# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9735 | 0 | 0.9275 | Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. Experimental evolution studies have examined coevolutionary dynamics between bacteria and lytic phages, where two models for antagonistic coevolution dominate: arms-race dynamics (ARD) and fluctuating-selection dynamics (FSD). Here, we tested the ability for Pseudomonas aeruginosa to coevolve with phage OMKO1 during 10 passages in the laboratory, whether ARD versus FSD coevolution occurred, and how coevolution affected a predicted phenotypic trade-off between phage resistance and antibiotic sensitivity. We used a unique "deep" sampling design, where 96 bacterial clones per passage were obtained from the three replicate coevolving communities. Next, we examined phenotypic changes in growth ability, susceptibility to phage infection and resistance to antibiotics. Results confirmed that the bacteria and phages coexisted throughout the study with one community undergoing ARD, whereas the other two showed evidence for FSD. Surprisingly, only the ARD bacteria demonstrated the anticipated trade-off. Whole genome sequencing revealed that treatment populations of bacteria accrued more de novo mutations, relative to a control bacterial population. Additionally, coevolved bacteria presented mutations in genes for biosynthesis of flagella, type-IV pilus and lipopolysaccharide, with three mutations fixing contemporaneously with the occurrence of the phenotypic trade-off in the ARD-coevolved bacteria. Our study demonstrates that both ARD and FSD coevolution outcomes are possible in a single interacting bacteria-phage system and that occurrence of predicted phage-driven evolutionary trade-offs may depend on the genetics underlying evolution of phage resistance in bacteria. These results are relevant for the ongoing development of lytic phages, such as OMKO1, in personalized treatment of human patients, as an alternative to antibiotics. | 2022 | 36168737 |
| 3669 | 1 | 0.9260 | Detection of clinically relevant antimicrobial resistance determinants in warm-blooded marine animals in Livingston Island (South Shetland Islands, Antarctica): A field-based molecular genetics study. Molecular genetic studies of stools were performed to assess the spread of some clinically relevant antimicrobial resistance determinants (ARD) in a gentoo penguin (Pygoscelis papua) and an Antarctic fur seal (Arctocephalus gazella) on Livingston Island. Glycopeptide resistance genes (vanA/vanD and vanB) were detected in both fecal samples, while the penguin's one was also mecA-positive and bla(NDM)-positive. Because of the remoteness and the isolation of the sampling locations, the carriage of vancomycin-resistant Enterococcus spp., methicillin-resistant Staphylococcus aureus, and NDM-producing Enterobacterales or other gram-negative bacilli suggested an ocean pollution with antibiotic resistant bacteria (ARB). Additionally, due to the type of ARD we detected, our results are alarming, and they cannot be explained only with agricultural and/or aquacultural pollution. Even though the current study is a preliminary one, it also demonstrates the potential of the field genetics analyses carried out with minimal equipment as a reliable monitoring tool for pollution with ARB. | 2022 | 35597002 |
| 5068 | 2 | 0.9216 | Ultrasensitive Label-Free Detection of Unamplified Multidrug-Resistance Bacteria Genes with a Bimodal Waveguide Interferometric Biosensor. Infections by multidrug-resistant bacteria are becoming a major healthcare emergence with millions of reported cases every year and an increasing incidence of deaths. An advanced diagnostic platform able to directly detect and identify antimicrobial resistance in a faster way than conventional techniques could help in the adoption of early and accurate therapeutic interventions, limiting the actual negative impact on patient outcomes. With this objective, we have developed a new biosensor methodology using an ultrasensitive nanophotonic bimodal waveguide interferometer (BiMW), which allows a rapid and direct detection, without amplification, of two prevalent and clinically relevant Gram-negative antimicrobial resistance encoding sequences: the extended-spectrum betalactamase-encoding gene blaCTX-M-15 and the carbapenemase-encoding gene blaNDM-5 We demonstrate the extreme sensitivity and specificity of our biosensor methodology for the detection of both gene sequences. Our results show that the BiMW biosensor can be employed as an ultrasensitive (attomolar level) and specific diagnostic tool for rapidly (less than 30 min) identifying drug resistance. The BiMW nanobiosensor holds great promise as a powerful tool for the control and management of healthcare-associated infections by multidrug-resistant bacteria. | 2020 | 33086716 |
| 101 | 3 | 0.9213 | The encapsulated strain TIGR4 of Streptococcus pneumoniae is phagocytosed but is resistant to intracellular killing by mouse microglia. The polysaccharide capsule is a major virulence factor of Streptococcus pneumoniae as it confers resistance to phagocytosis. The encapsulated serotype 4 TIGR4 strain was shown to be efficiently phagocytosed by the mouse microglial cell line BV2, whereas the type 3 HB565 strain resisted phagocytosis. Comparing survival after uptake of TIGR4 or its unencapsulated derivative FP23 in gentamicin protection and phagolysosome maturation assays, it was shown that TIGR4 was protected from intracellular killing. Pneumococcal capsular genes were up-regulated in intracellular TIGR4 bacteria recovered from microglial cells. Actual presence of bacteria inside BV2 cells was confirmed by transmission electron microscopy (TEM) for both TIGR4 and FP23 strains, but typical phagosomes/phagolysosomes were detected only in cells infected with the unencapsulated strain. In a mouse model of meningitis based on intracranic inoculation of pneumococci, TIGR4 caused lethal meningitis with an LD(50) of 2 × 10² CFU, whereas the LD(50) for the unencapsulated FP23 was greater than 10⁷ CFU. Phagocytosis of TIGR4 by microglia was also demonstrated by TEM and immunohistochemistry on brain samples from infected mice. The results indicate that encapsulation does not protect the TIGR4 strain from phagocytosis by microglia, while it affords resistance to intracellular killing. | 2010 | 20615478 |
| 6224 | 4 | 0.9207 | Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. In the presence of a bacteriophage (a bacteria-attacking virus) resistance is clearly beneficial to the bacteria. As expected in such conditions, resistant bacteria emerge rapidly. However, in the absence of the phage, resistant bacteria often display reduced fitness, compared to their sensitive counterparts. The present study explored the fitness cost associated with phage-resistance as an opportunity to isolate an attenuated strain of S. aureus. The phage-resistant strain A172 was isolated from the phage-sensitive strain A170 in the presence of the M(Sa) phage. Acquisition of phage-resistance altered several properties of A172, causing reduced growth rate, under-expression of numerous genes and production of capsular polysaccharide. In vivo, A172 modulated the transcription of the TNF-alpha, IFN-gamma and Il-1beta genes and, given intramuscularly, protected mice from a lethal dose of A170 (18/20). The heat-killed vaccine also afforded protection from heterologous methicillin-resistant S. aureus (MRSA) (8/10 mice) or vancomycin-intermediate S. aureus (VISA) (9/10 mice). The same vaccine was also effective when administered as an aerosol. Anti-A172 mouse antibodies, in the dose of 10 microl/mouse, protected the animals (10/10, in two independent experiments) from a lethal dose of A170. Consisting predominantly of the sugars glucose and galactose, the capsular polysaccharide of A172, given in the dose of 25 microg/mouse, also protected the mice (20/20) from a lethal dose of A170. The above results demonstrate that selection for phage-resistance can facilitate bacterial vaccine preparation. | 2010 | 20661301 |
| 9742 | 5 | 0.9204 | BOCS: DNA k-mer content and scoring for rapid genetic biomarker identification at low coverage. A single, inexpensive diagnostic test capable of rapidly identifying a wide range of genetic biomarkers would prove invaluable in precision medicine. Previous work has demonstrated the potential for high-throughput, label-free detection of A-G-C-T content in DNA k-mers, providing an alternative to single-letter sequencing while also having inherent lossy data compression and massively parallel data acquisition. Here, we apply a new bioinformatics algorithm - block optical content scoring (BOCS) - capable of using the high-throughput content k-mers for rapid, broad-spectrum identification of genetic biomarkers. BOCS uses content-based sequence alignment for probabilistic mapping of k-mer contents to gene sequences within a biomarker database, resulting in a probability ranking of genes on a content score. Simulations of the BOCS algorithm reveal high accuracy for identification of single antibiotic resistance genes, even in the presence of significant sequencing errors (100% accuracy for no sequencing errors, and >90% accuracy for sequencing errors at 20%), and at well below full coverage of the genes. Simulations for detecting multiple resistance genes within a methicillin-resistant Staphylococcus aureus (MRSA) strain showed 100% accuracy at an average gene coverage of merely 0.515, when the k-mer lengths were variable and with 4% sequencing error within the k-mer blocks. Extension of BOCS to cancer and other genetic diseases met or exceeded the results for resistance genes. Combined with a high-throughput content-based sequencing technique, the BOCS algorithm potentiates a test capable of rapid diagnosis and profiling of genetic biomarkers ranging from antibiotic resistance to cancer and other genetic diseases. | 2019 | 31173943 |
| 6010 | 6 | 0.9203 | The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Putrescine, one of the main biogenic amines associated to microbial food spoilage, can be formed by bacteria from arginine via ornithine decarboxylase (ODC), or from agmatine via agmatine deiminase (AgDI). This study aims to correlate putrescine production from agmatine to the pathway involving N-carbamoylputrescine formation via AdDI (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), or putrescine carbamoyltransferase (the ptcA product) in bacteria. PCR methods were developed to detect the two genes involved in putrescine production from agmatine. Putrescine production from agmatine could be linked to the aguA and ptcA genes in Lactobacillus hilgardii X1B, Enterococcus faecalis ATCC 11700, and Bacillus cereus ATCC 14579. By contrast Lactobacillus sakei 23K was unable to produce putrescine, and although a fragment of DNA corresponding to the gene aguA was amplified, no amplification was observed for the ptcA gene. Pseudomonas aeruginosa PAO1 produces putrescine and is reported to harbour aguA and aguB genes, responsible for agmatine deiminase and N-carbamoylputrescine amidohydrolase activities. The enzyme from P. aeruginosa PAO1 that converts N-carbamoylputrescine to putrescine (the aguB product) is different from other microorganisms studied (the ptcA product). Therefore, the aguB gene from P. aeruginosa PAO1 could not be amplified with ptcA-specific primers. The aguB and ptcA genes have frequently been erroneously annotated in the past, as in fact these two enzymes are neither homologous nor analogous. Furthermore, the aguA, aguB and ptcA sequences available from GenBank were subjected to phylogenetic analysis, revealing that gram-positive bacteria harboured ptcA, whereas gram-negative bacteria harbour aguB. This paper also discusses the role of the agmatine deiminase system (AgDS) in acid stress resistance. | 2010 | 21404211 |
| 8860 | 7 | 0.9202 | Antibiotic in myrrh from Commiphora molmol preferentially kills nongrowing bacteria. AIM: To demonstrate that myrrh oil preferentially kills nongrowing bacteria and causes no resistance development. METHOD: Growth inhibition was determined on regular plates or plates without nutrients, which were later overlaid with soft agar containing nutrients to continue growth. Killing experiments were done in broth and in buffer without nutrients. RESULTS: Bacterial cells were inhibited preferentially in the absence of nutrients or when growth was halted by a bacteriostatic antibiotic. After five passages in myrrh oil, surviving colonies showed no resistance to the antibiotic. CONCLUSION: Myrrh oil has the potential to be a commercially viable antibiotic that kills persister cells and causes no resistance development. This is a rare example of an antibiotic that can preferentially kill nongrowing bacteria. | 2020 | 32257371 |
| 5194 | 8 | 0.9201 | Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development. | 2019 | 30429253 |
| 5070 | 9 | 0.9199 | Sequence-specific DNA solid-phase extraction in an on-chip monolith: Towards detection of antibiotic resistance genes. Antibiotic resistance of bacteria is a growing problem and presents a challenge for prompt treatment in patients with sepsis. Currently used methods rely on culturing or amplification; however, these steps are either time consuming or suffer from interference issues. A microfluidic device was made from black polypropylene, with a monolithic column modified with a capture oligonucleotide for sequence selective solid-phase extraction of a complementary target from a lysate sample. Porous properties of the monolith allow flow and hybridization of a target complementary to the probe immobilized on the column surface. Good flow-through properties enable extraction of a 100μL sample and elution of target DNA in 12min total time. Using a fluorescently labeled target oligonucleotide related to Verona Integron-Mediated Metallo-β-lactamase it was possible to extract and detect a 1pM sample with 83% recovery. Temperature-mediated elution by heating above the duplex melting point provides a clean extract without any agents that interfere with base pairing, allowing various labeling methods or further downstream processing of the eluent. Further integration of this extraction module with a system for isolation and lysis of bacteria from blood, as well as combining with single-molecule detection should allow rapid determination of antibiotic resistance. | 2017 | 28734608 |
| 3746 | 10 | 0.9199 | Severe Disseminated Infection with Emerging Lineage of Methicillin-Sensitive Staphylococcus aureus. We report a case of severe disseminated infection in an immunocompetent man caused by an emerging lineage of methicillin-sensitive Staphylococcus aureus clonal complex 398. Genes encoding classic virulence factors were absent. The patient made a slow recovery after multiple surgical interventions and a protracted course of intravenous flucloxacillin. | 2019 | 30561304 |
| 8483 | 11 | 0.9195 | Thermodynamic Surface Analyses to Inform Biofilm Resistance. Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited. | 2020 | 33205020 |
| 9090 | 12 | 0.9195 | Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1(r). This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1(r) and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria. | 2018 | 29541067 |
| 9 | 13 | 0.9195 | Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea. | 2011 | 21726385 |
| 8184 | 14 | 0.9194 | Development of CRISPR-Cas13a-based antimicrobials capable of sequence-specific killing of target bacteria. The emergence of antimicrobial-resistant bacteria is an increasingly serious threat to global health, necessitating the development of innovative antimicrobials. Here we report the development of a series of CRISPR-Cas13a-based antibacterial nucleocapsids, termed CapsidCas13a(s), capable of sequence-specific killing of carbapenem-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus by recognizing corresponding antimicrobial resistance genes. CapsidCas13a constructs are generated by packaging programmed CRISPR-Cas13a into a bacteriophage capsid to target antimicrobial resistance genes. Contrary to Cas9-based antimicrobials that lack bacterial killing capacity when the target genes are located on a plasmid, the CapsidCas13a(s) exhibit strong bacterial killing activities upon recognizing target genes regardless of their location. Moreover, we also demonstrate that the CapsidCas13a(s) can be applied to detect bacterial genes through gene-specific depletion of bacteria without employing nucleic acid manipulation and optical visualization devices. Our data underscore the potential of CapsidCas13a(s) as both therapeutic agents against antimicrobial-resistant bacteria and nonchemical agents for detection of bacterial genes. | 2020 | 32523110 |
| 5176 | 15 | 0.9193 | Genetic Alternatives for Experimental Adaptation to Colistin in Three Pseudomonas aeruginosa Lineages. Pseudomonas aeruginosa is characterized by a high adaptive potential, developing resistance in response to antimicrobial pressure. We employed a spatiotemporal evolution model to disclose the pathways of adaptation to colistin, a last-resort polymyxin antimicrobial, among three unrelated P. aeruginosa lineages. The P. aeruginosa ATCC-27833 reference strain (Pa_ATCC), an environmental P. aeruginosa isolate (Pa_Environment), and a clinical isolate with multiple drug resistance (Pa_MDR) were grown over an increasing 5-step colistin concentration gradient from 0 to 400 mg/L. Pa_Environment demonstrated the highest growth pace, achieving the 400 mg/L band in 15 days, whereas it took 37 and 60 days for Pa_MDR and Pa_ATCC, respectively. To identify the genome changes that occurred during adaptation to colistin, the isolates selected during the growth of the bacteria (n = 185) were subjected to whole genome sequencing. In total, 17 mutation variants in eight lipopolysaccharide-synthesis-associated genes were detected. phoQ and lpxL/PA0011 were affected in all three lineages, whereas changes in pmrB were found in Pa_Environment and Pa_MDR but not in Pa_ATCC. In addition, mutations were detected in 34 general metabolism genes, and each lineage developed mutations in a unique set of such genes. Thus, the three examined distinct P. aeruginosa strains demonstrated different capabilities and genetic pathways of colistin adaptation. | 2024 | 38786180 |
| 5831 | 16 | 0.9192 | Development of a nucleic acid lateral flow immunoassay (NALFIA) for reliable, simple and rapid detection of the methicillin resistance genes mecA and mecC. The gene mecA and its homologue mecC confer methicillin resistance in Staphylococcus aureus and other staphylococci. Methicillin-resistant staphylococci (MRS) are considered resistant to all β-lactam antibiotics. To avoid the use of β-lactam antibiotics for the control of MRS infections, there is an urgent need for a fast and reliable screening assay for mecA and mecC that can easily be integrated in routine laboratory diagnostics. The aim of this study was the development of such a rapid detection method for methicillin resistance based on nucleic acid lateral flow immunoassay (NALFIA) technology. In NALFIA, the target sequences are PCR-amplified, immobilized via antigen-antibody interaction and finally visualized as distinct black bars resulting from neutravidin-labeled carbon particles via biotin-neutravidin interaction. A screening of 60 defined strains (MRS and non-target bacteria) and 28 methicillin-resistant S. aureus (MRSA) isolates from clinical samples was performed with PCR-NALFIA in comparison to PCR with subsequent gel electrophoresis (PCR-GE) and real-time PCR. While all samples were correctly identified with all assays, PCR-NALFIA was superior with respect to limits of detection. Moreover, this assay allowed for differentiation between mecA and mecC by visualizing the two alleles at different positions on NALFIA test stripes. However, since this test system only targets the mecA and mecC genes, it does not allow to determine in which staphylococcal species the mec gene is included. Requiring only a fraction of the time needed for cultural methods (i.e. the gold standard), the PCR-NALFIA presented here is easy to handle and can be readily integrated into laboratory diagnostics. | 2017 | 27569992 |
| 5182 | 17 | 0.9192 | Evaluating virulence features of Acinetobacter baumannii resistant to polymyxin B. The increasing resistance to polymyxins in Acinetobacter baumannii has made it even more urgent to develop new treatments. Anti-virulence compounds have been researched as a new solution. Here, we evaluated the modification of virulence features of A. baumannii after acquiring resistance to polymyxin B. The results showed lineages attaining unstable resistance to polymyxin B, except for Ab7 (A. baumannii polymyxin B resistant lineage), which showed stable resistance without an associated fitness cost. Analysis of virulence by a murine sepsis model indicated diminished virulence in Ab7 (A. baumannii polymyxin B resistant lineage) compared with Ab0 (A. baumannii polymyxin B susceptible lineage). Similarly, downregulation of virulence genes was observed by qPCR at 1 and 3 h of growth. However, an increase in bauE, abaI, and pgAB expression was observed after 6 h of growth. Comparison analysis of Ab0, Ab7, and Pseudomonas aeruginosa suggested no biofilm formation by Ab7. In general, although a decrease in virulence was observed in Ab7 when compared with Ab0, some virulence feature that enables infection could be maintained. In light of this, virulence genes bauE, abaI, and pgAB showed a potential relevance in the maintenance of virulence in polymyxin B-resistant strains, making them promising anti-virulence targets. | 2024 | 38942450 |
| 9089 | 18 | 0.9192 | An adjunctive therapy administered with an antibiotic prevents enrichment of antibiotic-resistant clones of a colonizing opportunistic pathogen. A key challenge in antibiotic stewardship is figuring out how to use antibiotics therapeutically without promoting the evolution of antibiotic resistance. Here, we demonstrate proof of concept for an adjunctive therapy that allows intravenous antibiotic treatment without driving the evolution and onward transmission of resistance. We repurposed the FDA-approved bile acid sequestrant cholestyramine, which we show binds the antibiotic daptomycin, as an 'anti-antibiotic' to disable systemically-administered daptomycin reaching the gut. We hypothesized that adjunctive cholestyramine could enable therapeutic daptomycin treatment in the bloodstream, while preventing transmissible resistance emergence in opportunistic pathogens colonizing the gastrointestinal tract. We tested this idea in a mouse model of Enterococcus faecium gastrointestinal tract colonization. In mice treated with daptomycin, adjunctive cholestyramine therapy reduced the fecal shedding of daptomycin-resistant E. faecium by up to 80-fold. These results provide proof of concept for an approach that could reduce the spread of antibiotic resistance for important hospital pathogens. | 2020 | 33258450 |
| 5832 | 19 | 0.9191 | New quadriplex PCR assay for detection of methicillin and mupirocin resistance and simultaneous discrimination of Staphylococcus aureus from coagulase-negative staphylococci. Major challenges in diagnostic molecular microbiology are to develop a simple assay to distinguish Staphylococcus aureus from the less virulent but clinically important coagulase-negative staphylococci (CoNS) and to simultaneously determine their antibiotic resistance profiles. Multiplex PCR assays have been developed for the detection of methicillin- and mupirocin-resistant S. aureus and CoNS but not for the simultaneous discrimination of S. aureus from CoNS. We designed a new set of Staphylococcus genus-specific primers and developed a novel quadriplex PCR assay targeting the 16S rRNA (Staphylococcus genus specific), nuc (S. aureus species specific), mecA (a determinant of methicillin resistance), and mupA (a determinant of mupirocin resistance) genes to identify most staphylococci, to discriminate S. aureus from CoNS and other bacteria, and to simultaneously detect methicillin and mupirocin resistance. Validation of the assay with 96 ATCC control strains and 323 previously characterized clinical isolates, including methicillin- and mupirocin-sensitive and -resistant S. aureus and CoNS isolates and other bacteria, demonstrated 100% sensitivity, specificity, and accuracy. This assay represents a simple, rapid, accurate, and reliable approach for the detection of methicillin- and mupirocin-resistant staphylococci and offers the hope of preventing their widespread dissemination through early and reliable detection. | 2004 | 15528678 |