APMA - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
125400.9506Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed.202031692060
586510.9497Unusual small plasmids carrying the novel resistance genes dfrK or apmA isolated from methicillin-resistant or -susceptible staphylococci. OBJECTIVES: The aims of this study were to identify small staphylococcal plasmids that carry either the trimethoprim resistance gene dfrK or the apramycin resistance gene apmA and analyse them for their structure and organization with regard to their potential role as precursors of large multiresistance plasmids that carry these genes. METHODS: Trimethoprim- or apramycin-resistant staphylococci from the strain collections of the two participating institutions were investigated for the presence of plasmid-borne dfrK or apmA genes. The dfrK- or apmA-carrying plasmids were sequenced completely and compared with sequences deposited in the databases. RESULTS: Two small plasmids, the 4957 bp dfrK-carrying plasmid pKKS966 from porcine Staphylococcus hyicus subsp. hyicus and the 4809 bp apmA-carrying plasmid pKKS49 from porcine methicillin-resistant Staphylococcus aureus were identified. Structural analysis revealed that both plasmids had a similar organization, comprising a single resistance gene (dfrK or apmA), a plasmid replication gene (rep) and three partly overlapping genes for mobilization proteins (mobA, mobB and mobC). Comparisons showed 71%-82% amino acid identity between the Rep and Mob proteins of these two plasmids; however, distinctly lesser percentages of identity to Rep and Mob proteins of staphylococci and other bacteria deposited in the databases were detected. CONCLUSIONS: Both plasmids, pKKS966 and pKKS49, appeared not to be typical staphylococcal plasmids. The homology to larger plasmids that harbour the genes apmA and/or dfrK was limited to these resistance genes and their immediate upstream and downstream regions and thus suggested that these small plasmids were not integrated into larger plasmids.201222718530
538120.9488Draft genome sequence of Staphylococcus urealyticus strain MUWRP0921, isolated from the urine of an adult female Ugandan. Staphylococcus urealyticus bacteria are pathogenic among immune-compromised individuals. A strain (MUWRP0921) of Staphylococcus urealyticus with a genome of 2,708,354 bp was isolated from Uganda and carries genes that are associated with antibiotic resistance, including resistance to macrolides (erm(C) and mph(C')), aminoglycosides (aac(6")-aph(2")), tetracyclines (tet(K)), and trimethoprim (dfrG).202438078696
126730.9476Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. OBJECTIVES: This study investigated prevalence of methicillin-resistant (MR) and methicillin-susceptible (MS) coagulase-negative staphylococci (CNS) and the implicated mechanisms of resistance and virulence in milk of mastitis cows. In addition, the presence of SCCmec type was analyzed in MR Staphylococcus epidermidis (MRSE). RESULTS: Three hundred milk samples from cows with clinical mastitis were obtained from 30 dairy farms in different regions of Tunisia. Sixty-eight of the 300 tested samples contained CNS strains. Various CNS species were identified, with Staphylococcus xylosus being the most frequently found (40%) followed by Staphylococcus warneri (12%). The mecA gene was present in 14 of 20 MR-CNS isolates. All of them were lacking the mecC gene. The SCCmecIVa was identified in four MRSE isolates. Most of CNS isolates showed penicillin resistance (70.6%) and 58.3% of them carried the blaZ gene. MR-CNS isolates (n = 20) showed resistance to erythromycin, tetracycline and trimethoprim-sulfametoxazole harboring different resistance genes such us erm(B), erm(T), erm(C), mph(C) or msr(A), tet(K) and dfr(A). However, a lower percentage of resistance was observed among 48 MS-CNS isolates: erythromycin (8.3%), tetracycline (6.2%), streptomycin (6.2%), clindamycin (6.2%), and trimethoprim-sulfametoxazole (2%). The Inu(B) gene was detected in one Staphylococcus xylosus strain that showed clindamycin resistance. The virulence gene tsst-1 was observed in one MR-CNS strain. DISCUSSION: Coagulase-negative staphylococci containing a diversity of antimicrobial resistance genes are frequently detected in milk of mastitis cows. This fact emphasizes the importance of identifying CNS when an intramammary infection is present because of the potential risk of lateral transfer of resistant genes among staphylococcal species and other pathogenic bacteria.201830077662
537640.9475In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC(90) values of 0.5 and 1.0 μg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens.202134489919
126550.9475Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. The aim of this work was to study the pheno- and genotypical antimicrobial resistance profile of coagulase negative staphylococci (CoNS) isolated from 146 ready-to-eat food of animal origin (cheeses, cured meats, sausages, smoked fishes). 58 strains were isolated, they were classified as Staphylococcus xylosus (n = 29), Staphylococcus epidermidis (n = 16); Staphylococcus lentus (n = 7); Staphylococcus saprophyticus (n = 4); Staphylococcus hyicus (n = 1) and Staphylococcus simulans (n = 1) by phenotypic and genotypic methods. Isolates were tested for resistance to erythromycin, clindamycin, gentamicin, cefoxitin, norfloxacin, ciprofloxacin, tetracycline, tigecycline, rifampicin, nitrofurantoin, linezolid, trimetoprim, sulphamethoxazole/trimethoprim, chloramphenicol, quinupristin/dalfopristin by the disk diffusion method. PCR was used for the detection of antibiotic resistance genes encoding: methicillin resistance--mecA; macrolide resistance--erm(A), erm(B), erm(C), mrs(A/B); efflux proteins tet(K) and tet(L) and ribosomal protection proteins tet(M). For all the tet(M)-positive isolates the presence of conjugative transposons of the Tn916-Tn1545 family was determined. Most of the isolates were resistant to cefoxitin (41.3%) followed by clindamycin (36.2%), tigecycline (24.1%), rifampicin (17.2%) and erythromycin (13.8%). 32.2% staphylococcal isolates were multidrug resistant (MDR). All methicillin resistant staphylococci harboured mecA gene. Isolates, phenotypic resistant to tetracycline, harboured at least one tetracycline resistance determinant on which tet(M) was most frequent. All of the isolates positive for tet(M) genes were positive for the Tn916-Tn1545 -like integrase family gene. In the erythromycin-resistant isolates, the macrolide resistance genes erm(C) or msr(A/B) were present. Although coagulase-negative staphylococci are not classical food poisoning bacteria, its presence in food could be of public health significance due to the possible spread of antibiotic resistance.201525475289
543660.9474Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.201829350135
129970.9473Prevalence, Drug Resistance, and Virulence Genes of Potential Pathogenic Bacteria in Pasteurized Milk of Chinese Fresh Milk Bar. Fresh Milk Bar (FMB), an emerging dairy retail franchise, is used to instantly produce and sell pasteurized milk and other dairy products in China. However, the quality and safety of pasteurized milk in FMB have received little attention. The objective of this study was to investigate the prevalence, antimicrobial resistance, and virulence genes of Escherichia coli, Staphylococcus aureus, and Streptococcus in 205 pasteurized milk samples collected from FMBs in China. Four (2.0%) isolates of E. coli, seven (3.4%) isolates of S. aureus, and three (1.5%) isolates of Streptococcus agalactiae were isolated and identified. The E. coli isolates were resistant to amikacin (100%), streptomycin (50%), and tetracycline (50%). Their detected resistance genes include aac(3)-III (75%), blaTEM (25%), aadA (25%), aac(3)-II (25%), catI (25%), and qnrB (25%). The S. aureus isolates were mainly resistant to penicillin G (71.4%), trimethoprim-sulfamethoxazole (71.4%), kanamycin (57.1%), gentamicin (57.1%), amikacin (57.1%), and clindamycin (57.1%). blaZ (42.9%), mecA (28.6%), ermB (14.3%), and ermC (14.3%) were detected as their resistance genes. The Streptococcus strains were mainly resistant to tetracycline (66.7%) and contained the resistance genes pbp2b (33.3%) and tetM (33.3%). The virulence genes eae and stx2 were only found in one E. coli strain (25%), sec was detected in two S. aureus strains (28.6%), and bca was detected in one S. agalactiae strain (33.3%). The results of this study indicate that bacteria with drug resistance and virulence genes isolated from the pasteurized milk of FMB are a potential risk to consumers' health.202134129676
40780.9472Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides.19921328813
126690.9472Characterization of methicillin-resistant coagulase-negative staphylococci in milk from cows with mastitis in Brazil. Staphylococci are one of the most prevalent microorganisms in bovine mastitis. Staphylococcus spp. are widespread in the environment, and can infect animals and humans as opportunistic pathogens. The objective of this study was to determine the frequency of methicillin-resistance (MR) among coagulase-negative staphylococci (CoNS) previously obtained from milk of mastitic cows in Brazil and to characterize the antimicrobial resistance phenotype/genotype and the SCCmec type of MRCoNS isolates. Identification of MRCoNS was based on both biochemical and molecular methods. Susceptibility testing for eleven antimicrobials was performed by disk-diffusion agar. Antimicrobial resistance genes and SCCmec were investigated by specific PCRs. Twenty-six MRCoNS were detected (20 % of total CoNS), obtained from 24 animals, and were identified as follows: S. epidermidis (7 isolates), S. chromogenes (7), S. warneri (6), S. hyicus (5) and S. simulans (1). All MRCoNS isolates carried mecA while the mecC gene was not detected in any CoNS. The SCCmec IVa was demonstrated in nine MRCoNS, while the remaining 17 isolates harbored non-typeable SCCmec cassettes. In addition to oxacillin and cefoxitin resistance, MRCoNS showed resistance to tetracycline (n = 7), streptomycin (n = 6), tobramycin (n = 6), and gentamicin (n = 4), and harbored the genes tet(K) (n = 7), str (n = 3), ant(4') (n = 6) and aac(6')-aph(2″) (n = 4), respectively. In addition, seven strains showed intermediate resistance to clindamycin and two to streptomycin, of which two harboured the lnu(B) and lsa(E) genes and two the aad(E) gene, respectively. One isolate presented intermediate erythromycin and clindamycin resistance and harbored an erm(C) gene with an uncommon 89-bp deletion rendering a premature stop codon. MRCoNS can be implicated in mastitis of cows and they constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria.201424817534
1264100.9471Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.201526413075
5382110.9469Characterization of Streptococcus pyogenes from Animal Clinical Specimens, Spain. Streptococcus pyogenes appears to be almost exclusively restricted to humans, with few reports on isolation from animals. We provide a detailed characterization (emm typing, pulsed-field gel electrophoresis [PFGE], and multilocus sequence typing [MLST]) of 15 S. pyogenes isolates from animals associated with different clinical backgrounds. We also investigated erythromycin resistance mechanisms and phenotypes and virulence genes. We observed 2 emm types: emm12 (11 isolates) and emm77 (4 isolates). Similarly, we observed 2 genetic linages, sequence type (ST) 26 and ST63. Most isolates exhibited the M macrolide resistance phenotype and the mefA/ermB genotype. Isolates were grouped into 2 clones on the basis of emm-MLST-PFGE-virulence gene profile combinations: clone 1, characterized by the combined genotype emm12-ST36-pulsotype A-speG; and clone 2, characterized by the genotype emm77-ST63-pulsotype B-speC. Our results do not show conclusively that animals may represent a new reservoir of S. pyogenes but indicate the ability of human-derived S. pyogenes isolates to colonize and infect animals.201729148379
1329120.9469First report of the Staphylococcus aureus isolate from subclinical bovine mastitis in the South of Brazil harboring resistance gene dfrG and transposon family Tn916-1545. The aim of this work was to identify at the molecular level the species of coagulase-positive staphylococci isolates from clinical and subclinical bovine mastitis samples in Southern Brazil, and to evaluate the antimicrobial resistance profile, as well as the presence of resistance genes. According to the PCR assay, all 31 isolates were classified as Staphylococcus aureus. The isolates were tested for resistance to penicillin, ampicillin, oxacillin, cefoxitin, cephalothin, ceftiofur, streptomycin, tobramycin, teicoplanin, erythromycin, clindamycin, enrofloxacin, sulfonamide, trimethoprim-sulfamethoxazole, trimethoprim, and tetracycline by the disk diffusion method. Most of the isolates were resistant to sulfonamide (20), followed by ampicillin and clindamycin (16). Twenty isolates were multidrug-resistant. PCR was used for the detection of several antimicrobial resistance genes (ereB, ermB, ermC, tetA, tetB, tetK, tetL, tetM, tetO, Tn916-1545, strA, strB, sul1, sul2, dfrA, dfrG, dfrK, blaZ, mecA, and mecC). The most prevalent antimicrobial resistance genes were tetK and tetL, ereB, followed by tetM, Tn916-1545 and blaZ, detected in 11, nine and four isolates, respectively. For all the tetM gene positive isolates, the presence of conjugative transposons of the Tn916-1545 family was detected. The presence of multidrug-resistant isolates, antimicrobial resistance genes and transposons suggests a potential risk of spreading multi-resistance genes to other bacteria.201729051059
2381130.9468Potential of Natural Phenolic Compounds as Antimicrobial Agents against Multidrug-Resistant Staphylococcus aureus in Chicken Meat. Staphylococcus aureus is one of the most widespread foodborne bacteria that cause high morbidity, mortality, and economic loss, primarily if foodborne diseases are caused by pathogenic and multidrug-resistant (MDR) strains. This study aimed to determine the prevalence of S. aureus in chicken meat in Egyptian markets. Thus, this study might be the first to assess the efficiency of different natural phenolic compounds as novel antibacterial agents against MDR S. aureus pathogens isolated from raw chicken meat in the Egyptian market. The incidence and quantification of pathogenic S. aureus were detected in retail raw chicken meat parts (breast, thigh, fillet, and giblets). In total, 73 out of 80 (91.3%) of the chicken meat parts were contaminated, with S. aureus as the only species isolated. Of the 192 identified S. aureus isolates, 143 were coagulase-positive S. aureus and 117 isolates were MDR (81.8%, 117/143). Twenty-two antibiotic resistance profile patterns were detected. One strain was randomly selected from each pattern to further analyze virulence and resistance genes. Extracted DNA was assessed for the presence of antibiotic-resistance genes, i.e., vancomycin-resistance (vanA), aminoglycosides-resistance (aacA-aphD), apramycin-resistance (apmA), and methicillin-resistance (mecA), penicillin-resistance (blaZ), and virulence genes staphylococcal enterotoxins (sea and seb), Panton-Valentine leucocidin (pvl), clumping factor A (clfA), and toxic shock syndrome toxin (tst). Clustering analyses revealed that six S. aureus strains harbored the most virulence and resistance genes. The activity of hydroquinone was significantly higher than thymol, carvacrol, eugenol, and protocatechuic acid. Therefore, phenolic compounds, particularly hydroquinone, could potentially alternate with conventional antibiotics against the pathogenic MDR S. aureus inhabiting raw chicken meat. Hence, this study indicates that urgent interventions are necessary to improve hygiene for safer meat in Egyptian markets. Moreover, hydroquinone could be a natural phenolic compound for inhibiting foodborne pathogens.202337764518
5378140.9468Genome-Wide Analysis of Staphylococcus aureus Sequence Type 72 Isolates Provides Insights Into Resistance Against Antimicrobial Agents and Virulence Potential. Staphylococcus aureus sequence type 72 (ST72) is a major community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) that has rapidly entered the hospital setting in Korea, causing mild superficial skin wounds to severe bloodstream infections. In this study, we sequenced and analyzed the genomes of one methicillin-resistant human isolate and one methicillin-sensitive human isolate of ST72 from Korea, K07-204 and K07-561, respectively. We used a subtractive genomics approach to compare these two isolates to other 27 ST72 isolates to investigate antimicrobial resistance (AMR) and virulence potential. Furthermore, we validated genotypic differences by phenotypic characteristics analysis. Comparative and subtractive genomics analysis revealed that K07-204 contains methicillin (mecA), ampicillin (blaZ), erythromycin (ermC), aminoglycoside (aadD), and tetracycline (tet38, tetracycline efflux pump) resistance genes while K07-561 has ampicillin (blaZ) and tetracycline (tet38) resistance genes. In addition to antibiotics, K07-204 was reported to show resistance to lysostaphin treatment. K07-204 also has additional virulence genes (adsA, aur, hysA, icaABCDR, lip, lukD, sdrC, and sdrE) compared to K07-561, which may explain the differential virulence potential of these human isolates of ST72. Unexpectedly, the virulence potential of K07-561 was higher in an in vivo wax-worm infection model than that of K07-204, putatively due to the presence of a 20-fold higher staphyloxanthin concentration than K07-204. Comprehensive genomic analysis of these two human isolates, with 27 ST72 isolates, and S. aureus USA300 (ST8) suggested that acquisition of both virulence and antibiotics resistance genes by ST72 isolates might have facilitated their adaptation from a community to a hospital setting where the selective pressure imposed by antibiotics selects for more resistant and virulent isolates. Taken together, the results of the current study provide insight into the genotypic and phenotypic features of various ST72 clones across the globe, delivering more options for developing therapeutics and rapid molecular diagnostic tools to detect resistant bacteria.202033552024
1322150.9468Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). The objective was to study the prevalence of antimicrobial resistance and the mechanisms implicated in faecal enterococci of wild boars in Portugal. One hundred and thirty-four enterococci (67 E. faecium, 54 E. hirae, 2 E. faecalis, 2 E. durans and 9 Enterococcus spp.) were recovered from 67 wild boars (two isolates/sample), and were further analysed. High percentages of resistance were detected for erythromycin, tetracycline, and ciprofloxacin (48.5%, 44.8%, and 17.9%, respectively), and lower values were observed for high-level-kanamycin, -streptomycin, chloramphenicol, and ampicillin resistance (9%, 6.7%, 4.5%, and 3.7%, respectively). No isolates showed vancomycin or high-level-gentamicin resistance. The erm(B), tet(M), aph(3')-IIIa, and ant(6)-I genes were demonstrated in all erythromycin-, tetracycline-, kanamycin-, and streptomycin-resistant isolates, respectively. Specific genes of Tn916/Tn1545 and Tn5397 transposons were detected in 78% and 47% of our tet(M)-positive enterococci, respectively. The tet(S) and tet(K) genes were detected in one isolate of E. faecium and E. hirae, respectively. Three E. faecium isolates showed quinupristin-dalfopristin resistance and the vat(E) gene was found in all of them showing the erm(B)-vat(E) linkage. Four E. faecium isolates showed ampicillin-resistance and all of them presented seven amino acid substitutions in PBP5 protein (461Q-->K, 470H-->Q, 485M-->A, 496N-->K, 499A-->T, 525E-->D, and 629E-->V), in relation with the reference one; a serine insertion at 466' position was found in three of the isolates. Faecal enterococci from wild boars harbour a variety of antimicrobial resistance mechanisms and could be a reservoir of antimicrobial resistance genes and resistant bacteria that could eventually be transmitted to other animals or even to humans.200717658226
1300160.9467Genotypic and Phenotypic-Based Assessment of Antibiotic Resistance and Profile of Staphylococcal Cassette Chromosome mec in the Methicillin-Resistant Staphylococcus aureus Recovered from Raw Milk. BACKGROUND: Multidrug resistant methicillin-resistant Staphylococcus aureus (MRSA) bacteria are determined to be one of the chief causes of foodborne diseases around the world. PURPOSE: This research was done to assess the genotypic and phenotypic profiles of antibiotic resistance and distribution of Staphylococcus cassette chromosome mec (SCCmec) types amongst the MRSA bacteria recovered from raw milk. METHODS: Five-hundred and ninety raw milk samples were collected and examined. MRSA bacteria were recognized using susceptibility evaluation toward oxacillin and cefoxitin disks. Profile of antibiotic resistance genes and SCCmec types were determined using the PCR. Antibiotic resistance pattern of isolates was examined using the disk diffusion. RESULTS: Thirty-nine out of 590 raw milk samples (6.61%) were positive for S. aureus. Twenty-eight out of 39 (71.79%) bacteria were defined as MRSA bacteria. Raw buffalo (80%) milk samples had the maximum incidence of MRSA, while raw camel (33.33%) had the minimum. MRSA bacteria harbored the maximum incidence of resistance toward penicillin (100%), tetracycline (100%), erythromycin (82.14%), gentamicin (78.57%) and trimethoprim-sulfamethoxazole (78.57%). Incidence of resistance toward more than eight classes of antibiotic agents was 28.57%. The most frequently distinguished antibiotic resistance markers were blaZ (100%), tetK (85.71%), dfrA1 (71.42%), aacA-D (67.85%), ermA (50%) and gyrA (42.85%). SCCmec IVa (29.62%), V (25%), III (14.81%) and IVb (11.11%) were the most frequently distinguished types. CONCLUSION: Raw milk of dairy animals maybe sources of multidrug resistant MRSA which pose a hygienic threat concerning the consumption of raw milk in Iran. Nevertheless, further investigations are necessary to understand supplementary epidemiological features of MRSA in raw milk.202032099419
1257170.9467Antimicrobial Susceptibility Pattern in the Bacteria Isolated from Surgical Site Infection: Emphasis on Staphylococcus Aureus; Yasuj City, Southwest Iran. BACKGROUND: Surgical site infections (SSIs) in surgical wards remains the most common cause of postoperative complications and realistically is the third most common origin of healthcare-related conditions. Staphylococcus aureus is undoubtedly the most common bacteria causing SSIs. The current study aimed at investigating the antimicrobial susceptibility pattern in bacteria isolated from SSIs, evaluation of tetracycline resistance genes, and SCCmec typing in S. aureus isolates isolated from patients with SSIs from 2018 to 2019 in Yasuj, Kohgiluyeh, and Boyer-Ahmad Province, Iran. METHODS: This study diligently investigated 240 potential patients. Antimicrobial susceptibility testing was performed properly by the disk diffusion method. For the final confirmation of isolated bacteria, PCR was used. The presence of tet genes and SCCmec typing was carried out by multiplex PCR. RESULTS: The results showed that the most common isolated pathogens included S. aureus, E. coli, P. aeruginosa, Coagulase-negative Staphylococci, and K. pneumonia in 58.8%, 19.8%, 9.2%, 6.8% and 5.4% of cases, respectively. The majority of the Gram positive isolates were resistant against penicillin (86%) and Gram negative were resistant against ciprofloxacin (75.6%). In isolates of Staphylococcus aureus, the mecA gene was detected in 63.6% of isolates. The predominant SCCmec types were type III (59.1%) and type I (18.4%). The tetK and tetM genes were detected in 80.7% and 71.9% of the S. aureus isolates, respectively. There was a statistically significant difference between tet genes (tetK and tetM) from the viewpoint of resistance to tetracycline (p = 0.024). CONCLUSIONS: According to the results of the current study, it is recommended to administer vancomycin, amikacin, and imipenem in Yasuj to treat SSIs.202133616327
5453180.9467Sequence-Based Characterization of Tn5801-Like Genomic Islands in Tetracycline-Resistant Staphylococcus pseudintermedius and Other Gram-positive Bacteria from Humans and Animals. Antibiotic resistance in pathogens is often associated with mobile genetic elements, such as genomic islands (GI) including integrative and conjugative elements (ICEs). These can transfer resistance genes within and between bacteria from humans and/or animals. The aim of this study was to investigate whether Tn5801-like GIs carrying the tetracycline resistance gene, tet(M), are common in Staphylococcus pseudintermedius from pets, and to do an overall sequences-based characterization of Tn5801-like GIs detected in Gram-positive bacteria from humans and animals. A total of 27 tetracycline-resistant S. pseudintermedius isolates from Danish pets (1998-2005) were screened for tet(M) by PCR. Selected isolates (13) were screened for GI- or ICE-specific genes (int Tn5801 or xis Tn916 ) and their tet(M) gene was sequenced (Sanger-method). Long-range PCR mappings and whole-genome-sequencing (Illumina) were performed for selected S. pseudintermedius-isolates (seven and three isolates, respectively) as well as for human S. aureus isolates (seven and one isolates, respectively) and one porcine Enterococcus faecium isolate known to carry Tn5801-like GIs. All 27 S. pseudintermedius were positive for tet(M). Out of 13 selected isolates, seven contained Tn5801-like GIs and six contained Tn916-like ICEs. Two different Tn5801-like GI types were detected among S. pseudintermedius (Tn5801 and GI6287) - both showed high similarity compared to GenBank sequences from human pathogens. Two distinct Tn5801-like GI types were detected among the porcine E. faecium and human S. aureus isolates (Tn6014 and GI6288). Tn5801-like GIs were detected in GenBank-sequences from Gram-positive bacteria of human, animal or food origin worldwide. Known Tn5801-like GIs were divided into seven types. The results showed that Tn5801-like GIs appear to be relatively common in tetracycline-resistant S. pseudintermedius in Denmark. Almost identical Tn5801-like GIs were identified in different Gram-positive species of pet and human origin, suggesting that horizontal transfer of these elements has occurred between S. pseudintermedius from pets and human pathogens, including S. aureus.201627199912
1255190.9466Emergence of quinupristin/dalfopristin resistance among livestock-associated Staphylococcus aureus ST9 clinical isolates. Quinupristin/dalfopristin (Q/D) is a valuable alternative to vancomycin for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. However, not long after Q/D was approved, bacteria with resistance to this newer antimicrobial agent were reported. To investigate the prevalence of Q/D resistance, a total of 1476 non-duplicate S. aureus isolates, including 775 MRSA, from a Chinese tertiary hospital were selected randomly from 2003 to 2013. Of the 775 MRSA, 3 (0.4%) were resistant to Q/D. All meticillin-susceptible S. aureus were susceptible to Q/D. The prevalence of Q/D resistance among S. aureus was 0.2% (3/1476). The three isolates with Q/D resistance had the same antimicrobial resistance profile, except for cefaclor and chloramphenicol. All three Q/D-resistant MRSA were positive for five streptogramin B resistance genes (ermA, ermB, ermC, msrA and msrB) and two streptogramin A resistance genes (vatC and vgaA) as determined by PCR and DNA sequencing. MRSA WZ1031 belonged to ST9-MRSA-SCCmecV-t899, whilst MRSA WZ414 and WZ480 belonged to ST9-MRSA-SCCmecNT(non-typeable)-t899. ST9 has been reported predominantly in livestock-associated (LA) MRSA in some Asian countries. The three patients with these MRSA isolates were not livestock handlers and did not keep close contact with livestock. The origin of these important LA-MRSA isolates causing human infections is not known. Taken together, Q/D resistance, which was caused by a combination of ermA-ermB-ermC-msrA-msrB-vatC-vgaA, was first found among S. aureus clinical isolates in China. The present study is the first report of the emergence of human infections caused by ST9 LA-MRSA isolates with Q/D resistance.201425218154