# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9182 | 0 | 0.9930 | Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study. | 2025 | 40663257 |
| 8159 | 1 | 0.9930 | Quaternary Ammonium Salts: Insights into Synthesis and New Directions in Antibacterial Applications. The overuse of antibiotics has led to the emergence of a large number of antibiotic-resistant genes in bacteria, and increasing evidence indicates that a fungicide with an antibacterial mechanism different from that of antibiotics is needed. Quaternary ammonium salts (QASs) are a biparental substance with good antibacterial properties that kills bacteria through simple electrostatic adsorption and insertion into cell membranes/altering of cell membrane permeability. Therefore, the probability of bacteria developing drug resistance is greatly reduced. In this review, we focus on the synthesis and application of single-chain QASs, double-chain QASs, heterocyclic QASs, and gemini QASs (GQASs). Some possible structure-function relationships of QASs are also summarized. As such, we hope this review will provide insight for researchers to explore more applications of QASs in the field of antimicrobials with the aim of developing systems for clinical applications. | 2023 | 36748912 |
| 8163 | 2 | 0.9929 | Green materials science and engineering reduces biofouling: approaches for medical and membrane-based technologies. Numerous engineered and natural environments suffer deleterious effects from biofouling and/or biofilm formation. For instance, bacterial contamination on biomedical devices pose serious health concerns. In membrane-based technologies, such as desalination and wastewater reuse, biofouling decreases membrane lifetime, and increases the energy required to produce clean water. Traditionally, approaches have combatted bacteria using bactericidal agents. However, due to globalization, a decline in antibiotic discovery, and the widespread resistance of microbes to many commercial antibiotics and metallic nanoparticles, new materials, and approaches to reduce biofilm formation are needed. In this mini-review, we cover the recent strategies that have been explored to combat microbial contamination without exerting evolutionary pressure on microorganisms. Renewable feedstocks, relying on structure-property relationships, bioinspired/nature-derived compounds, and green processing methods are discussed. Greener strategies that mitigate biofouling hold great potential to positively impact human health and safety. | 2015 | 25852659 |
| 9192 | 3 | 0.9929 | Antimicrobial peptides: Sustainable application informed by evolutionary constraints. The proliferation and global expansion of multidrug-resistant (MDR) bacteria have deepened the need to develop novel antimicrobials. Antimicrobial peptides (AMPs) are regarded as promising antibacterial agents because of their broad-spectrum antibacterial activity and multifaceted mechanisms of action with non-specific targets. However, if AMPs are to be applied sustainably, knowledge of how they induce resistance in pathogenic bacteria must be mastered to avoid repeating the traditional antibiotic resistance mistakes currently faced. Furthermore, the evolutionary constraints on the acquisition of AMP resistance by microorganisms in the natural environment, such as functional compatibility and fitness trade-offs, inform the translational application of AMPs. Consequently, the shortcut to achieve sustainable utilization of AMPs is to uncover the evolutionary constraints of bacteria on AMP resistance in nature and find the tricks to exploit these constraints, such as applying AMP cocktails to minimize the efficacy of selection for resistance or combining nanomaterials to maximize the costs of AMP resistance. Altogether, this review dissects the benefits, challenges, and opportunities of utilizing AMPs against disease-causing bacteria, and highlights the use of AMP cocktails or nanomaterials to proactively address potential AMP resistance crises in the future. | 2022 | 35752270 |
| 8633 | 4 | 0.9928 | Bacterial interactions with arsenic: Metabolic pathways, resistance mechanisms, and bioremediation approaches. Arsenic contamination in natural waters is one of the biggest threats to human health, mainly due to its carcinogenic potential. Given its toxicity, nearly all organisms have evolved to develop an arsenic resistance mechanism. Conventional techniques of arsenic remediation suffer from various limitations of their applicability, cost and/or chemical intensive nature. In past few decades, bioremediation has emerged as a potential alternative to the conventional techniques. Microbial bioremediation, bacteria in particular, offers an eco-friendly and sustainable alternative, owing to its inherent metabolic capabilities to transform, immobilize or volatilize arsenic. Diverse biochemical pathways involving oxidation of As(III) to As(V), reduction of As(V) under anaerobic respiration or detoxification, methylation and demethylation, bioleaching and biomineralization into insoluble forms are essential mechanisms for arsenic remediation. These transformations, detoxification and resistance are regulated by specific genetic systems, including the ars operon, aio, arr and arsM, accessory genes such as arsR, arsB, acr3, arsC and arsP. The metabolic regulation of arsenic detoxification involves complex cofactor-dependent enzyme systems and environmental signal-responsive transcriptional control. Integrated approaches such as immobilization of bacteria on biochar or their encapsulation have also been known to enhance stability, reusability and stress tolerance. However, bioremediation is a very complex process due to the interrelationship of various influences such as, presence of specific microorganisms, nutrients and environmental factors. Therefore, it is of utmost importance to understand the bacterial interactions with arsenic for the development of bioremediation technologies. This review article tries to discuss the current status of arsenic bioremediation using bacteria, its field applications, challenges and future perspectives. It also includes the strengths, weaknesses, opportunities, threats (SWOT) analysis to assess the merits and demerits of using bacteria for bioremediation of arsenic. | 2025 | 41043264 |
| 8162 | 5 | 0.9928 | Nanotechnology for Targeted Detection and Removal of Bacteria: Opportunities and Challenges. The emergence of nanotechnology has created unprecedented hopes for addressing several unmet industrial and clinical issues, including the growing threat so-termed "antibiotic resistance" in medicine. Over the last decade, nanotechnologies have demonstrated promising applications in the identification, discrimination, and removal of a wide range of pathogens. Here, recent insights into the field of bacterial nanotechnology are examined that can substantially improve the fundamental understanding of nanoparticle and bacteria interactions. A wide range of developed nanotechnology-based approaches for bacterial detection and removal together with biofilm eradication are summarized. The challenging effects of nanotechnologies on beneficial bacteria in the human body and environment and the mechanisms of bacterial resistance to nanotherapeutics are also reviewed. | 2021 | 34558234 |
| 9179 | 6 | 0.9927 | A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection. | 2022 | 35835393 |
| 8635 | 7 | 0.9926 | Techniques for enhancing the tolerance of industrial microbes to abiotic stresses: A review. The diversity of stress responses and survival strategies evolved by microorganism enables them to survive and reproduce in a multitude of harsh environments, whereas the discovery of the underlying resistance genes or mechanisms laid the foundation for the directional enhancement of microbial tolerance to abiotic stresses encountered in industrial applications. Many biological techniques have been developed for improving the stress resistance of industrial microorganisms, which greatly benefited the bacteria on which industrial production is based. This review introduces the main techniques for enhancing the resistance of microorganisms to abiotic stresses, including evolutionary engineering, metabolic engineering, and process engineering, developed in recent years. In addition, we also discuss problems that are still present in this area and offer directions for future research. | 2020 | 31206805 |
| 9180 | 8 | 0.9925 | Novel genes for disease-resistance breeding. Plant disease control is entering an exciting period during which transgenic plants showing improved resistance to pathogenic viruses, bacteria, fungi and insects are being developed. This review summarizes the first successful attempts to engineer fungal resistance in crops, and highlights two promising approaches. Biotechnology provides the promise of new integrated disease management strategies that combine modern fungicides and transgenic crops to provide effective disease control for modern agriculture. | 2000 | 10712959 |
| 8134 | 9 | 0.9925 | Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Beneficial bacteria produce diverse chemical compounds that affect the behavior of other organisms including plants. Bacterial volatile compounds (BVCs) contribute to triggering plant immunity and promoting plant growth. Previous studies investigated changes in plant physiology caused by in vitro application of the identified volatile compounds or the BVC-emitting bacteria. This review collates new information on BVC-mediated plant-bacteria airborne interactions, addresses unresolved questions about the biological relevance of BVCs, and summarizes data on recently identified BVCs that improve plant growth or protection. Recent explorations of bacterial metabolic engineering to alter BVC production using heterologous or endogenous genes are introduced. Molecular genetic approaches can expand the BVC repertoire of beneficial bacteria to target additional beneficial effects, or simply boost the production level of naturally occurring BVCs. The effects of direct BVC application in soil are reviewed and evaluated for potential large-scale field and agricultural applications. Our review of recent BVC data indicates that BVCs have great potential to serve as effective biostimulants and bioprotectants even under open-field conditions. | 2016 | 26177913 |
| 8636 | 10 | 0.9925 | Insights into the synthesis, engineering, and functions of microbial pigments in Deinococcus bacteria. The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights. | 2024 | 39119139 |
| 9155 | 11 | 0.9925 | Polyphenols and their nanoformulations as potential antibiofilm agents against multidrug-resistant pathogens. The emergence of multidrug-resistant (MDR) pathogens is a major problem in the therapeutic management of infectious diseases. Among the bacterial resistance mechanisms is the development of an enveloped protein and polysaccharide-hydrated matrix called a biofilm. Polyphenolics have demonstrated beneficial antibacterial effects. Phenolic compounds mediate their antibiofilm effects via disruption of the bacterial membrane, deprivation of substrate, protein binding, binding to adhesion complex, viral fusion blockage and interactions with eukaryotic DNA. However, these compounds have limitations of chemical instability, low bioavailability, poor water solubility and short half-lives. Nanoformulations offer a promising solution to overcome these challenges by enhancing their antibacterial potential. This review summarizes the antibiofilm role of polyphenolics, their underlying mechanisms and their potential role as resistance-modifying agents. | 2024 | 38305223 |
| 8256 | 12 | 0.9925 | Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress. | 2024 | 39204705 |
| 9085 | 13 | 0.9925 | Mode of action and resistance studies unveil new roles for tropodithietic acid as an anticancer agent and the γ-glutamyl cycle as a proton sink. While we have come to appreciate the architectural complexity of microbially synthesized secondary metabolites, far less attention has been paid to linking their structural features with possible modes of action. This is certainly the case with tropodithietic acid (TDA), a broad-spectrum antibiotic generated by marine bacteria that engage in dynamic symbioses with microscopic algae. TDA promotes algal health by killing unwanted marine pathogens; however, its mode of action (MoA) and significance for the survival of an algal-bacterial miniecosystem remains unknown. Using cytological profiling, we herein determine the MoA of TDA and surprisingly find that it acts by a mechanism similar to polyether antibiotics, which are structurally highly divergent. We show that like polyether drugs, TDA collapses the proton motive force by a proton antiport mechanism, in which extracellular protons are exchanged for cytoplasmic cations. The α-carboxy-tropone substructure is ideal for this purpose as the proton can be carried on the carboxyl group, whereas the basicity of the tropylium ion facilitates cation export. Based on similarities to polyether anticancer agents we have further examined TDA's cytotoxicity and find it to exhibit potent, broad-spectrum anticancer activities. These results highlight the power of MoA-profiling technologies in repurposing old drugs for new targets. In addition, we identify an operon that confers TDA resistance to the producing marine bacteria. Bioinformatic and biochemical analyses of these genes lead to a previously unknown metabolic link between TDA/acid resistance and the γ-glutamyl cycle. The implications of this resistance mechanism in the context of the algal-bacterial symbiosis are discussed. | 2016 | 26802120 |
| 8161 | 14 | 0.9924 | Integrative strategies against multidrug-resistant bacteria: Synthesizing novel antimicrobial frontiers for global health. Concerningly, multidrug-resistant bacteria have emerged as a prime worldwide trouble, obstructing the treatment of infectious diseases and causing doubts about the therapeutic accidentalness of presently existing drugs. Novel antimicrobial interventions deserve development as conventional antibiotics are incapable of keeping pace with bacteria evolution. Various promising approaches to combat MDR infections are discussed in this review. Antimicrobial peptides are examined for their broad-spectrum efficacy and reduced ability to develop resistance, while phage therapy may be used under extreme situations when antibiotics fail. In addition, the possibility of CRISPR-Cas systems for specifically targeting and eradicating resistance genes from bacterial populations will be explored. Nanotechnology has opened up the route to improve the delivery system of the drug itself, increasing the efficacy and specificity of antimicrobial action while protecting its host. Discovering potential antimicrobial agents is an exciting prospect through developments in synthetic biology and the rediscovery of natural product-based medicines. Moreover, host-directed therapies are now becoming popular as an adjunct to the main strategies of therapeutics without specifically targeting pathogens. Although these developments appear impressive, questions about production scaling, regulatory approvals, safety, and efficacy for clinical employment still loom large. Thus, tackling the MDR burden requires a multi-pronged plan, integrating newer treatment modalities with existing antibiotic regimens, enforcing robust stewardship initiatives, and effecting policy changes at the global level. The international health community can gird itself against the growing menace of antibiotic resistance if collaboration between interdisciplinary bodies and sustained research endeavours is encouraged. In this study, we evaluate the synergistic potential of combining various medicines in addition to summarizing recent advancements. To rethink antimicrobial stewardship in the future, we provide a multi-tiered paradigm that combines pathogen-focused and host-directed strategies. | 2025 | 40914328 |
| 8259 | 15 | 0.9924 | Secondary Metabolite Transcriptomic Pipeline (SeMa-Trap), an expression-based exploration tool for increased secondary metabolite production in bacteria. For decades, natural products have been used as a primary resource in drug discovery pipelines to find new antibiotics, which are mainly produced as secondary metabolites by bacteria. The biosynthesis of these compounds is encoded in co-localized genes termed biosynthetic gene clusters (BGCs). However, BGCs are often not expressed under laboratory conditions. Several genetic manipulation strategies have been developed in order to activate or overexpress silent BGCs. Significant increases in production levels of secondary metabolites were indeed achieved by modifying the expression of genes encoding regulators and transporters, as well as genes involved in resistance or precursor biosynthesis. However, the abundance of genes encoding such functions within bacterial genomes requires prioritization of the most promising ones for genetic manipulation strategies. Here, we introduce the 'Secondary Metabolite Transcriptomic Pipeline' (SeMa-Trap), a user-friendly web-server, available at https://sema-trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq based transcriptome analyses, finds co-expression patterns between certain genes and BGCs of interest, and helps optimize the design of comparative transcriptomic analyses. Finally, SeMa-Trap provides interactive result pages for each BGC, allowing the easy exploration and comparison of expression patterns. In summary, SeMa-Trap allows a straightforward prioritization of genes that could be targeted via genetic engineering approaches to (over)express BGCs of interest. | 2022 | 35580059 |
| 9144 | 16 | 0.9923 | Metal nanoparticles: understanding the mechanisms behind antibacterial activity. As the field of nanomedicine emerges, there is a lag in research surrounding the topic of nanoparticle (NP) toxicity, particularly concerned with mechanisms of action. The continuous emergence of bacterial resistance has challenged the research community to develop novel antibiotic agents. Metal NPs are among the most promising of these because show strong antibacterial activity. This review summarizes and discusses proposed mechanisms of antibacterial action of different metal NPs. These mechanisms of bacterial killing include the production of reactive oxygen species, cation release, biomolecule damages, ATP depletion, and membrane interaction. Finally, a comprehensive analysis of the effects of NPs on the regulation of genes and proteins (transcriptomic and proteomic) profiles is discussed. | 2017 | 28974225 |
| 8135 | 17 | 0.9923 | Harnessing Genome Editing Techniques to Engineer Disease Resistance in Plants. Modern genome editing (GE) techniques, which include clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system, transcription activator-like effector nucleases (TALENs), zinc-finger nucleases (ZFNs) and LAGLIDADG homing endonucleases (meganucleases), have so far been used for engineering disease resistance in crops. The use of GE technologies has grown very rapidly in recent years with numerous examples of targeted mutagenesis in crop plants, including gene knockouts, knockdowns, modifications, and the repression and activation of target genes. CRISPR/Cas9 supersedes all other GE techniques including TALENs and ZFNs for editing genes owing to its unprecedented efficiency, relative simplicity and low risk of off-target effects. Broad-spectrum disease resistance has been engineered in crops by GE of either specific host-susceptibility genes (S gene approach), or cleaving DNA of phytopathogens (bacteria, virus or fungi) to inhibit their proliferation. This review focuses on different GE techniques that can potentially be used to boost molecular immunity and resistance against different phytopathogens in crops, ultimately leading to the development of promising disease-resistant crop varieties. | 2019 | 31134108 |
| 8172 | 18 | 0.9923 | From resistance to remedy: the role of clustered regularly interspaced short palindromic repeats system in combating antimicrobial resistance-a review. The growing challenge of antimicrobial resistance (AMR) poses a significant and increasing risk to public health worldwide, necessitating innovative strategies to restore the efficacy of antibiotics. The precise genome-editing abilities of the CRISPR-Cas system have made it a potent instrument for directly targeting and eliminating antibiotic resistance genes. This review explored the mechanisms and applications of CRISPR-Cas systems in combating AMR. The latest developments in CRISPR technology have broadened its potential use, encompassing programmable antibacterial agents and improved diagnostic methods for antibiotic-resistant infections. Nevertheless, several challenges must be overcome for clinical success, including the survival of resistant bacteria, generation of anti-CRISPR proteins that reduce effectiveness, and genetic modifications that change target sequences. Additionally, the efficacy of CRISPR-Cas systems differs across bacterial species, making their universal application challenging. After overcoming these challenges, CRISPR-Cas has the potential to revolutionize AMR treatment, restore antibiotic efficacy, and reshape infection control. | 2025 | 39404843 |
| 8772 | 19 | 0.9922 | The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress. | 2024 | 39002396 |