ANNOTATION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
867000.9914Complete Genome Analysis of Subtercola sp. PAMC28395: Genomic Insights into Its Potential Role for Cold Adaptation and Biotechnological Applications. This study reports the complete genome sequence of Subtercola sp. PAMC28395, a strain isolated from cryoconite in Uganda. This strain possesses several active carbohydrate-active enzyme (CAZyme) genes involved in glycogen and trehalose metabolism. Additionally, two specific genes associated with α-galactosidase (GH36) and bacterial alpha-1,2-mannosidase (GH92) were identified in this strain. The presence of these genes indicates the likelihood that they can be expressed, enabling the strain to break down specific polysaccharides derived from plants or the shells of nearby crabs. The authors performed a comparative analysis of CAZyme patterns and biosynthetic gene clusters (BGCs) in several Subtercola strains and provided annotations describing the unique characteristics of these strains. The comparative analysis of BGCs revealed that four strains, including PAMC28395, have oligosaccharide BGCs, and we confirmed that the pentose phosphate pathway was configured perfectly in the genome of PAMC28395, which may be associated with adaptation to low temperatures. Additionally, all strains contained antibiotic resistance genes, indicating a complex self-resistance system. These results suggest that PAMC28395 can adapt quickly to the cold environment and produce energy autonomously. This study provides valuable information on novel functional enzymes, particularly CAZymes, that operate at low temperatures and can be used for biotechnological applications and fundamental research purposes.202337374983
518910.9913Genomic analysis of halophilic bacterium, Lentibacillus sp. CBA3610, derived from human feces. BACKGROUND: Lentibacillus species are gram variable aerobic bacteria that live primarily in halophilic environments. Previous reports have shown that bacteria belonging to this species are primarily isolated from salty environments or food. We isolated a bacterial strain CBA3610, identified as a novel species of the genus Lentibacillus, from a human fecal sample. In this report, the whole genome sequence of Lentibacillus sp. CBA3610 is presented, and genomic analyses are performed. RESULTS: Complete genome sequence of strain CBA3610 was obtained through PacBio RSII and Illumina HiSeq platforms. The size of genome is 4,035,571 bp and genes estimated to be 4714 coding DNA sequences and 64 tRNA and 17 rRNA were identified. The phylogenetic analysis confirmed that it belongs to the genus Lentibacillus. In addition, there were genes related to antibiotic resistance and virulence, and genes predicted as CRISPR and prophage were also identified. Genes related to osmotic stress were found according to the characteristics of halophilic bacterium. Genomic differences from other Lentibacillus species were also confirmed through comparative genomic analysis. CONCLUSIONS: Strain CBA3610 is predicted to be a novel candidate species of Lentibacillus through phylogenetic analysis and comparative genomic analysis with other species in the same genus. This strain has antibiotic resistance gene and pathogenic genes. In future, the information derived from the results of several genomic analyses of this strain is thought to be helpful in identifying the relationship between halophilic bacteria and human gut microbiota.202134162403
546820.9913Whole-genome sequence of a putative pathogenic Bacillus sp. strain SD-4 isolated from cattle feed. OBJECTIVES: The present study describes the draft genome sequence of a novel Bacillus sp. strain SD-4 isolated from animal feed. The study aims to get a deeper insight into antimicrobial resistance and secondary metabolite biosynthetic gene clusters (BGCs) and the association between them. METHODS: The strain SD-4 was preliminarily evaluated for antibacterial activities, motility, biofilm formation, and enterotoxin production using in vitro assays. The genome of strain SD-4 was sequenced using the Illumina HiSeq 2500 platform with paired-end reads. The reads were assembled and annotated using SPAdes and PGAP, respectively. The genome was further analysed using several bioinformatics tools, including TYGS, AntiSMASH, RAST, PlasmidFinder, VFDB, VirulenceFinder, CARD, PathogenFinder, MobileElement finder, IslandViewer, and CRISPRFinder. RESULTS: In vitro assays showed that the strain is motile, synthesises biofilm, and produces an enterotoxin and antibacterial metabolites. The genome analysis revealed that the strain SD-4 carries antimicrobial resistance genes (ARGs), virulence factors, and beneficial secondary metabolite BGCs. Further genome analysis showed interesting genome architectures containing several mobile genetic elements, including two plasmid replicons (repUS22 and rep20), five prophages, and at least four genomic islands (GIs), including one Listeria pathogenicity island LIPI-1. Moreover, the strain SD-4 is identified as a putative human pathogen. CONCLUSION: The genome of strain SD-4 harbours several BGCs coding for biologically active metabolites. It also contains antimicrobial resistance genes and is identified as a potential human pathogen. These results can be used to better comprehend antibiotic resistance in environmental bacteria that are not influenced by human intervention.202235413450
520130.9912Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. BACKGROUND: Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. RESULTS: Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). CONCLUSION: Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.202032127921
520240.9911Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Objectives A multidrug-resistant bacterium, Stenotrophomonas sp. SXG-1, was isolated from the liver of diseased hybrid sturgeon from Guizhou province, China. Methods Whole-genome sequencing was performed on the Illumina HiSeq 2500-PE125 platform with MPS (massively parallel sequencing) Illumina technology. All good quality paired reads were assembled using the SOAPdenovo into a number of scaffolds. PHI (Pathogen Host Interactions), VFDB (Virulence Factors of Pathogenic Bacteria) and ARDB (Antibiotic Resistance Genes Database) were used to analyses pathogenicity and drug resistance. Results Here we reported the complete genome sequence of Stenotrophomonas sp. SXG-1, which comprised 4534,602bp in 4077 coding sequences (CDS) with a G+C content of 66.42%. The genome contained 4 gene islands, 72 tRNAs and 13 rRNAs. According to the annotation analysis, strain SXG-1 encoded 22 genes related to the multidrug resistance. In addition to 10 genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, 12 genes of efflux pumps were presented, 9 of which were reported for the first time in Stenotrophomonas maltophilia. Conclusion This was the first complete genome sequence of Stenotrophomonas sp. isolated from the sturgeon. The complete genome sequence of Stenotrophomonas sp. strain SXG-1 may provide insights into the mechanism of antimicrobial resistance and prevent disease.202032311503
612350.9908Genomic analysis of a hop-resistance Lactobacillus brevis strain responsible for food spoilage and capable of entering into the VBNC state. BACKGROUND: Lactobacillus brevis is a major contaminant of spoiled beer. And it was able to enter VBNC state and cause false negative detection, which poses a major challenge to the brewing industry. METHODS: The genomic DNA of L. brevis BM-LB13908 was extracted and purified to form a sequencing library that meets the quality requirements and was sequenced. The sequencing results were then screened and assembled to obtain the entire genome sequence of L. brevis. Predicted genes were annotated by GO database, KEGG pathway database and COG functional classification system. RESULTS: The final assembly yielded 275 scaffolds of a total length of 2 840 080 bp with a G + C content of 53.35%. There were 2357, 701, 1519 predicted genes with corresponding GO functional, COG functional, and KEGG biological pathway annotations, respectively. The genome of L. brevis BM-LB13908 contains hop resistance gene horA and multiple genes related to the formation of VBNC state. CONCLUSIONS: This report describes the draft genome sequence of L. brevis BM-LB13908, a spoilage strain isolated from finished beer sample. This study may support further study on L. brevis and other beer spoilage bacteria, and prevent and control beer spoilage caused by microorganisms.202032272213
519260.9908Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.202438881048
844370.9908Large-scale bioinformatic analysis of the regulation of the disease resistance NBS gene family by microRNAs in Poaceae. In the present study, we have screened 71, 713, 525, 119 and 241 mature miRNA variants from Hordeum vulgare, Oryza sativa, Brachypodium distachyon, Triticum aestivum, and Sorghum bicolor, respectively, and classified them with respect to their conservation status and expression levels. These Poaceae non-redundant miRNA species (1,669) were distributed over a total of 625 MIR families, among which only 54 were conserved across two or more plant species, confirming the relatively recent evolutionary differentiation of miRNAs in grasses. On the other hand, we have used 257 H. vulgare, 286T. aestivum, 119 B. distachyon, 269 O. sativa, and 139 S. bicolor NBS domains, which were either mined directly from the annotated proteomes, or predicted from whole genome sequence assemblies. The hybridization potential between miRNAs and their putative NBS genes targets was analyzed, revealing that at least 454 NBS genes from all five Poaceae were potentially regulated by 265 distinct miRNA species, most of them expressed in leaves and predominantly co-expressed in additional tissues. Based on gene ontology, we could assign these probable miRNA target genes to 16 functional groups, among which three conferring resistance to bacteria (Rpm1, Xa1 and Rps2), and 13 groups of resistance to fungi (Rpp8,13, Rp3, Tsn1, Lr10, Rps1-k-1, Pm3, Rpg5, and MLA1,6,10,12,13). The results of the present analysis provide a large-scale platform for a better understanding of biological control strategies of disease resistance genes in Poaceae, and will serve as an important starting point for enhancing crop disease resistance improvement by means of transgenic lines with artificial miRNAs.201627349470
907480.9906BacAnt: A Combination Annotation Server for Bacterial DNA Sequences to Identify Antibiotic Resistance Genes, Integrons, and Transposable Elements. Whole genome sequencing (WGS) of bacteria has become a routine method in diagnostic laboratories. One of the clinically most useful advantages of WGS is the ability to predict antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) in bacterial sequences. This allows comprehensive investigations of such genetic features but can also be used for epidemiological studies. A plethora of software programs have been developed for the detailed annotation of bacterial DNA sequences, such as rapid annotation using subsystem technology (RAST), Resfinder, ISfinder, INTEGRALL and The Transposon Registry. Unfortunately, to this day, a reliable annotation tool of the combination of ARGs and MGEs is not available, and the generation of genbank files requires much manual input. Here, we present a new webserver which allows the annotation of ARGs, integrons and transposable elements at the same time. The pipeline generates genbank files automatically, which are compatible with Easyfig for comparative genomic analysis. Our BacAnt code and standalone software package are available at https://github.com/xthua/bacant with an accompanying web application at http://bacant.net.202134367079
514890.9904Unveiling the whole genomic features and potential probiotic characteristics of novel Lactiplantibacillus plantarum HMX2. This study investigates the genomic features and probiotic potential of Lactiplantibacillus plantarum HMX2, isolated from Chinese Sauerkraut, using whole-genome sequencing (WGS) and bioinformatics for the first time. This study also aims to find genetic diversity, antibiotic resistance genes, and functional capabilities to help us better understand its food safety applications and potential as a probiotic. L. plantarum HMX2 was cultured, and DNA was extracted for WGS. Genomic analysis comprised average nucleotide identity (ANI) prediction, genome annotation, pangenome, and synteny analysis. Bioinformatics techniques were used to identify CoDing Sequences (CDSs), transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, and antibiotic resistance genes, as well as to conduct phylogenetic analysis to establish genetic diversity and evolution. The study found a significant genetic similarity (99.17% ANI) between L. plantarum HMX2 and the reference strain. Genome annotation revealed 3,242 coding sequences, 65 tRNA genes, and 16 rRNA genes. Significant genetic variety was found, including 25 antibiotic resistance genes. A phylogenetic study placed L. plantarum HMX2 among closely related bacteria, emphasizing its potential for probiotic and food safety applications. The genomic investigation of L. plantarum showed essential genes, including plnJK and plnEF, which contribute to antibacterial action against foodborne pathogens. Furthermore, genes such as MurA, Alr, and MprF improve food safety and probiotic potential by promoting bacterial survival under stress conditions in food and the gastrointestinal tract. This study introduces the new genomic features of L. plantarum HMX2 about specific genetics and its possibility of relevant uses in food security and technologies. These findings of specific genes involved in antimicrobial activity provide fresh possibilities for exploiting this strain in forming probiotic preparations and food preservation methods. The future research should focus on the experimental validation of antibiotic resistance genes, comparative genomics to investigate functional diversity, and the development of novel antimicrobial therapies that take advantage of L. plantarum's capabilities.202439611087
6088100.9903Complete Genome of Achromobacter xylosoxidans, a Nitrogen-Fixing Bacteria from the Rhizosphere of Cowpea (Vigna unguiculata [L.] Walp) Tolerant to Cucumber Mosaic Virus Infection. Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security.202439278894
9068110.9903TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. We describe here the structure and organization of TnCentral (https://tncentral.proteininformationresource.org/ [or the mirror link at https://tncentral.ncc.unesp.br/]), a web resource for prokaryotic transposable elements (TE). TnCentral currently contains ∼400 carefully annotated TE, including transposons from the Tn3, Tn7, Tn402, and Tn554 families; compound transposons; integrons; and associated insertion sequences (IS). These TE carry passenger genes, including genes conferring resistance to over 25 classes of antibiotics and nine types of heavy metal, as well as genes responsible for pathogenesis in plants, toxin/antitoxin gene pairs, transcription factors, and genes involved in metabolism. Each TE has its own entry page, providing details about its transposition genes, passenger genes, and other sequence features required for transposition, as well as a graphical map of all features. TnCentral content can be browsed and queried through text- and sequence-based searches with a graphic output. We describe three use cases, which illustrate how the search interface, results tables, and entry pages can be used to explore and compare TE. TnCentral also includes downloadable software to facilitate user-driven identification, with manual annotation, of certain types of TE in genomic sequences. Through the TnCentral homepage, users can also access TnPedia, which provides comprehensive reviews of the major TE families, including an extensive general section and specialized sections with descriptions of insertion sequence and transposon families. TnCentral and TnPedia are intuitive resources that can be used by clinicians and scientists to assess TE diversity in clinical, veterinary, and environmental samples. IMPORTANCE The ability of bacteria to undergo rapid evolution and adapt to changing environmental circumstances drives the public health crisis of multiple antibiotic resistance, as well as outbreaks of disease in economically important agricultural crops and animal husbandry. Prokaryotic transposable elements (TE) play a critical role in this. Many carry "passenger genes" (not required for the transposition process) conferring resistance to antibiotics or heavy metals or causing disease in plants and animals. Passenger genes are spread by normal TE transposition activities and by insertion into plasmids, which then spread via conjugation within and across bacterial populations. Thus, an understanding of TE composition and transposition mechanisms is key to developing strategies to combat bacterial pathogenesis. Toward this end, we have developed TnCentral, a bioinformatics resource dedicated to describing and exploring the structural and functional features of prokaryotic TE whose use is intuitive and accessible to users with or without bioinformatics expertise.202134517763
5145120.9903Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BACKGROUND: Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. RESULTS: We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. CONCLUSION: The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes.201526187596
5144130.9902Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola. BACKGROUND: Enterobacteria of the genus Providencia are mainly known as opportunistic human pathogens but have been isolated from highly diverse natural environments. The species Providencia vermicola comprises insect pathogenic bacteria carried by entomoparasitic nematodes and is investigated as a possible insect biocontrol agent. The recent publication of several genome sequences from bacteria assigned to this species has given rise to inconsistent preliminary results. RESULTS: The genome of the nematode-derived P. vermicola type strain DSM_17385 has been assembled into a 4.2 Mb sequence comprising 5 scaffolds and 13 contigs. A total of 3969 protein-encoding genes were identified. Multilocus sequence typing with different marker sets revealed that none of the previously published presumed P. vermicola genomes represents this taxonomic species. Comparative genomic analysis has confirmed a close phylogenetic relationship of P. vermicola to the P. rettgeri species complex. P. vermicola DSM_17385 carries a type III secretion system (T3SS-1) with probable function in host cell invasion or intracellular survival. Potentially antibiotic resistance-associated genes comprising numerous efflux pumps and point-mutated house-keeping genes, have been identified across the P. vermicola genome. A single small (3.7 kb) plasmid identified, pPVER1, structurally belongs to the qnrD-type family of fluoroquinolone resistance conferring plasmids that is prominent in Providencia and Proteus bacteria, but lacks the qnrD resistance gene. CONCLUSIONS: The sequence reported represents the first well-supported published genome for the taxonomic species P. vermicola to be used as reference in further comparative genomics studies on Providencia bacteria. Due to a striking difference in the type of injectisome encoded by the respective genomes, P. vermicola might operate a fundamentally different mechanism of entomopathogenicity when compared to insect-pathogenic Providencia sneebia or Providencia burhodogranariea. The complete absence of antibiotic resistance gene carrying plasmids or mobile genetic elements as those causing multi drug resistance phenomena in clinical Providencia strains, is consistent with the invertebrate pathogen P. vermicola being in its natural environment efficiently excluded from the propagation routes of multidrug resistance (MDR) carrying genetic elements operating between human pathogens. Susceptibility to MDR plasmid acquisition will likely become a major criterion in the evaluation of P. vermicola for potential applications in biological pest control.202134598677
5147140.9902Multiscale comparative pathogenomic analysis of Vibrio anguillarum linking serotype diversity, genomic plasticity and pathogenicity. Vibrio anguillarum is a major marine fish pathogen causing high mortality and potential zoonotic risks. Understanding its genomic diversity, virulence factors, and antibiotic resistance is crucial for aquaculture disease management. In this study, a comparative pan-genomic analysis of 16 V. anguillarum strains was conducted to examine core and accessory genome diversity, virulence factors, and antibiotic resistance mechanisms. The phylogenetic analysis was conducted using six core genes and SNPs to evaluate evolutionary relationships and pathogenic traits. The core genome contained 2,038 unique ORFs, while the accessory genome had 5,197 cloud genes, confirming an open pangenome. This study identified 118 pathogenic genomic islands, antibiotic resistance genes (tetracycline, quinolone, and carbapenem), and virulence factors, including type VI secretion system (T6SS) components and RTX toxins (hcp-2, vipB/mglB, rtxC). Core genes such as ftsI uncovered substantial evolutionary divergence among species, identifying more than 150 distinct SNPs. Phylogenetic analysis showed serotype-specific clustering, with O1 strains displaying genetic homogeneity, whereas O2 and O3 exhibited divergence, suggesting distinct evolutionary adaptations influencing pathogenicity and ecological interactions. These findings provide primary insights for developing molecular markers and targeted treatments for aquaculture pathogens.202540854641
5464150.9902Genomic and resistome analysis of Alcaligenes faecalis strain PGB1 by Nanopore MinION and Illumina Technologies. BACKGROUND: Drug-resistant bacteria are important carriers of antibiotic-resistant genes (ARGs). This fact is crucial for the development of precise clinical drug treatment strategies. Long-read sequencing platforms such as the Oxford Nanopore sequencer can improve genome assembly efficiency particularly when they are combined with short-read sequencing data. RESULTS: Alcaligenes faecalis PGB1 was isolated and identified with resistance to penicillin and three other antibiotics. After being sequenced by Nanopore MinION and Illumina sequencer, its entire genome was hybrid-assembled. One chromosome and one plasmid was assembled and annotated with 4,433 genes (including 91 RNA genes). Function annotation and comparison between strains were performed. A phylogenetic analysis revealed that it was closest to A. faecalis ZD02. Resistome related sequences was explored, including ARGs, Insert sequence, phage. Two plasmid aminoglycoside genes were determined to be acquired ARGs. The main ARG category was antibiotic efflux resistance and β-lactamase (EC 3.5.2.6) of PGB1 was assigned to Class A, Subclass A1b, and Cluster LSBL3. CONCLUSIONS: The present study identified the newly isolated bacterium A. faecalis PGB1 and systematically annotated its genome sequence and ARGs.202235443609
6139160.9902Complete genome and two plasmids sequences of Lactiplantibacillus plantarum L55 for probiotic potentials. In this study, we report the complete genome sequence of Lactiplantibacillus plantarum L55, a probiotic strain of lactic acid bacteria isolated from kimchi. The genome consists of one circular chromosome (2,077,416 base pair [bp]) with a guanine cytosine (GC) content of 44.5%, and two circular plasmid sequences (54,267 and 19,592 bp, respectively). We also conducted a comprehensive analysis of the genome, which identified the presence of functional genes, genomic islands, and antibiotic-resistance genes. The genome sequence data presented in this study provide insights into the genetic basis of L. plantarum L55, which could be beneficial for the future development of probiotic applications.202338616876
5214170.9901Comparative genomic analysis of a new tellurite-resistant Psychrobacter strain isolated from the Antarctic Peninsula. The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.201829479501
4358180.9901Genomic profiling of pediococcus acidilactici BCB1H and identification of its key features for Biotechnological innovation, food technology and medicine. Lactic acid bacteria has been extensively used in food industry because of widespread properties and Pediococcus is among one of them. This study aims to conduct a comprehensive genomic analysis of Pediococcus acidilactici strain BCB1H to elucidate its genetic composition, functional elements, and potential biotechnological applications. The objectives include identifying key genomic features such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, which will highlight the adaptability and potential of P. acidilactici strain BCB1H for use in a variety of industrial and therapeutic applications. P. acidilactici strain BCB1H was analyzed using whole-genome sequencing, which used advanced sequencing technologies to obtain comprehensive genomic data. Key genomic features, such as coding sequences, tRNA and rRNA genes, antibiotic resistance genes, and secondary metabolite biosynthetic gene clusters, were identified through bioinformatics analyses. The genomic analysis of P. acidilactici strain BCB1H revealed a genome size of approximately 1.92 million base pairs with a GC content of 42.4%. The annotation identified 1,895 genes across 192 subsystems, highlighting the metabolic pathways and functional categories. Notably, specialty genes associated with carbohydrate metabolism, stress response, pathogenicity, and amino acid synthesis were identified, underscoring the versatility and potential applications in food technology and medicine. These findings shed light on the genetic makeup and functional potential of P. acidilactici strain BCB1H, highlighting its flexibility and industrial importance. The genetic traits discovered suggest its prospective use in probiotics, food preservation, and biotechnological advancements.202539971970
9070190.9900Automated annotation of mobile antibiotic resistance in Gram-negative bacteria: the Multiple Antibiotic Resistance Annotator (MARA) and database. BACKGROUND: Multiresistance in Gram-negative bacteria is often due to acquisition of several different antibiotic resistance genes, each associated with a different mobile genetic element, that tend to cluster together in complex conglomerations. Accurate, consistent annotation of resistance genes, the boundaries and fragments of mobile elements, and signatures of insertion, such as DR, facilitates comparative analysis of complex multiresistance regions and plasmids to better understand their evolution and how resistance genes spread. OBJECTIVES: To extend the Repository of Antibiotic resistance Cassettes (RAC) web site, which includes a database of 'features', and the Attacca automatic DNA annotation system, to encompass additional resistance genes and all types of associated mobile elements. METHODS: Antibiotic resistance genes and mobile elements were added to RAC, from existing registries where possible. Attacca grammars were extended to accommodate the expanded database, to allow overlapping features to be annotated and to identify and annotate features such as composite transposons and DR. RESULTS: The Multiple Antibiotic Resistance Annotator (MARA) database includes antibiotic resistance genes and selected mobile elements from Gram-negative bacteria, distinguishing important variants. Sequences can be submitted to the MARA web site for annotation. A list of positions and orientations of annotated features, indicating those that are truncated, DR and potential composite transposons is provided for each sequence, as well as a diagram showing annotated features approximately to scale. CONCLUSIONS: The MARA web site (http://mara.spokade.com) provides a comprehensive database for mobile antibiotic resistance in Gram-negative bacteria and accurately annotates resistance genes and associated mobile elements in submitted sequences to facilitate comparative analysis.201829373760