# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1383 | 0 | 0.9219 | Detection of Tetracycline Resistance Genes in European Hedgehogs (Erinaceus europaeus) and Crested Porcupines (Hystrix cristata). Relatively little is known regarding the role of wildlife in the development of antibiotic resistance. Our aim was to assess the presence of the tetracycline resistance genes, tet(A), tet(B), tet(C), tet(D), tet(E), tet(G), tet(K), tet(L), tet(M), tet(O), tet(P), tet(Q), tet(S), and tet(X), in tissue samples of 14 hedgehogs (Erinaceus europaeus) and 15 crested porcupines (Hystrix cristata) using PCR assays. One or more tet genes were found in all but three hedgehogs and one crested porcupine. Of the 14 tetracycline resistance genes investigated, 13 were found in at least one sample; tet(G) was not detected. We confirmed the potential role of wild animals as bioindicators, reservoirs, or vectors of antibiotic-resistant bacteria in the environment. | 2020 | 31526277 |
| 6721 | 1 | 0.9192 | Aldehyde-resistant mycobacteria bacteria associated with the use of endoscope reprocessing systems. Bacteria can develop resistance to antibiotics, but little is known about their ability to increase resistance to chemical disinfectants. This study randomly sampled 3 automated endoscope reprocessors in the United States using aldehydes for endoscope disinfection. Bacterial contamination was found after disinfection in all automated endoscope reprocessors, and some mycobacteria isolates demonstrated significant resistance to glutaraldehyde and ortho-phthaldehyde disinfectants. Bacteria can survive aldehyde-based disinfection and may pose a cross-contamination risk to patients. | 2012 | 22325730 |
| 3354 | 2 | 0.9192 | Large-scale metagenomic-based study of antibiotic resistance in the environment. Antibiotic resistance, including multiresistance acquisition and dissemination by pathogens, is a critical healthcare issue threatening our management of infectious diseases [1-3]. Rapid accumulation of resistance phenotypes implies a reservoir of transferable antibiotic resistance gene determinants (ARGDs) selected in response to inhibition of antibiotic concentrations, as found in hospitals [1, 3-5]. Antibiotic resistance genes were found in environmental isolates, soil DNA [4-6], secluded caves [6, 7], and permafrost DNA [7, 8]. Antibiotics target essential and ubiquitous cell functions, and resistance is a common characteristic of environmental bacteria [8-11]. Environmental ARGDs are an abundant reservoir of potentially transferable resistance for pathogens [9-12]. Using metagenomic sequences, we show that ARGDs can be detected in all (n=71) environments analyzed. Soil metagenomes had the most diverse pool of ARGDs. The most common types of resistances found in environmental metagenomes were efflux pumps and genes conferring resistance to vancomycin, tetracycline, or β-lactam antibiotics used in veterinary and human healthcare. Our study describes the diverse and abundant antibiotic resistance genes in nonclinical environments and shows that these genes are not randomly distributed among different environments (e.g., soil, oceans or human feces). | 2014 | 24814145 |
| 3671 | 3 | 0.9191 | Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2016 | 27287338 |
| 3031 | 4 | 0.9188 | Novel Mobilizable Genomic Island GEI-D18A Mediates Conjugational Transfer of Antibiotic Resistance Genes in the Multidrug-Resistant Strain Rheinheimera sp. D18. Aquatic environments act as reservoirs of antimicrobial-resistant bacteria and antimicrobial resistance (AMR) genes, and the dissemination of antibiotic resistance from these environments is of increasing concern. In this study, a multidrug-resistant bacterial strain, identified as Rheinheimera sp. D18, was isolated from the sea water of an industrial maricultural system in the Yellow Sea, China. Whole-genome sequencing of D18 revealed the presence of a novel 25.8 kb antibiotic resistance island, designated GEI-D18A, which carries several antibiotic resistance genes (ARGs), including aadA1, aacA3, tetR, tet(B), catA, dfrA37, and three sul1 genes. Besides, integrase, transposase, resolvase, and recombinase encoding genes were also identified in GEI-D18A. The transferability of GEI-D18A was confirmed by mating experiments between Rheinheimera sp. D18 and Escherichia coli 25DN, and efflux pump inhibitor assays also suggested that tet(B) in GEI-D18A was responsible for tetracycline resistance in both D18 and the transconjugant. This study represents the first characterization of a mobilizable antibiotic resistance island in a species of Rheinheimera and provides evidence that Rheinheimera spp. could be important reservoirs and vehicles for ARGs in the Yellow Sea area. | 2020 | 32318052 |
| 3480 | 5 | 0.9184 | Short-term inhalation exposure evaluations of airborne antibiotic resistance genes in environments. Antibiotic resistance is a sword of Damocles that hangs over humans. In regards to airborne antibiotic resistance genes (AARGs), critical knowledge gaps still exist in the identification of hotspots and quantification of exposure levels in different environments. Here, we have studied the profiles of AARGs, mobile genetic elements (MGEs) and bacterial communities in various atmospheric environments by high throughput qPCR and 16S rRNA gene sequencing. We propose a new AARGs exposure dose calculation that uses short-term inhalation (STI). Swine farms and hospitals were high-risk areas where AARGs standardised abundance was more abundant than suburbs and urban areas. Additionally, resistance gene abundance in swine farm worker sputum was higher than that in healthy individuals in other environments. The correlation between AARGs with MGEs and bacteria was strong in suburbs but weak in livestock farms and hospitals. STI exposure analysis revealed that occupational intake of AARGs (via PM(10)) in swine farms and hospitals were 110 and 29 times higher than in suburbs, were 1.5 × 10(4), 5.6 × 10(4) and 5.1 × 10(2) copies, i.e., 61.9%, 75.1% and 10.7% of the overall daily inhalation intake, respectively. Our study comprehensively compares environmental differences in AARGs to identify high-risk areas, and forwardly proposes the STI exposure dose of AARGs to guide risk assessment. | 2022 | 35717091 |
| 7351 | 6 | 0.9184 | Dynamics of integron structures across a wastewater network - Implications to resistance gene transfer. Class 1 and other integrons are common in wastewater networks, often being associated with antibiotic resistance genes (ARGs). However, the importance of different integron structures in ARG transfer within wastewater systems has only been implied, especially between community and hospital sources, among wastewater treatment plant compartments, and in receiving waters. This uncertainty is partly because current clinical class 1 integron qPCR assays (i.e., that target human-impacted structures, i.e., clintI1) poorly delineate clintI1 from non-impacted class 1 integron structures. They also say nothing about their ARG content. To fill these technical gaps, new real-time qPCR assays were developed for "impacted" class 1 structures (called aint1; i.e., anthropogenic class 1 integrons) and empty aint1 structures (i.e., carry no ARGs; called eaint1). The new assays and other integron assays then were used to examine integron dynamics across a wastewater network. 16S metagenomic sequencing also was performed to characterise associated microbiomes. aint1 abundances per bacterial cell were about 10 times greater in hospital wastewaters compared with other compartments, suggesting aint1 enrichment with ARGs in hospital sources. Conversely, the relative abundance of eaint1 structures were over double in recycled activated sludge compared with other compartments, except receiving waters (RAS; ∼30% of RAS class 1 structures did not carry ARGs). Microbiome analysis showed that human-associated bacterial taxa with mobile integrons also differed in RAS and river sediments. Further, class 1 integrons in RAS bacteria appear to have released ARGs, whereas hospital bacteria have accumulated ARGs. Results show that quantifying integron dynamics can help explain where ARG transfer occurs in wastewater networks, and should be considered in future studies on antibiotic resistance in the environment. | 2021 | 34673462 |
| 5320 | 7 | 0.9184 | Antimicrobial resistance genes in microbiota associated with sediments and water from the Akaki river in Ethiopia. The spread of antimicrobial-resistant pathogens is a global health concern. Most studies report high levels of antimicrobial resistance genes (ARGs) in the aquatic environment; however, levels associated with sediments are limited. This study aimed to investigate the distribution of ARGs in the sediments and water of the Akaki river in Addis Ababa, Ethiopia. The diversity and abundance of 84 ARGs and 116 clinically important bacteria were evaluated from the sediments and water collected from five sites in the Akaki river. Most of the ARGs were found in the city close to anthropogenic activities. Water samples collected in the middle catchment of the river contained 71-75% of targeted ARGs, with genes encoding aminoglycoside acetyltransferase (aac(6)-Ib-cr), aminoglycoside adenylyl transferase (aadA1), β-lactamase (bla(OXA-10))(,) quinolone resistance S (qnrS), macrolide efflux protein A (mefA), and tetracycline resistance (tetA), were detected at all sampling sites. Much fewer ARGs were detected in all sediments, and those near the hospitals had the highest diversity and level. Despite the lower levels and diversity, there were no unique ARGs detected in the sediments that were also not detected in the waters. A wide range of clinically relevant pathogens were also detected in the Akaki river. The findings suggest that the water phase, rather than the sediments in the Akaki river, is a potential conduit for the spread of ARGs and antibiotic-resistant bacteria. | 2022 | 35583762 |
| 2645 | 8 | 0.9184 | High prevalence of a gene cluster conferring resistance to streptomycin, sulfonamide, and tetracycline in Escherichia coli isolated from indigenous wild birds. A total of 116 Escherichia coli isolates from cecal contents of 81 indigenous wild birds in Korea were tested for antimicrobial susceptibility. Seventy-one isolates from sparrows (Passer montanus) and one isolate from doves (Columba livia) were resistant to three antimicrobials, including streptomycin, sulfonamide, and tetracycline (SSuT). PCR and subsequent sequence analysis revealed the SSuT gene cluster region (approximately 13 kb) harboring genes encoding resistance to streptomycin (strA and strB), sulfonamide (sul2), and tetracycline (tetB, tetC, tetD, and tetR). In particular, tetracycline resistance genes were located on the transposon Tn10-like element. The SSuT element-harboring E. coli can be an important source of the transmission of antimicrobial resistance to other pathogenic bacteria. Therefore, strict sanitary measures in human and animal environments are necessary to prevent the spread of resistant bacteria through fecal residues of wild birds. | 2021 | 33487603 |
| 3954 | 9 | 0.9182 | Evolution of transferable antibiotic resistance in coliform bacteria from remote environments. The influence of a mission hospital on the evolution of antibiotic resistance in coliform bacteria from a remote antibiotic-free Xhosa community and environment is described. | 1976 | 984780 |
| 7165 | 10 | 0.9180 | Mobile genetic elements are the Major driver of High antibiotic resistance genes abundance in the Upper reaches of huaihe River Basin. Rivers are considered a vital reservoir of antibiotic resistance genes (ARGs) and are critical to disseminate ARGs. The present study delved into the ARGs pollution of the sediments in the upper reaches of Huaihe river, one of the seven longest rivers in China, by high-throughput quantitative PCR. Subsequently, the relationship between ARGs and the bacterial community/mobile genetic elements (MGEs) was determined. As revealed from the results, the overall ARGs ranged from 2.65×10(-3) to 6.14×10(-2)/16S copies, and the abundance of ARGs in the tributaries was significantly higher than that in the mainstreams (p<0.05). Moreover, the ARGs introduced by tributaries were capable of affecting the whole mainstream of Huaihe river. As suggested from the results of co-occurrence analysis and pRDA analysis, MGEs were reported as the major driver to disseminate ARGs in the upper reaches of Huaihe river basin. The larger the MGEs proportion, the higher the likelihood of ARGs transferring from antibiotic resistance bacteria to human pathogens in Huaihe river. | 2021 | 32629348 |
| 4992 | 11 | 0.9180 | Systematic review in South Africa reveals antibiotic resistance genes shared between clinical and environmental settings. A systematic review was conducted to determine the distribution and prevalence of antibiotic-resistant bacteria (ARB), antimicrobial-resistant genes (ARGs), and antimicrobial-resistant gene determinants (ARGDs) in clinical, environmental, and farm settings and to identify key knowledge gaps in a bid to contain their spread. Fifty-three articles were included. The prevalence of a wide range of antimicrobial-resistant bacteria and their genes was reviewed. Based on the studies reviewed in this systematic review, mutation was found to be the main genetic element investigated. All settings shared 39 ARGs and ARGDs. Despite the fact that ARGs found in clinical settings are present in the environment, in reviewed articles only 12 were found to be shared between environmental and clinical settings; the inclusion of farm settings with these two settings increased this figure to 32. Data extracted from this review revealed farm settings to be one of the main contributors of antibiotic resistance in healthcare settings. ARB, ARGs, and ARGDs were found to be ubiquitous in all settings examined. | 2018 | 30425540 |
| 7278 | 12 | 0.9179 | Effects of snowmelt runoff on bacterial communities and antimicrobial resistance gene concentrations in an urban river in a cold climate region. Urban rivers are essential for human activities and ecosystems. Urban runoff is a major source of various pollutants in urban rivers. In this study, we investigated the effect of rainfall and snowmelt subsequently causing urban runoff in a cold climate region on bacterial community structures and antimicrobial resistance gene concentrations in an urban river in Sapporo city, Japan, which has an average snowfall of 4.8 m. Bacterial community structures of the river water were analyzed by next generation sequencing of bacterial 16S rRNA genes. The antimicrobial resistance genes, mphA and bla(IMP), were determined using quantitative polymerase chain reaction. Rainfall and snowmelt increased the effluent discharge rate of treated wastewater, and river water depth. Rainfall and snowmelt also increased Escherichia coli concentrations by 4-20 folds in the river, probably because of combined sewer overflows, urban runoff, or increased effluent discharge rate of treated wastewater to the river. Urban runoff and the subsequent discharge of treated wastewater decreased the bacterial alpha diversity and increased the species evenness of bacteria. Bacterial beta diversity analysis showed that the discharge of treated wastewater caused by rainfall and snowmelt changed the structure and diversity of the bacterial community in the river. The concentrations of the antimicrobial resistance gene mphA were related to the discharge of treated wastewater. In contrast, the antimicrobial resistance gene bla(IMP) appeared to be present in the upstream pristine environment. Results of this study should be informative for challenge to reduce the antimicrobial resistance bacteria due to combined sewer overflows by wastewater management authorities. | 2025 | 40042701 |
| 8545 | 13 | 0.9178 | Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs. | 2021 | 33735726 |
| 6133 | 14 | 0.9177 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 7055 | 15 | 0.9177 | Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs. | 2020 | 32092547 |
| 6635 | 16 | 0.9177 | Antimicrobial resistance dashboard application for mapping environmental occurrence and resistant pathogens. An antibiotic resistance (AR) Dashboard application is being developed regarding the occurrence of antibiotic resistance genes (ARG) and bacteria (ARB) in environmental and clinical settings. The application gathers and geospatially maps AR studies, reported occurrence and antibiograms, which can be downloaded for offline analysis. With the integration of multiple data sets, the database can be used on a regional or global scale to identify hot spots for ARGs and ARB; track and link spread and transmission, quantify environmental or human factors influencing presence and persistence of ARG harboring organisms; differentiate natural ARGs from those distributed via human or animal activity; cluster and compare ARGs connections in different environments and hosts; and identify genes that can be used as proxies to routinely monitor anthropogenic pollution. To initially populate and develop the AR Dashboard, a qPCR ARG array was tested with 30 surface waters, primary influent from three waste water treatment facilities, ten clinical isolates from a regional hospital and data from previously published studies including river, park soil and swine farm samples. Interested users are invited to download a beta version (available on iOS or Android), submit AR information using the application, and provide feedback on current and prospective functionalities. | 2016 | 26850162 |
| 6792 | 17 | 0.9177 | Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems. | 2024 | 38759465 |
| 7271 | 18 | 0.9177 | Identification of critical control points for antibiotic resistance discharge in sewers. Disrupting the spread of clinically relevant antibiotic resistance genes (ARGs) is one of the key components for the success of the One Health strategy. While waste water treatment plants (WWTPs) represent a final control point for daily discharges of antibiotic resistance genes (ARGs) to the aquatic environment, a decentralized upstream monitoring of wastewater feeds of selected urban drainage areas for bla(CTX-M32), bla(CTX-M15), bla(OXA48), bla(CMY-2), mecA, bla(NDM-1), bla(KPC3), vanA, and mcr-1 representing clinically relevant ARGs has been performed. Besides hospitals, also retirement homes were found to be responsible for high levels of ARG discharges compared to housing area sewer systems. The monitoring combines qPCR-based quantifications, flow volume-based analyses, and multiple antibiotic resistance analyses of isolates. As result of the study, local actions at identified critical control points could help to prevent contaminations of larger volumes of wastewaters. This strategy will support a more cost-effective treatment compared to central actions at WWTPs, only. A polluter-pays principle should be applied by this monitoring strategy. | 2022 | 35051461 |
| 3482 | 19 | 0.9176 | Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. | 2018 | 29751438 |