# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1217 | 0 | 0.9515 | Antimicrobial Susceptibility Profiles among Pseudomonas aeruginosa Isolated from Professional SCUBA Divers with Otitis Externa, Swimming Pools and the Ocean at a Diving Operation in South Africa. SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby-Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim-sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included bla(AmpC) (86.9%) followed by bla(TEM) (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced. | 2022 | 35056039 |
| 1216 | 1 | 0.9500 | Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment. | 2024 | 38992444 |
| 2778 | 2 | 0.9497 | The investigation of antibiotic residues, antibiotic resistance genes and antibiotic-resistant organisms in a drinking water reservoir system in Germany. Between August 2018 and June 2019, a river system in Germany that supplies a drinking water reservoir and is subject to the discharge from two sewage treatment plants was monitored for antibiotic residues via liquid chromatography-tandem mass spectrometry, antibiotic resistance genes (including bla(NDM), bla(VIM), bla(OXA-48), bla(KPC), bla(GIM), bla(SME), bla(IMI), bla(IMP), bla(SPM), bla(SIM), bla(OXA-23), bla(OXA-24), bla(OXA-51), bla(OXA-58), mcr) via qualitative real-time PCR and antibiotic-resistant bacteria [belonging to the ESKAPE-group (Enterococcus faecium, Staphyhlococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter ssp.; with resistance against Carbapenemases, Cephalosporines and Colistin) and Escherichia coli] based on cultivation methods followed by a characterization via MALDI-TOF MS and susceptibility testing applying microdilution. Residues of macrolide antibiotics such as clarithromycin (up to 0.60 μg/L) and residues of sulfamethoxazole (up to 0.40 μg/L) and trimethoprim (up to 0.39 μg/L) were detected downstream of the sewage treatment plants. In addition, no antibiotic residues were detected upstream the respective sewage treatment plants, except for anhydroerythromycin (n = 1, | 2020 | 31978723 | |
| 1382 | 3 | 0.9497 | Surveillance of antimicrobial-resistant Escherichia coli in Sheltered dogs in the Kanto Region of Japan. There is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan. | 2022 | 35031646 |
| 5265 | 4 | 0.9496 | Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. In this study, the abundance and spatial dynamics of antibiotic-resistant fecal bacteria (Escherichia coli, total coliforms and Enterococcus spp.) were determined in water and sediment samples from a river impacted by both antibiotic production plant (APP) and urban wastewater treatment plant (WWTP) discharges. Agar dilution and disk diffusion methods were also used for antimicrobial susceptibility testing. Two antimicrobial agents, cephalexin (25 μg/ml) and amoxicillin (50 μg/ml), were evaluated using the agar dilution method for E. coli, total coliforms (TC) and Enterococcus spp., whereas the degree of sensitivity or resistance of E. coli isolates to penicillin (10 U), ampicillin (10 μg), doxycycline (30 μg), tetracycline (30 μg), erythromycin (15 μg), azithromycin (15 μg) and streptomycin (10 μg) was performed using the disk diffusion method. Real-time PCR assays were used to determine the prevalence of three antibiotic-resistance genes (ARGs). The agar dilution method showed that most E. coli isolates and TC were resistant to amoxicillin, especially after receiving the APP discharges. Antibiotic resistances to amoxicillin and cephalexin were higher after the APP discharge point than after the WWTP effluent. The disk diffusion method revealed that 100% of bacterial isolates were resistant to penicillin and erythromycin. Multidrug-resistant bacteria were detected and showed a higher proportion at the WWTP discharge point than those in the APP. Highly multidrug-resistant bacteria (resistance to more than 4 antibiotics) were also detected, reaching mean values of 41.6% in water samples and 50.1% in sediments. The relative abundance of the blaTEM, blaCTX-M and blaSHV genes was higher in samples from the treatment plants than in those collected upstream from the discharges, especially for water samples collected at the APP discharge point. These results clearly demonstrate that both the APP and the WWTP contribute to the emergence and spread of antibiotic resistance in the environment. | 2014 | 24836130 |
| 1214 | 5 | 0.9492 | Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. This study concerned the occurrence of fecal bacteria with plasmid-mediated quinolone resistance (PMQR) genes in rooks (Corvus frugilegus, medium-sized corvid birds) wintering in continental Europe during winter 2010/2011. Samples of fresh rook feces were taken by cotton swabs at nine roosting places in eight European countries. Samples were transported to one laboratory and placed in buffered peptone water (BPW). The samples from BPW were enriched and subcultivated onto MacConkey agar (MCA) supplemented with ciprofloxacin (0.06 mg/L) to isolate fluoroquinolone-resistant bacteria. DNA was isolated from smears of bacterial colonies growing on MCA and tested by PCR for PMQR genes aac(6')-Ib, qepA, qnrA, qnrB, qnrC, qnrD, qnrS, and oqxAB. All the PCR products were further analyzed by sequencing. Ciprofloxacin-resistant bacteria were isolated from 37% (392 positive/1,073 examined) of samples. Frequencies of samples with ciprofloxacin-resistant isolates ranged significantly from 3% to 92% in different countries. The qnrS1 gene was found in 154 samples and qnrS2 in 2 samples. The gene aac(6')-Ib-cr was found in 16 samples. Thirteen samples were positive for qnrB genes in variants qnrB6 (one sample), qnrB18 (one), qnrB19 (one), qnrB29 (one), and qnrB49 (new variant) (one). Both the qnrD and oqxAB genes were detected in six samples. The genes qnrA, qnrC, and qepA were not found. Wintering omnivorous rooks in Europe were commonly colonized by bacteria supposedly Enterobacteriaceae with PMQR genes. Rooks may disseminate these epidemiologically important bacteria over long distances and pose a risk for environmental contamination. | 2012 | 22731858 |
| 5243 | 6 | 0.9492 | Multiplex Hybrid Capture Improves the Deep Detection of Antimicrobial Resistance Genes from Wastewater Treatment Plant Effluents to Assess Environmental Issues. Metagenomic sequencing (mDNA-seq) is one of the best approaches to address antimicrobial resistance (AMR) issues and characterize AMR genes (ARGs) and their host bacteria (ARB); however, the sensitivity provided is insufficient for the overall detection in wastewater treatment plant (WWTP) effluents because the effluent is well treated. This study investigated the multiplex hybrid capture (xHYB) method (QIAseq × HYB AMR Panel) and its potential to increase AMR assessment sensitivity. The mDNA-Seq analysis suggested that the WWTP effluents had an average of 104 reads per kilobase of gene per million (RPKM) for the detection of all targeted ARGs, whereas xHYB significantly improved detection at 601,576 RPKM, indicating an average 5,805-fold increase in sensitivity. For instance, sul1 was detected at 15 and 114,229 RPKM using mDNA-seq and xHYB, respectively. The bla(CTX-M), bla(KPC), and mcr gene variants were not detected by mDNA-Seq but were detected by xHYB at 67, 20, and 1,010 RPKM, respectively. This study demonstrates that the multiplex xHYB method could be a suitable evaluation standard with high sensitivity and specificity for deep-dive detection, highlighting a broader illustration of ongoing dissemination in the entire community. | 2023 | 37433210 |
| 2769 | 7 | 0.9492 | Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Wastewater discharged from clinical isolation and general wards at two hospitals in Singapore was examined to determine the emerging trends of antibiotic resistance (AR). We quantified the concentrations of 12 antibiotic compounds by analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS), antibiotic-resistant bacteria (ARB), the class 1 integrase gene (intI1), and 16 antibiotic resistance genes (ARGs) that confer resistance to 10 different clinically relevant antibiotics. A subset of 119 antibiotic-resistant isolates were phylogenetically classified and tested for the presence of ARGs encoding resistance to β-lactam antibiotics (bla(NDM), bla(KPC), bla(SHV), bla(CTX-M)), amikacin [aac(6')-Ib], co-trimoxazole (sul1, sul2, dfrA), ciprofloxacin (qnrA, qnrB), and the intI1 gene. Among these resistant isolates, 80.7% were detected with intI1 and 66.4% were found to carry at least 1 of the tested ARGs. Among 3 sampled locations, the clinical isolation ward had the highest concentrations of ARB and the highest levels of ARGs linked to resistance to β-lactam (bla(KPC)), co-trimoxazole (sul1, sul2, dfrA), amikacin [aac(6')-Ib], ciprofloxacin (qnrA), and intI1 We found strong positive correlations (P < 0.05) between concentrations of bacteria resistant to meropenem, ceftazidime, amikacin, co-trimoxazole, and ciprofloxacin and abundances of bla(KPC), aac(6')-Ib, sul1, sul2, dfrA, qnrA, and intI1 genes. | 2016 | 27736769 |
| 1220 | 8 | 0.9490 | Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae in Wastewater Effluent in Blantyre, Malawi. Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (Ec), Klebsiella pneumoniae (Kp), and Enterobacter cloacae (Enc) in effluent from WWTP in Blantyre, Malawi, to generate evidence and provide baseline information for interventions. Methods: Selective chromogenic agar was used to identify ESBL-producing bacteria. Results: A total of 288 samples were collected between April 2023 and March 2024, and 97.6% (281/288) yielded one or more presumptive ESBL isolates. Bacterial growth was confirmed as 48.9% Ec (255/522), 33.0% Kp (172/522), and 10.0% Enc (52/522). Antibiotic susceptibility testing showed the highest resistance to ceftriaxone (Ec, 100.0%; Kp, 98.3%; Enc, 100.0%) and the lowest resistance to meropenem (Ec, 6.3%, Kp, 1.2%; Enc, 3.8%) among the antibiotics that were tested. Multiple antibiotic resistance phenotypes were observed in 73.1% of the isolates, with the most prevalent phenotype being amoxicillin + clavulanate/cotrimoxazole/doxycycline/ciprofloxacin/gentamicin/azithromycin/ceftriaxone (55, 15.7%). Conclusions: The study demonstrated ongoing environmental contamination with antibiotic-resistant bacteria from sewage effluent. Therefore, the functionality of WWTPs should be improved to minimize the release of these organisms into the environment. | 2025 | 40558152 |
| 7755 | 9 | 0.9489 | Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. The environmental reservoirs of sulfonamide (SA) resistome are still poorly understood. We investigated the potential sources and reservoir of SA resistance (SR) in Larut River and Sangga Besar River by measuring the SA residues, sulfamethoxazole resistant (SMX(r)) in bacteria and their resistance genes (SRGs). The SA residues measured ranged from lower than quantification limits (LOQ) to 33.13 ng L(-1) with sulfadiazine (SDZ), sulfadimethoxine (SDM) and SMX as most detected. Hospital wastewater effluent was detected with the highest SA residues concentration followed by the slaughterhouse and zoo wastewater effluents. The wastewater effluents also harbored the highest abundance of SMX(r)-bacteria (10(7) CFU mL(-1)) and SRGs (10(-1)/16S copies mL(-1)). Pearson correlation showed only positive correlation between the PO(4) and SMX(r)-bacteria. In conclusion, wastewater effluents from the zoo, hospital and slaughterhouse could serve as important sources of SA residues that could lead to the consequent emergence of SMX(r)-bacteria and SRGs in the river. | 2019 | 31726563 |
| 5242 | 10 | 0.9488 | Highly sensitive detection of antimicrobial resistance genes in hospital wastewater using the multiplex hybrid capture target enrichment. Wastewater can be useful in monitoring the spread of antimicrobial resistance (AMR) within a hospital. The abundance of antibiotic resistance genes (ARGs) in hospital effluent was assessed using metagenomic sequencing (mDNA-seq) and hybrid capture (xHYB). mDNA-seq analysis and subsequent xHYB targeted enrichment were conducted on two effluent samples per month from November 2018 to May 2021. Reads per kilobase per million (RPKM) values were calculated for all 1,272 ARGs in the constructed database. The monthly numbers of patients with presumed extended-spectrum β-lactamase (ESBL)-producing and metallo-β-lactamase (MBL)-producing bacteria, methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant enterococci (VRE) were compared with the monthly RPKM values of bla(CTX-M), bla(IMP), mecA, vanA, and vanB by xHYB. The average RPKM value for all ARGs detected by xHYB was significantly higher than that of mDNA-seq (665, 225, and 328, respectively, and P < 0.05). The average number of patients with ESBL producers and RPKM values of bla(CTX-M-1) genes in 2020 were significantly higher than that in 2019 (17 and 13 patients per month and 921 vs 232 per month, respectively, both P < 0.05). The average numbers of patients with MBL-producers, MRSA, and VRE were 1, 28, and 0 per month, respectively, while the average RPKM values of bla(IMP), mecA, vanA, and vanB were 6,163, 6, 0, and 126 per month, respectively. Monitoring ARGs in hospital effluent using xHYB was found to be more useful than conventional mDNA-seq in detecting ARGs including bla(CTX-M), bla(IMP,) and vanB, which are important for infection control.IMPORTANCEEnvironmental ARGs play a crucial role in the emergence and spread of AMR that constitutes a significant global health threat. One major source of ARGs is effluent from healthcare facilities, where patients are frequently administered antimicrobials. Culture-independent methods, including metagenomics, can detect environmental ARGs carried by non-culturable bacteria and extracellular ARGs. mDNA-seq is one of the most comprehensive methods for environmental ARG surveillance; however, its sensitivity is insufficient for wastewater surveillance. This study demonstrates that xHYB appropriately monitors ARGs in hospital effluent for sensitive identification of nosocomial AMR dissemination. Correlations were observed between the numbers of inpatients with antibiotic-resistant bacteria and the ARG RPKM values in hospital effluent over time. ARG surveillance in hospital effluent using the highly sensitive and specific xHYB method could improve our understanding of the emergence and spread of AMR within a hospital. | 2023 | 37222510 |
| 1229 | 11 | 0.9488 | Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)). | 2021 | 33513540 |
| 5072 | 12 | 0.9488 | Integrated Sample to Detection of Carbapenem-Resistant Bacteria Extracted from Water Samples Using a Portable Gold Nanoparticle-Based Biosensor. Antimicrobial resistance (AMR) is a significant global threat and is driven by the overuse of antibiotics in both clinical and agricultural settings. This issue is further complicated by the lack of rapid surveillance tools to detect resistant bacteria in clinical, environmental, and food systems. Of particular concern is the rise in resistance to carbapenems, a critical class of beta-lactam antibiotics. Rapid detection methods are necessary for prevention and surveillance effort. This study utilized a gold nanoparticle-based plasmonic biosensor to detect three CR genes: bla(KPC-3), bla(NDM-1), and bla(OXA-1). Optical signals were analyzed using both a spectrophotometer and a smartphone app that quantified visual color changes using RGB values. This app, combined with a simple boiling method for DNA extraction and a portable thermal cycler, was used to evaluate the biosensor's potential for POC use. Advantages of the portable bacterial detection device include real time monitoring for immediate decision-making in critical situations, field and on-site testing in resource-limited settings without needing to transport samples to a centralized lab, minimal training required, automatic data analysis, storage and sharing, and reduced operational cost. Bacteria were inoculated into sterile water, river water, and turkey rinse water samples to determine the biosensor's success in detecting target genes from sample matrices. Magnetic nanoparticles were used to capture and concentrate bacteria to avoid time-consuming cultivation and separation steps. The biosensor successfully detected the target CR genes in all tested samples using three gene-specific DNA probes. Target genes were detected with a limit of detection of 2.5 ng/L or less, corresponding to ~10(3) CFU/mL of bacteria. | 2025 | 40942723 |
| 2619 | 13 | 0.9485 | Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water. Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of bla(CTX-M) (51/55, 92.7%) and bla(SHV) (8/55, 14.5%) ESBLs, and bla(GES) (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may contribute to the emergence and spreading of resistance in the environment, making this a natural reservoir. | 2017 | 27816836 |
| 5240 | 14 | 0.9485 | Dynamics of Antimicrobial Resistance Carriage in Koalas (Phascolarctos Cinereus) and Pteropid Bats (Pteropus Poliocephalus) Before, During and After Wildfires. In the 2019-2020 summer, wildfires decimated the Australian bush environment and impacted wildlife species, including koalas (Phascolarctos cinereus) and grey headed flying fox pups (Pteropid bats, Pteropus poliocephalus). Consequently, hundreds of koalas and thousands of bat pups entered wildlife hospitals with fire-related injuries/illness, where some individuals received antimicrobial therapy. This study investigated the dynamics of antimicrobial resistance (AMR) in pre-fire, fire-affected and post-fire koalas and Pteropid bat pups. PCR and DNA sequencing were used to screen DNA samples extracted from faeces (koalas and bats) and cloacal swabs (koalas) for class 1 integrons, a genetic determinant of AMR, and to identify integron-associated antibiotic resistance genes. Class 1 integrons were detected in 25.5% of koalas (68 of 267) and 59.4% of bats (92 of 155). Integrons contained genes conferring resistance to aminoglycosides, trimethoprim and beta-lactams. Samples were also screened for blaTEM (beta-lactam) resistance genes, which were detected in 2.6% of koalas (7 of 267) and 25.2% of bats (39 of 155). Integron occurrence was significantly higher in fire-affected koalas in-care compared to wild pre-fire koalas (P < 0.0001). Integron and blaTEM occurrence were not significantly different in fire-affected bats compared to pre-fire bats (P > 0.05), however, their occurrence was significantly higher in fire-affected bats in-care compared to wild fire-affected bats (P < 0.0001 and P = 0.0488 respectively). The observed shifts of AMR dynamics in wildfire-impacted species flags the need for judicious antibiotic use when treating fire-affected wildlife to minimise unwanted selective pressure and negative treatment outcomes associated with carriage of resistance genes and antibiotic resistant bacteria. | 2024 | 38332161 |
| 1233 | 15 | 0.9485 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 5256 | 16 | 0.9485 | Characterization of antibiotic resistance genes and bacteria in a municipal water resource recovery facility. Municipal water resource recovery facilities (WRRFs) are important sources of antibiotic-resistant bacteria and genes (ARB and ARGs). In this study, antibiotic-resistant total heterotrophic bacteria (THB(R) ) counts (CFU/ml) cultivated from influent, effluent of activated sludge process, and outflow of disinfection unit of an urban WRRF were investigated for the presence of 16, 32, 64, and 128 μg/ml of nine antibiotics. The isolates of Pseudomonas spp., Acinetobacter spp., and Escherichia coli obtained from effluent of activated sludge process were subjected for molecular identification by detecting the 16S rRNA gene sequences. Additionally, using the polymerase chain reaction method (PCR), the isolates were investigated for the presence of bla(SHV) , bla(TEM) , bla(CTX-M) , bla(VIM) , sul1, and qnrS genes. According to the results, the abundance of THB(R) counts was not significantly reduced by the biological treatment except for cefixime and sulfamethoxazole; it also increased for some antibiotics after disinfection unit. The average removal efficiency of THB(R) resistant to ciprofloxacin, sulfamethoxazole, and ceftazidime were 7.9 ± 1.7%, 41.8 ± 2.1%, and 14.4 ± 6.2%, respectively. Also, all the tested isolates were resistant to at least four antibiotics. For all antibiotics, the resistance ratio (THB(R) /THB) significantly increased in the effluent and after chlorination unit. Among 12 resistant isolates, bla(TEM) and sul1 genes were the most frequently detected ones involved in 92% and 83% of the isolates, respectively. Both bla(TEM) and sul1 genes were found in 100% of E. coli, and 83% and 67% of Pseudomonas spp. isolates, respectively. Further efforts are necessary to limit the transmission of ARB and ARGs from WRRFs into the environment and prevent human health threats. PRACTITIONER POINTS: The ratio of resistance significantly increased after biological treatment. Up to 40% of heterotrophic bacteria in the effluent was antibiotic resistant. bla(TEM) and sul1 genes were more prevalent (92%) in all isolates of bacteria. Both bla(TEM) and sul1 genes were found in 100% of E. coli isolates. Pseudomonas spp. holds bla(TEM) and sul1 genes in 83% and 67% of isolates, respectively. | 2022 | 35765862 |
| 1232 | 17 | 0.9485 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1219 | 18 | 0.9484 | Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system. | 2023 | 38252715 |
| 2780 | 19 | 0.9484 | Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., bla(TEM), bla(CTX-M-15), bla(CTX-M-32), bla(OXA-48), bla(CMY) and mcr-1) of up to 1.48 × 10(6) copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1-4.2 log units after conventional treatment. Following ozonation, mcr-1 and bla(CTX-M-32) were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and bla(OXA-48)), ranging from 1.75 × 10(2) to 3.44 × 10(3) copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered. | 2021 | 34404868 |