain 529 was confirmed by antimicrobial susceptibility testing and population analysis profiling (PAP), with the resistance of subclonal 529_HR based on MIC being 8-fold that of the original bacteria. A 7-day serial MIC evaluation and growth curves demonstrate that their phenotype was stable, with 529_HR growing more slowly than 529, but reaching a plateau in a similar proportion. WGS analysis showed that there were 11 nonsynonymous mutations and one deletion gene between the two bacteria, but none of these SNPs were directly associated with ciprofloxacin resistance. Transcriptome data analysis showed that the expression of membrane potential related genes (qoxA, qoxB, qoxC, qoxD, mprF) was downregulated, and the expression of multidrug resistance efflux pump gene mepA was upregulated. The combination of ciprofloxacin and limonene restored the 529_HR MIC from 1 mg/L to 0.125 mg/L. Measurement of the membrane potential found that 529_HR had a lower potential, which may enable it to withstand the ciprofloxacin-induced decrease in membrane potential. In summary, we demonstrated that upregulation of mepA gene expression and a reduction in membrane potential are the main heteroresistance mechanisms of S. aureus to ciprofloxacin. Additionally, limonene may be a potentially effective agent to inhibit ciprofloxacin heteroresistance phenotypes. | 2025 | 40076991 |
| 7779 | 13 | 0.9724 | Metagenomic and Resistome Analysis of a Full-Scale Municipal Wastewater Treatment Plant in Singapore Containing Membrane Bioreactors. Reclaimed water provides a water supply alternative to address problems of scarcity in urbanized cities with high living densities and limited natural water resources. In this study, wastewater metagenomes from 6 stages of a wastewater treatment plant (WWTP) integrating conventional and membrane bioreactor (MBR) treatment were evaluated for diversity of antibiotic resistance genes (ARGs) and bacteria, and relative abundance of class 1 integron integrases (intl1). ARGs confering resistance to 12 classes of antibiotics (ARG types) persisted through the treatment stages, which included genes that confer resistance to aminoglycoside [aadA, aph(6)-I, aph(3')-I, aac(6')-I, aac(6')-II, ant(2″)-I], beta-lactams [class A, class C, class D beta-lactamases (bla (OXA))], chloramphenicol (acetyltransferase, exporters, floR, cmIA), fosmidomycin (rosAB), macrolide-lincosamide-streptogramin (macAB, ereA, ermFB), multidrug resistance (subunits of transporters), polymyxin (arnA), quinolone (qnrS), rifamycin (arr), sulfonamide (sul1, sul2), and tetracycline (tetM, tetG, tetE, tet36, tet39, tetR, tet43, tetQ, tetX). Although the ARG subtypes in sludge and MBR effluents reduced in diversity relative to the influent, clinically relevant beta lactamases (i.e., bla (KPC), bla (OXA)) were detected, casting light on other potential point sources of ARG dissemination within the wastewater treatment process. To gain a deeper insight into the types of bacteria that may survive the MBR removal process, genome bins were recovered from metagenomic data of MBR effluents. A total of 101 close to complete draft genomes were assembled and annotated to reveal a variety of bacteria bearing metal resistance genes and ARGs in the MBR effluent. Three bins in particular were affiliated to Mycobacterium smegmatis, Acinetobacter Iwoffii, and Flavobacterium psychrophila, and carried aquired ARGs aac(2')-Ib, bla (OXA-278), and tet36 respectively. In terms of indicator organisms, cumulative log removal values (LRV) of Escherichia coli, Enterococci, and P. aeruginosa from influent to conventional treated effluent was lower (0-2.4), compared to MBR effluent (5.3-7.4). We conclude that MBR is an effective treatment method for reducing fecal indicators and ARGs; however, incomplete removal of P. aeruginosa in MBR treated effluents (<8 MPN/100 mL) and the presence of ARGs and intl1 underscores the need to establish if further treatment should be applied prior to reuse. | 2019 | 30833934 |
| 2284 | 14 | 0.9724 | Molecular Mechanisms and Epidemiology of Fosfomycin Resistance in Staphylococcus aureus Isolated From Patients at a Teaching Hospital in China. Staphylococcus aureus is a major cause of hospital- and community-acquired infections placing a significant burden on the healthcare system. With the widespread of multidrug-resistant bacteria and the lack of effective antibacterial drugs, fosfomycin has gradually attracted attention as an "old drug." Thus, investigating the resistance mechanisms and epidemiology of fosfomycin-resistant S. aureus is an urgent requirement. In order to investigate the mechanisms of resistance, 11 fosfomycin-resistant S. aureus isolates were analyzed by PCR and sequencing. The genes, including fosA, fosB, fosC, fosD, fosX, and tet38, as well as mutations in murA, glpT, and uhpT were identified. Quantitative real-time PCR (qRT-PCR) was conducted to evaluate the expression of the target enzyme gene murA and the efflux pump gene tet38 under the selection pressure of fosfomycin. Furthermore, multilocus sequence typing (MLST) identified a novel sequence type (ST 5708) of S. aureus strains. However, none of the resistant strains carried fosA, fosB, fosC, fosD, and fosX genes in the current study, and 12 distinct mutations were detected in the uhpT (3), glpT (4), and murA (5) genes. qRT-PCR revealed an elevated expression of the tet38 gene when exposed to increasing concentration of fosfomycin among 8 fosfomycin-resistant S. aureus strains and reference strain ATCC 29213. MLST analysis categorized the 11 strains into 9 STs. Thus, the mutations in the uhpT, glpT, and murA genes might be the primary mechanisms underlying fosfomycin resistance, and the overexpression of efflux pump gene tet38 may play a major role in the fosfomycin resistance in these isolates. | 2020 | 32670230 |
| 5234 | 15 | 0.9723 | A Multidrug-Resistant Escherichia coli Caused the Death of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). The rapid increase in drug resistance in recent years has become a significant global public health concern. Escherichia coli are ubiquitous bacteria, widely distributed in various environments. This study isolated a bacterial strain (HD-593) from diseased Chinese soft-shelled turtles (Pelodiscus sinensis). The bacterium was identified based on morphology, biochemical tests, and 16S rRNA sequencing, confirming it as E. coli. Drug susceptibility tests revealed that the HD-593 strain was highly resistant to ceftriaxone, enrofloxacin, doxycycline, sulfadiazine, gentamicin, neomycin, florfenicol, carbenicillin, cefradine, erythromycin, penicillin, ampicillin, midecamycin, and streptomycin. Resistance gene analysis confirmed the presence of quinolone resistance genes (oqxA and oqxB), aminoglycoside resistance genes (aac(3)-II and aphA1), a β-lactam resistance gene (blaTEM), and an acylaminol resistance gene (floR) in HD-593. The median lethal dose (LD50) of HD-593 for P. sinensis was 6.53 × 10(5) CFU/g. Biochemical analysis of serum revealed that HD-593 infection caused a significant reduction in total protein, albumin, and globulin levels, while markedly increasing the levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. Histopathological analysis revealed severe intestinal damage characterized by villi detachment and muscle cell necrosis. Additionally, extensive splenocyte necrosis with nuclear marginalization, glomerular swelling, and pronounced hepatic steatosis accompanied by distended sinusoids were observed. This study identified a multidrug-resistant E. coli strain from deceased P. sinensis, suggesting that drug resistance genes may circulate in aquaculture ecosystems, posing potential risks to aquaculture. | 2025 | 40431566 |
| 4543 | 16 | 0.9723 | Emergence of polymyxin-resistant Yersinia enterocolitica strains in natural aquatic environments. Aquatic environments serve as ideal reservoirs for antibiotic-resistant bacteria and resistance genes. However, the presence of polymyxin-resistant Yersinia enterocolitica, the pathogen responsible for human yersiniosis, in aquatic environments remains poorly understood. Herein, we isolated polymyxin-resistant Y. enterocolitica strains from natural water for the first time. In addition to intrinsic resistance to ampicillin and cefazolin, the strains demonstrated high resistance to polymyxin B and polymyxin E. All isolates were capable of biofilm production and exerted high virulent effects in Galleria mellonella, with 90% mortality occurring within 48 h post-infection. Furthermore, whole genome sequencing identified 26 antibiotic resistance genes, including polymyxin resistance determinants (arnA and PmrF), beta-lactam resistance determinants (vatF and blaA), and 60 virulence genes such as yaxA and yaxB in Y. enterocolitica isolates. Notably, phylogenetic analysis revealed that Y. enterocolitica involved multilocus sequence types ST937 and ST631, which were clustered with strains isolated from a human in the United States or swine in China. The close relatedness to clinical isolates suggests that polymyxin-resistant Y. enterocolitica may pose considerable health risk to humans. Our findings provide evidence of the presence of polymyxin-resistant Y. enterocolitica in aquatic environments and raise concerns about health risks due to their potential high virulence. | 2025 | 39571713 |
| 8724 | 17 | 0.9723 | Effects of different salinity on the transcriptome and antibiotic resistance of two Vibrio parahaemolyticus strains isolated from Penaeus vannamei cultured in seawater and freshwater ponds. The transcriptome and antibiotic resistance of Vibrio parahaemolyticus isolated from Penaeus vannamei cultured in seawater (strain HN1)and freshwater (strain SH1) ponds were studied at different salinity (2‰ and 20‰). At different salinity, 623 differentially expressed genes (DEGs) significantly upregulated and 1,559 DEGs significantly downregulated in SH1. In HN1, 466 DEGs significantly upregulated and 1,930 DEGs significantly downregulated, indicating high salinity can lead to the downregulation of most genes. In KEGG analysis, the expression of DEGs annotated to starch and sucrose metabolism pathway was higher at 2‰ salinity than at 20‰ salinity in HN1 and SH1, implying salinity affected bacterial growth mainly through this pathway. In the enrichment analysis of upregulated DEGs, two pathways (Valine, leucine, and isoleucine degradation, and Butanoate metabolism) were significantly enriched at different salinity. Antibiotic-susceptibility test discovered that SH1 isolated from P. vannamei cultured in freshwater was resistant to multiple drugs, including kanamycin, gentamicin, medemycin, and azithromycin, at a salinity of 2‰, whereas at 20‰ salinity, SH1 was not resistant to the drugs. The HN1 strain isolated from P. vannamei cultured in mariculture was resistant to polymyxin B and clindamycin at 20‰ salinity. Whereas, HN1 was intermediately susceptible to these two antibiotics at 2‰ salinity. These results indicate that the drug resistance of bacteria was affected by salinity. Furthermore, beta-lactam resistance was significantly enriched in SH1 at different salinity, and the inhibition zone of penicillin G was consistent with the results of a beta-lactam resistance pathway. | 2021 | 34496040 |
| 2336 | 18 | 0.9722 | Distribution of disinfectant resistant genes in mcr-1-carrying Escherichia coli isolated from children in southern China. BACKGROUND: Colistin, a polymyxin antibiotic, serves as a crucial defense against multidrug-resistant gram-negative bacteria, despite its nephrotoxicity. However, the plasmid-mediated mobilization of the polymyxin resistance gene, mcr-1, presents a significant public health threat. The widespread use of disinfectants has resulted in Escherichia coli (E. coli) carrying mcr-1 also showing disinfectant resistance. The aim of this study is to investigate the distribution of disinfectant genes and resistance to disinfectants in mcr-1-carring E coli from children in the South China. METHODS: We evaluated the distribution of twelve disinfectant-resistance genes by PCR. Evaluated the correlation between disinfectant-resistance genes and resistance to disinfectants and antibiotics. We also examined the correlation between the strains' biofilm formation and the presence of disinfectant-resistance genes. Bioinformatic tools were employed to analyze resistance genes, virulence genes, and insertion sequences. Five strains were randomly selected to examine the effects of sub-inhibitory concentration (sub-MIC) of 8 disinfectants on the expression of the mcr-1 gene by qRT-PCR. RESULTS: The most prevalent of the nine biocide resistance genes were mdfA, sugE(c), ydgE, and ydgF (n = 21; all 100 %). The qacG, qacF, sugE(p) and tehA gene was not detected. Furthermore, benzalkonium chloride (BC) and potassium hydrogen persulfate (PMPS)-based disinfectants were effective against all mcr-1-carrying E. coli strains. The majority of mcr-1 were distributed among the InHI2 plasmid types, although three strains lacked mcr-1 on their plasmids. Biofilm formation was observed in 48 % of the strains. emrD and sitABCD showed significant associations with the susceptibility of the strains to 84 disinfectants (P of 0.0351 and 0.0300). In addition, sitABCD was significantly associated with susceptibility to povidone-iodine (PVP-I) (P value of 0.0062). Compared to the untreated group, stimulation with sub-MIC of peracetic acid (PAA) and PVP-I resulted in decreased or increased mcr-1 expression in five E. coli strains, respectively (P of 0.0011 for PAA and P of 0.0476 for PVP-I). CONCLUSION: BC and PMPS based disinfectants were effective against all mcr-1 carrying E. coli strains. Most of the mcr-1 genes were distributed among the InHI2 plasmid types. The emrD and sitABCD genes are highly associated with resistance to 84 disinfectants, and the sitABCD gene was highly associated with resistance to PVP-I. PVP-I selective pressure may encourage the maintenance of mcr-1 gene in E. coli. | 2025 | 39551109 |
| 2485 | 19 | 0.9722 | Characterisation of uropathogenic Escherichia coli from children with urinary tract infection in different countries. Uropathogenic Escherichia coli (UPEC) carry many virulence factors, including those involved in long-term survival in the urinary tract. However, their prevalence and role among UPEC causing urinary tract infection (UTI) in children is not well studied. To further understand the virulence characteristics of these bacteria, we investigated the prevalence of antibiotic resistance, antigen 43 genes, curli and cellulose among UPEC in children from different countries. Isolates (n = 337) from five countries were tested for antibiotic susceptibility, phylogenetic groups, prevalence of flu, fluA(CFT073), fluB(CFT073), curli and cellulose. High prevalence of multidrug resistance and extended spectrum beta lactamase production was found among Iranian and Vietnamese isolates. Resistance was associated with phylogenetic group D while group B2 was associated with fluA(CFT073) and fluB(CFT073). Fewer Iranian isolates carried fluA(CFT073), curli and cellulose. fluB(CFT073) was most prevalent among Slovak isolates. Ampicillin and amoxicillin/clavulanic acid resistance was prevalent among fluA(CFT073)- and fluB(CFT073)-positive Australian, Iranian and Swedish isolates. Lack of curli and cellulose was associated with resistance among Vietnamese isolates. We conclude that major differences exist in the prevalence of antibiotic resistance among UPEC from different countries. Associations observed between resistance and virulence factors may, in different ways, promote the long-term survival of UPEC in the urinary tract. | 2011 | 21509475 |