ARCANOBACTERIUM - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
125400.9560Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed.202031692060
122310.9558Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics.201425052999
122120.9558Invasive whistling frogs (Eleutherodactylus johnstonei) act as a reservoir for antimicrobial-resistant Enterobacteriaceae in Latin America's most populous city. Invasive species represent a significant threat to ecological balance and the maintenance of native populations. Besides, these have been associated with the emergence of pathogens of public health importance, including multidrug-resistant bacteria. This study aimed to screen and describe the antimicrobial resistance profile of clinically important Enterobacteriaceae species isolated from whistling frogs (Eleutherodactylus johnstonei), an invasive anuran species in São Paulo, Brazil. Clinically relevant Enterobacteriaceae strains (n = 35) were isolated from oral and skin swabs of 19 whistling frogs and tested for antimicrobial susceptibility and antimicrobial resistance encoding genes. Resistance to amoxicillin + clavulanate and cefoxitin were the most frequent (16.67%; 4/24), followed by cefotaxime (5.71%; 2/35), ceftriaxone (2.86%; 1/35), and tetracycline (2.86%; 1/35). Among the antimicrobial resistance genes screened, bla(CTX-M group 8), bla(TEM), and bla(CMY) were identified. The whole genome of the bla(CTX-M group 8)-positive E. coli strain was assessed and confirmed bla(CTX-M-8) presence and phylogenetic analysis. Given the synanthropic behavior of whistling frogs, these amphibians may act as carriers of antimicrobial-resistant bacteria.202540884707
122730.9558Antibiotic resistance among coliform bacteria isolated from carcasses of commercially slaughtered chickens. A total of 322 coliform bacteria Escherichia coli, Enterobacter spp., Citrobacter spp., Klebsiella spp. and Serratia spp., were isolated from 50 carcasses of commercially slaughtered chickens. Their resistance to ampicillin, tetracycline, gentamicin, chloramphenicol, cephalotine, cotrimoxazole, nalidixic acid and nitrofurantoin, were determined. The most commonly found resistance was to tetracycline followed by cephalotine, cotrimoxazole and nalidixic acid. A large percentage of E. coli (41%) and Klebsiella spp. (38%) showed multiple antibiotic resistance.19902282290
123440.9546Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers. Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria.201526779134
122650.9546Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene.201324450236
135160.9546Characteristics of High-Level Ciprofloxacin-Resistant Enterococcus faecalis and Enterococcus faecium from Retail Chicken Meat in Korea. Genes encoding ciprofloxacin resistance in enterococci in animals may be transferred to bacteria in the animal gut and to zoonotic bacteria where they could pose a human health hazard. The objective of this study was to characterize antimicrobial resistance in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from retail chicken meat. A total of 345 enterococci (335 E. faecalis and 10 E. faecium) were isolated from 200 chicken meat samples. Of these, 85 E. faecalis isolates and 1 E. faecium isolate were confirmed as HLCR enterococci. All 86 HLCR enterococci displayed gyrA- parC point mutations consisting of S83I-S80I (94.2%, 81 isolates), S83F-S80I (2.3%, 2 isolates), S83Y-S80I (2.3%, 2 isolates), and S83Y-S80F (1.2%, 1 isolate). Sixty-one (72.9%) of the 86 HLCR enterococci showed multidrug resistance to three to six classes of antimicrobial agents. Multilocus sequence typing revealed that E. faecalis had 17 different sequence types (ST) and E. faecium had 1 different ST, with ST256 observed most often (44 isolates, 51.8%). Although these results cannot exclude the possibility that pathotypes of enterococci isolated from chicken might represent transmission to or from humans, the foodborne HLCR E. faecalis indicated that the food chain is a potential route of enterococcal infection in humans.201830015506
133470.9545Intimin (eae) and virulence membrane protein pagC genes are associated with biofilm formation and multidrug resistance in Escherichia coli and Salmonella enterica isolates from calves with diarrhea. OBJECTIVES: This study aimed to evaluate the association of the intimin (eae) and pagC genes with biofilm formation and multidrug resistance (MDR) phenotype in Escherichia coli and Salmonella enterica collected from calves with diarrhea. RESULTS: Fecal samples (n: 150) were collected from calves with diarrhea. Of 150 fecal samples, 122 (81.3%) were culture positive and 115/122 (94.2%) were Gram-negative bacteria. Among them, E. coli (n = 64/115, 55.6%) was the most common isolate followed by S. enterica (n = 41/115, 35.6%). Also, 10 (8.6%) isolates were other Enterobacteriaceae bacteria including Klebsiella and Proteus species. Eighty-nine isolates (77.4%) from calf diarrhea, including 52 (81.3%) E. coli and 37 (90.2%) S. enterica were MDR. The eae and pagC genes were detected in 33 (51.5%) E. coli and 28 (68.3%) S. enterica isolates, respectively. There was a strong association between these genes and biofilm formation and MDR phenotype (P-value = 0.000). All E. coli isolates carrying the eae gene were biofilm producers and MDR. Also, all pagC-positive S. enterica isolates were MDR and 25 (89.3%) isolates of them produced biofilm.202236221149
538180.9544Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).202438078696
122290.9543Molecular Characterization and the Antimicrobial Resistance Profile of Salmonella spp. Isolated from Ready-to-Eat Foods in Ouagadougou, Burkina Faso. The emergence of antimicrobial-resistantfood-borne bacteria is a great challenge to public health. This study was conducted to characterize and determine the resistance profile of Salmonella strains isolated from foods including sesames, ready-to-eat (RTE) salads, mango juices, and lettuce in Burkina Faso. One hundred and forty-eight biochemically identified Salmonella isolates were characterized by molecular amplification of Salmonella marker invA and spiC, misL, orfL, and pipD virulence genes. After that, all confirmed strains were examined for susceptibility to sixteen antimicrobials, and PCR amplifications were used to identify the following resistance genes: bla (TEM), temA, temB, StrA, aadA, sul1, sul2, tet(A), and tet(B). One hundred and eight isolates were genetically confirmed as Salmonella spp. Virulence genes were observed in 57.4%, 55.6%, 49.1%, and 38% isolates for pipD, SpiC, misL, and orfL, respectively. Isolates have shown moderate resistance to gentamycin (26.8%), ampicillin (22.2%), cefoxitin (19.4%), and nalidixic acid (18.5%). All isolates were sensitive to six antibiotics, including cefotaxime, ceftazidime, aztreonam, imipenem, meropenem, and ciprofloxacin. Among the 66 isolates resistant to at least one antibiotic, 11 (16.7%) were multidrug resistant. The Multiple Antimicrobial Resistance (MAR) index of Salmonella serovars ranged from 0.06 to 0.53. PCR detected 7 resistance genes (tet(A), tet(B), bla (TEM), temB, sul1, sul2, and aadA) in drug-resistant isolates. These findings raise serious concerns because ready-to-eat food in Burkina Faso could serve as a reservoir for spreading antimicrobial resistance genes worldwide.202236406904
1299100.9543Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.202134129676
1335110.9542Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. AIM: The study was conducted to determine the prevalence and characterization of the Pasteurella multocida isolates from suspected pigs in Vietnam. MATERIALS AND METHODS: A total of 83 P. multocida strains were isolated from lung samples and nasal swabs collected from pigs associated with pneumonia, progressive atrophic rhinitis, or reproductive and respiratory symptoms. Isolates were subjected to multiplex polymerase chain reaction (PCR) for capsular typing, detection of virulence-associated genes and antibiotic resistance genes by PCR. The antimicrobial sensitivity profiles of the isolates were tested by disk diffusion method. RESULTS: All the isolates 83/83 (100%) were identified as P. multocida by PCR: serogroup A was obtained from 40/83 (48.19%), serogroup D was detected from 24/83 strains (28.91%), and serogroup B was found in 19/83 (22.35%) isolates. The presence of 14 virulence genes was reported including adhesins group (ptfA - 93.97%, pfhA - 93.97%, and fimA - 90.36%), iron acquisition (exbB - 100%, and exbD - 85.54%), hyaluronidase (pmHAS - 84.33%), and protectins (ompA - 56.62%, ompH 68.67%, and oma87 - 100%). The dermonecrotoxin toxA had low prevalence (19.28%). The antimicrobial susceptibility testing revealed that cephalexin, cefotaxime, ceftriaxone, ofloxacin, pefloxacin, ciprofloxacin, and enrofloxacin were the drugs most likely active against P. multocida while amoxicillin and tetracycline were inactive. The usage of PCR revealed that 63/83 isolates were carrying at least one of the drug resistance genes. CONCLUSION: Unlike other parts of the word, serotype B was prevalent among Vietnamese porcine P. multocida strains. The high antibiotic resistance detected among these isolates gives us an alert about the current state of imprudent antibiotic usage in controlling the pathogenic bacteria.202032636585
5384120.9542Characterization of drug resistance and virulotypes of Salmonella strains isolated from food and humans. The virulence of bacteria can be evaluated through both phenotypic and molecular assays. We applied these techniques to 114 strains of Salmonella enterica subsp. enterica collected from July 2010 to June 2012. Salmonella strains were of human origin (71/114) or isolated from food (43/114). The strain set included only the three predominant Salmonella serovars isolated in Italy from humans (S. Enteritidis, S. Typhimurium, S. 4,[5],12:i:-). These strains were screened via polymerase chain reaction for 12 virulence factors (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE, spvC, pefA, mig5, rck, srgA), while antimicrobial sensitivity was evaluated through the Kirby-Bauer assay. Fifty-nine different virulence profiles were highlighted; the genes showing the highest homology were those related to the presence of prophages (gipA, gtgB, sopE, sspH1, sspH2, sodC1, gtgE), while the genes related to the presence of plasmids were less frequently detected (spvC, pefA, mig5, rck, srgA). The Salmonella serovars Typhimurium and 4,[5],12:i:- were closely related in terms of both virulotyping and antibiotic resistance. S. Enteritidis showed higher antibiotic sensitivity and a higher prevalence of genes related to plasmids.201324102078
1264130.9541Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.201526413075
1301140.9541Phenotypic and Genotypic Assessment of Antibiotic Resistance of Staphylococcus aureus Bacteria Isolated from Retail Meat. BACKGROUND: Resistant Staphylococcus aureus (S. aureus) bacteria are determined to be one of the main causes of foodborne diseases. PURPOSE: This survey was done to assess the genotypic and phenotypic profiles of antibiotic resistance of S. aureus bacteria isolated from retail meat. METHODS: Four-hundred and eighty-five retail meat samples were collected and examined. S. aureus bacteria were identified using culture and biochemical tests. The phenotypic profile of antibiotic resistance was examined using the disk diffusion method. The genotypic pattern of antibiotic resistance was determined using the polymerase chain reaction. RESULTS: Forty-eight out of 485 (9.89%) raw retail meat samples were contaminated with S. aureus. Raw retail buffalo meat (16%) had the highest incidence of S. aureus, while raw camel meat (4%) had the lowest. S. aureus bacteria exhibited the uppermost incidence of resistance toward tetracycline (79.16%), penicillin (72.91%), gentamicin (60.41%), and doxycycline (41.666%). The incidence of resistance toward chloramphenicol (8.33%), levofloxacin (22.91%), rifampin (22.91%), and azithromycin (25%) was lower than other examined antibiotics. The most routinely detected antibiotic resistance genes were blaZ (58.33%), tetK (52.08%), aacA-D (33.33%), and ermA (27.08%). Cat1 (4.16%), rpoB (10.41%), msrA (12.50%), grlA (12.50%), linA (14.58%), and dfrA1 (16.66%) had the lower incidence rate. CONCLUSION: Raw meat of animals may be sources of resistant S. aureus which pose a hygienic threat about the consumption of raw meat. Nevertheless, further investigations are essential to understand supplementary epidemiological features of S. aureus in retail meat.202032440171
2487150.9540Clinical cases, drug resistance, and virulence genes profiling in Uropathogenic Escherichia coli. Uropathogenic Escherichia coli (UPEC) as the most important bacterial agent of urinary tract infections (UTIs) encompasses a wide treasure of virulence genes and factors. In due to this default, the aim of this research was to detect and identify some important virulence genes including cnf1, upaH, hlyA, ibeA, and cdtB in isolated UPEC pathotypes. In this research, clinical samples of urine were collected in Shahr-e-Qods, Tehran, Iran. The UPEC pathotypes were confirmed by standard biochemical tests. The DNAs of isolated bacteria were extracted. The genes of cnf1, upaH, hlyA, ibeA, and cdtB were run for multiplex PCR and gel electrophoresis. Furthermore, the antibiogram was done for the isolated UPEC strains by 11 common antibiotics. In accordance with the results, the virulence genes of cnf1, upaH, hlyA, ibeA, and cdtB were respectively recognized in 100%, 51.2%, 38.4%, 9.3%, and 0% of isolated UPEC pathotypes. In consequence, the final virulence gene profiling of the isolated UPEC strains was patterned as cnf1, cnf1-upaH, cnf1-upaH-hlyA, and cnf1-upaH-hlyA-ibeA. The chi-square tests showed no significant correlations between virulence gene profile and UTIs, between virulence gene profile and antibiotic resistance, and between virulence genes and different types of UTIs. The cnf1 virulence gene contributes in the occurrence of all types of UTIs. In contrast to cnf1, the cdtB gene was absent in the isolated UPEC strains in this investigation. The most ineffective antibiotics were recognized as Penicillin, Tetracycline, and Nalidixic acid, respectively, while Streptomycin, Chloramphenicol, and Ciprofloxacin are the best options for UTIs treatment.202031950434
2391160.9540Antimicrobial resistance and presence of virulence factor genes in Arcanobacterium pyogenes isolated from the uterus of postpartum dairy cows. Arcanobacterium pyogenes is considered the most significant bacterium involved in the pathogenesis of metritis in cattle. Infections caused by antimicrobial-resistant bacteria are a great challenge in both human and veterinary medicine. The purpose of this study was to present an overview of antimicrobial resistance in A. pyogenes isolated from the uteruses of postpartum Holstein dairy cows and to identify virulence factors. Seventy-two A. pyogenes isolates were phenotypically characterized for antimicrobial resistance to amoxicillin, ampicillin, ceftiofur, chloramphenicol, florfenicol, oxytetracycline, penicillin, spectinomycin, streptomycin and tetracycline by the broth microdilution method. Presence of virulence factor genes of A. pyogenes was investigated. Isolates exhibited resistance to all antimicrobial agents tested; high levels of resistance were found to amoxicillin (56.9%); ampicillin (86.1%), chloramphenicol (100%), florfenicol (59.7%), oxytetracycline (54.2%), penicillin (86.1%) and tetracycline (50%). Of all isolates, 69 (95.8%) were resistant to at least 2 of the antimicrobial agents tested and multidrug resistance (resistant to at least 3 antimicrobials) was observed in 64 (88.9%) of the A. pyogenes isolates. The major multidrug resistance profile was found for chloramphenicol-ampicillin-penicillin-florfenicol-amoxicillin-tetracycline, which was observed in 21 (29.2%) multidrug resistant isolates. No isolate was resistant to all nine antimicrobial agents tested but four isolates (5.6%) were resistant to eight antimicrobials. The information highlights the need for prudent use of specific antimicrobial agents. All four virulence factor genes occurred in isolates from normal puerperium and clinical metritis; however, the fimA gene was present in significantly higher frequency in isolates from metritis cows.201020346602
2996170.9540Presence and antimicrobial resistance profiles of Escherichia coli, Enterococcusspp. and Salmonellasp. in 12 species of Australian shorebirds and terns. Antibiotic resistance is an ongoing threat to both human and animal health. Migratory birds are a potential vector for the spread of novel pathogens and antibiotic resistance genes. To date, there has been no comprehensive study investigating the presence of antibiotic resistance (AMR) in the bacteria of Australian shorebirds or terns. In the current study, 1022 individual birds representing 12 species were sampled across three states of Australia (Victoria, South Australia, and Western Australia) and tested for the presence of phenotypically resistant strains of three bacteria with potential to be zoonotic pathogens; Escherichia coli, Enterococcusspp., and Salmonellasp. In total, 206 E. coli, 266 Enterococcusspp., and 20 Salmonellasp. isolates were recovered, with AMR detected in 42% of E. coli, 85% of Enterococcusspp., and 10% of Salmonellasp. Phenotypic resistance was commonly detected to erythromycin (79% of Enterococcusspp.), ciprofloxacin (31% of Enterococcusspp.) and streptomycin (21% of E. coli). Resident birds were more likely to carry AMR bacteria than migratory birds (p ≤ .001). Bacteria isolated from shorebirds and terns are commonly resistant to at least one antibiotic, suggesting that wild bird populations serve as a potential reservoir and vector for AMR bacteria. However, globally emerging phenotypes of multidrug-resistant bacteria were not detected in Australian shorebirds. This study provides baseline data of the carriage of AMR bacteria in Australian shorebirds and terns.202235460193
1247180.9540Antibiotic resistance determinants of multidrug-resistant Acinetobacter baumannii clinical isolates in Algeria. Antibiotic susceptibility testing was performed on 71 Acinetobacter baumannii clinical isolates, and presence of antibiotic resistance genes was screened for by PCR amplification and sequencing. Resistance rates were very high for aminoglycosides (22-80%), fluoroquinolones (>90%), and cephalosporins (>90%) but remained low for rifampin (2.8%) or null for colistin. Antibiotic resistance encoding genes detected were as follows: blaTEM-128 gene (74.6%), aph(3')-VI (50.7 %), aadA (63.4%), ant(2″)-I (14.1%), aac(3)-Ia (91.1%), aac(6')-Ib (4.2%), mutation Ser83Leu in gyrA (94.4%), double mutations Ser83Leu and Ser80Leu (or Ser84Leu) in gyrA and parC (69.0%), and mutation I581N in RRDR of the rpoB gene.201323688522
1324190.9539Molecular characterization of antimicrobial resistance in enterococci and Escherichia coli isolates from European wild rabbit (Oryctolagus cuniculus). A total of 44 Escherichia coli and 64 enterococci recovered from 77 intestinal samples of wild European rabbits in Portugal were analyzed for resistance to antimicrobial agents. Resistance in E. coli isolates was observed for ampicillin, tetracycline, sulfamethoxazole/trimethoprim, streptomycin, gentamicin, tobramycin, nalidixic acid, ciprofloxacin and chloramphenicol. None of the E. coli isolates produced extended-spectrum beta-lactamases (ESBLs). The bla(TEM), aadA, aac(3)-II, tet(A) and/or tet(B), and the catA genes were demonstrated in all ampicillin, streptomycin, gentamicin, tetracycline, and chloramphenicol-resistant isolates respectively, and the sul1 and/or sul2 and/or sul3 genes in 4 of 5 sulfamethoxazole/trimethoprim resistant isolates. Of the enterococcal isolates, Enterococcus faecalis was the most prevalent detected species (39 isolates), followed by E. faecium (21 isolates) and E. hirae (4 isolates). More than one-fourth (29.7%) of the isolates were resistant to tetracycline; 20.3% were resistant to erythromycin, 14.1% were resistant to ciprofloxacin and 10.9% were resistant to high-level-kanamycin. Lower level of resistance (<10%) was detected for ampicillin, quinupristin/dalfopristin and high-level-gentamicin, -streptomycin. No vancomycin-resistance was detected in the enterococci isolates. Resistance genes detected included aac(6')-aph(2''), ant(6)-Ia, tet(M) and/or tet(L) in all gentamicin, streptomycin and tetracycline-resistant isolates respectively. The aph(3')-IIIa gene was detected in 6 of 7 kanamycin-resistant isolates, the erm(B) gene in 11 of 13 erythromycin-resistant isolates and the vat(D) gene in the quinupristin/dalfopristin-resistant E. faecium isolate. This survey showed that faecal bacteria such as E. coli and enterococci of wild rabbits could be a reservoir of antimicrobial resistance genes.201020624632