ANGINOSUS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
307000.9557Analysis of Antibiotic Resistance Genes in Water Reservoirs and Related Wastewater from Animal Farms in Central China. This study aimed to explore the phenotype and relationship of drug resistance genes in livestock and poultry farm wastewater and drinking water reservoirs to provide evidence for the transmission mechanisms of drug resistance genes, in order to reveal the spread of drug resistance genes in wastewater from intensive farms in Central China to urban reservoirs that serve as drinking water sources and provide preliminary data for the treatment of wastewater from animal farms to reduce the threat to human beings. DNA extraction and metagenomic sequencing were performed on eight groups of samples collected from four water reservoirs and four related wastewaters from animal farms in Central China. Metagenomic sequencing showed that the top 20 AROs with the highest abundance were vanT_gene, vanY_gene, adeF, qacG, Mtub_rpsL_STR, vanY_gene_, vanW_gene, Mtub_murA_FOF, vanY_gene, vanH_gene, FosG, rsmA, qacJ, RbpA, vanW_gene, aadA6, vanY_gene, sul4, sul1, and InuF. The resistance genes mentioned above belong to the following categories of drug resistance mechanisms: antibiotic target replacement, antibiotic target protection, antibiotic inactivation, and antibiotic efflux. The resistomes that match the top 20 genes are Streptococcus agalactiae and Streptococcus anginosus; Enterococcus faecalis; Enterococcus faecium; Actinomyces viscosus and Bacillus cereus. Enterococcus faecium; Clostridium tetani; Streptococcus agalactiae and Streptococcus anginosus; Streptococcus agalactiae and Streptococcus anginosus; Acinetobacter baumannii, Bifidobacterium bifidum, Bifidobacterium breve, Bifidobacterium longum, Corynebacterium jeikeium, Corynebacterium urealyticum, Mycobacterium kansasii, Mycobacterium tuberculosis, Schaalia odontolytica, and Trueperella pyogenes; Mycobacterium avium and Mycobacterium tuberculosis; Aeromonas caviae, Enterobacter hormaechei, Vibrio cholerae, Vibrio metoecus, Vibrio parahaemolyticus, and Vibrio vulnificus; Pseudomonas aeruginosa and Pseudomonas fluorescens; Staphylococcus aureus and Staphylococcus equorum; M. avium, Achromobacter xylosoxidans, and Acinetobacter baumannii; Sphingobium yanoikuyae, Acinetobacter indicus, Morganella morganii, Proteus mirabilis, Proteus vulgaris, Providencia rettgeri, and Providencia stuartii. Unreported drug resistance genes and drug-resistant bacteria in Central China were identified in 2023. In the transmission path of drug resistance genes, the transmission path from aquaculture wastewater to human drinking water sources cannot be ignored. For the sake of human health and ecological balance, the treatment of aquaculture wastewater needs to be further strengthened, and the effective blocking of drug resistance gene transmission needs to be considered.202438399800
591210.9533Antibiotic Resistance-Susceptibility Profiles of Enterococcus faecalis and Streptococcus spp. From the Human Vagina, and Genome Analysis of the Genetic Basis of Intrinsic and Acquired Resistances. The spread of antibiotic resistance is a major public health concern worldwide. Commensal bacteria from the human genitourinary tract can act as reservoirs of resistance genes playing a role in their transfer to pathogens. In this study, the minimum inhibitory concentration of 16 antibiotics to 15 isolates from the human vagina, identified as Enterococcus faecalis, Streptococcus anginosus, and Streptococcus salivarius, was determined. Eight isolates were considered resistant to tetracycline, five to clindamycin and quinupristin-dalfopristin, and four to rifampicin. To investigate the presence of antimicrobial resistance genes, PCR analysis was performed in all isolates, and five were subjected to whole-genome sequencing analysis. PCR reactions identified tet(M) in all tetracycline-resistant E. faecalis isolates, while both tet(M) and tet(L) were found in tetracycline-resistant S. anginosus isolates. The tet(M) gene in E. faecalis VA02-2 was carried within an entire copy of the transposon Tn916. In S. anginosus VA01-10AN and VA01-14AN, the tet(M) and tet(L) genes were found contiguous with one another and flanked by genes encoding DNA mobilization and plasmid replication proteins. Amplification and sequencing suggested the lsaA gene to be complete in all E. faecalis isolates resistant to clindamycin and quinupristin-dalfopristin, while the gene contain mutations rendering to a non-functional LsaA in susceptible isolates. These results were subsequently confirmed by genome analysis of clindamycin and quinupristin-dalfopristin resistant and susceptible E. faecalis strains. Although a clinical breakpoint to kanamycin for S. salivarius has yet to be established, S. salivarius VA08-2AN showed an MIC to this antibiotic of 128 μg mL(-1). However, genes involved in kanamycin resistance were not identified. Under the assayed conditions, neither tet(L) nor tet(M) from either E. faecalis or S. anginosus was transferred by conjugation to recipient strains of E. faecalis, Lactococcus lactis, or Lactobacillus plantarum. Nonetheless, the tet(L) gene from S. anginosus VA01-10AN was amplified by PCR, and cloned and expressed in Escherichia coli, to which it provided a resistance of 48-64 μg mL(-1) to tetracycline. Our results expand the knowledge of the antibiotic resistance-susceptibility profiles of vaginal bacteria and provide the genetic basis of their intrinsic and acquired resistance.202032695087
523520.9530Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance.202336948496
248830.9527Antibiotic resistance, putative virulence factors and curli fimbrination among Cronobacter species. This study aimed to investigate antibiotic resistance and putative virulence factors among Cronobacter sakazakii isolated from powdered infant formula and other sources. The following 9 cultures (CR1-9) were collected from our culture collection: C. sakazakii and 3 Cronobacter species: C. sakazakii ATCC® 29544™, C. muytjensii ATCC® 51329™, C. turicensis E866 were used in this study. Isolates were subjected to antibiotic susceptibility and the following virulence factors (protease, DNase, haemolysin, gelatinase, motility and biofilm formation) using phenotypic methods. All the bacteria were able to form biofilm on agar at 37 °C and were resistant to ampicillin, erythromycin, fosfomycin and sulphamethoxazole. It was observed from this study that tested strains formed weak and strong biofilm with violet dry and rough (rdar), brown dry and rough (bdar), red mucoid and smooth (rmas) colony morphotypes on Congo red agar. Rdar expresses curli and fimbriae, while bdar expresses curli. Both biofilm colony morphotypes are commonly found in Enterobacteriaceae including Salmonella species. This study also reveals a new colony morphotypes in Cronobacter species. Conclusively, there was correlation between putative virulence factors and antibiotic resistance among the tested bacteria. Further study on virulence and antibiotic resistance genes is hereby encouraged.201931404630
549140.9524Characterizing Plasmids in Bacteria Species Relevant to Urinary Health. The urinary tract has a microbial community (the urinary microbiota or urobiota) that has been associated with human health. Whole genome sequencing of bacteria is a powerful tool, allowing investigation of the genomic content of the urobiota, also called the urinary microbiome (urobiome). Bacterial plasmids are a significant component of the urobiome yet are understudied. Because plasmids can be vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. In this project, we sought plasmids in 11 clinically relevant urinary species: Aerococcus urinae, Corynebacterium amycolatum, Enterococcus faecalis, Escherichia coli, Gardnerella vaginalis, Klebsiella pneumoniae, Lactobacillus gasseri, Lactobacillus jensenii, Staphylococcus epidermidis, Streptococcus anginosus, and Streptococcus mitis. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in other species sequenced thus far. Some identified plasmidic assemblies were predicted to have putative virulence and/or antibiotic resistance genes, although the majority of their annotated coding regions were of unknown predicted function. In this study, we report on plasmids from urinary species as a first step to understanding the role of plasmids in the bacterial urobiota. IMPORTANCE The microbial community of the urinary tract (urobiota) has been associated with human health. Whole genome sequencing of bacteria permits examination of urobiota genomes, including plasmids. Because plasmids are vectors and reservoirs for clinically relevant traits, they are important for urobiota dynamics and thus may have relevance to urinary health. Currently, urobiota plasmids are understudied. Here, we sought plasmids in 11 clinically relevant urinary species. We found evidence of plasmids in E. faecalis, E. coli, K. pneumoniae, S. epidermidis, and S. anginosus but insufficient evidence in the other 6 species. We identified putative virulence and/or antibiotic resistance genes in some of the plasmidic assemblies, but most of their annotated coding regions were of unknown function. This is a first step to understanding the role of plasmids in the bacterial urobiota.202134937183
843950.9522Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.202235761183
519660.9517Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. BACKGROUND: Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS: The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS: The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS: The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.202438833914
518570.9516Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients.202540595841
153680.9515Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens.202134468190
246190.9515In Vitro Activity of Cefiderocol on Multiresistant Bacterial Strains and Genomic Analysis of Two Cefiderocol Resistant Strains. Cefiderocol is a new siderophore cephalosporin that is effective against multidrug-resistant Gram-negative bacteria, including carbapenem-resistant strains. The aim of this study was to evaluate the activity of this new antimicrobial agent against a collection of pathogens using broth microdilution assays and to analyze the possible mechanism of cefiderocol resistance in two resistant Klebsiella pneumoniae isolates. One hundred and ten isolates were tested, comprising 67 Enterobacterales, two Acinetobacter baumannii, one Achromobacter xylosoxidans, 33 Pseudomonas aeruginosa and seven Stenotrophomonas maltophilia. Cefiderocol showed good in vitro activity, with an MIC < 2 μg/mL, and was able to inhibit 94% of the tested isolates. We observed a resistance rate of 6%. The resistant isolates consisted of six Klebsiella pneumoniae and one Escherichia coli, leading to a resistance rate of 10.4% among the Enterobacterales. Whole-genome sequencing analysis was performed on two cefiderocol-resistant Klebsiella pneumoniae isolates to investigate the possible mutations responsible for the observed resistance. Both strains belonged to ST383 and harbored different resistant and virulence genes. The analysis of genes involved in iron uptake and transport showed the presence of different mutations located in fhuA, fepA, iutA, cirA, sitC, apbC, fepG, fepC, fetB, yicI, yicJ, and yicL. Furthermore, for the first time, to the best of our knowledge, we described two Klebsiella pneumoniae isolates that synthesize a truncated fecA protein due to the transition from G to A, leading to a premature stop codon in the amino acid position 569, and a TonB protein carrying a 4-amino acid insertion (PKPK) after Lysine 103. In conclusion, our data show that cefiderocol is an effective drug against multidrug-resistant Gram-negative bacteria. However, the higher resistance rate observed in Enterobacterales underlines the need for active surveillance to limit the spread of these pathogens and to avoid the risks associated with the emergence of resistance to new drugs.202337107147
2364100.9514Association of multilocus sequencing types and antimicrobial resistance profiles of methicillin-resistant Mammaliicoccus sciuri in animals in Southern Thailand. BACKGROUND AND AIM: Mammaliicoccus sciuri, formerly known as Staphylococcus sciuri, is an opportunistic pathogen in the environment, human and animal mucosa, and skin. Although this pathogen is becoming more resistant to drugs and harmful to animals and humans, basic knowledge of this pathogen remains limited. This study aimed to investigate a new multilocus sequencing type (MLST) related to the antibiotic resistance pattern of M. sciuri from animals in southern Thailand. MATERIALS AND METHODS: We used 11 methicillin-resistant M. sciuri (MRMS) isolates in this study which were obtained from six horses, four cows, and one chicken of the previous study. Antimicrobial resistance (AMR) was re-evaluated based on the minimum inhibitory concentration using the VITEK(®) 2 automated system. Three AMR genes were examined, namely mecA, mecC, and blaZ. Staphylococcal chromosomal cassette mec (SCCmec) gene detection was performed through the multiplex polymerase chain reaction (PCR). Internal segments of the seven housekeeping genes, ack, aroE, ftsZ, glpK, gmk, pta1, and tpiA, were used for multilocus sequence typing. The population of resistant bacteria and the types of multidrug-resistant, extensively drug-resistant, and pandemic drug-resistant bacteria were classified through descriptive analysis. RESULTS: mecA and blaZ genes were detected in all isolates; however, the mecC gene was not observed in any isolate based on the PCR results. All MRMS isolates revealed a non-typable SCCmec. Seven MLSTs (71, 81, 120, 121, 122, 199, and 200) were identified in this study. CONCLUSION: The characteristics of MRMS in Southern Thailand were variable, particularly in cattle and horses. The antibiogram and SCCmec types of this pathogen remain concerns with regard to antibiotic-resistant gene transmission among Staphylococcus and Mammaliicoccus species. All MLSTs in Thailand revealed the distribution among clones in Asia, including the virulence of a zoonotic clone in Southern Thailand.202337041994
5452110.9513Multidrug Resistance Plasmid pTZC1 Could Be Pooled among Cutibacterium Strains on the Skin Surface. Acne vulgaris is a chronic inflammatory skin disease that is exacerbated by Cutibacterium acnes. Although antimicrobials such as macrolides, clindamycin, and tetracyclines are used to treat acne caused by C. acnes, the increasing prevalence of antimicrobial-resistant C. acnes strains has become a global concern. In this study, we investigated the mechanism by which interspecies transfer of multidrug-resistant genes can lead to antimicrobial resistance. Specifically, the transfer of pTZC1 between C. acnes and C. granulosum isolated from specimens of patients with acne was investigated. Among the C. acnes and C. granulosum isolated from 10 patients with acne vulgaris, 60.0% and 70.0% of the isolates showed resistance to macrolides and clindamycin, respectively. The multidrug resistance plasmid pTZC1, which codes for macrolide-clindamycin resistance gene erm(50) and tetracycline resistance gene tet(W), was identified in both C. acnes and C. granulosum isolated from the same patient. In addition, whole-genome sequencing revealed that the pTZC1 sequences of C. acnes and C. granulosum showed 100% identity using comparative whole-genome sequencing analysis. Therefore, we hypothesize that the horizontal transfer of pTZC1 between C. acnes and C. granulosum strains may occur on the skin surface. The plasmid transfer test revealed a bidirectional transfer of pTZC1 between C. acnes and C. granulosum, and transconjugants that obtained pTZC1 exhibited multidrug resistance. In conclusion, our results revealed that the multidrug resistance plasmid pTZC1 could be transferred between C. acnes and C. granulosum. Furthermore, since pTZC1 transfer among different species may aid in the prevalence of multidrug resistant strains, antimicrobial resistance genes may have been pooled on the skin surface. IMPORTANCE The emergence of antimicrobial resistance not only in Cutibacterium acnes strain but also other skin bacteria such as Staphylococcus epidermidis is a big concern due to antimicrobial use for the treatment of acne vulgaris. Increased prevalence of macrolides-clindamycin resistant C. acnes relates to the acquisition of exogenous antimicrobial resistance genes. erm(50) is harbored by the multidrug resistance plasmid pTZC1, which has been found in C. acnes and C. granulosum strains isolated from patients with acne vulgaris. In this study, C. acnes and C. granulosum with pTZC1 were found in the same patient, and plasmid transfer between C. acnes and C. granulosum was proved by transconjugation assay. This study showed plasmid transfer between other species and the possibility of further prevalence antimicrobial resistance between Cutibacterium species.202336847559
5414120.9512Genetic determinants of antimicrobial resistance in Gram positive bacteria from organic foods. Bacterial biocide resistance is becoming a matter of concern. In the present study, a collection of biocide-resistant, Gram-positive bacteria from organic foods (including 11 isolates from genus Bacillus, 25 from Enterococcus and 10 from Staphylococcus) were analyzed for genes associated to biocide resistance efflux pumps and antibiotic resistance. The only qac-genes detected were qacA/B (one Bacillus cereus isolate) and smr (one B. cereus and two Staphylococcus saprophyticus isolates). Efflux pump genes efrA and efrB genes were detected in Staphylococcus (60% of isolates), Bacillus (54.54%) and Enterococcus (24%); sugE was detected in Enterococcus (20%) and in one Bacillus licheniformis; mepA was detected in Staphylococcus (60%) and in one Enterococcus isolate (which also carried mdeA), and norE gene was detected only in one Enterococcus faecium and one S. saprophyticus isolate. An amplicon for acrB efflux pump was detected in all but one isolate. When minimal inhibitory concentrations (MICs) were determined, it was found that the addition of reserpine reduced the MICs by eight fold for most of the biocides and isolates, corroborating the role of efflux pumps in biocide resistance. Erythromycin resistance gene ermB was detected in 90% of Bacillus isolates, and in one Staphylococcus, while ereA was detected only in one Bacillus and one Staphyloccus, and ereB only in one Staphylococcus. The ATP-dependent msrA gene (which confers resistance to macrolides, lincosamides and type B streptogramins) was detected in 60% of Bacillus isolates and in all staphylococci, which in addition carried msrB. The lincosamide and streptogramin A resistance gene lsa was detected in Staphylococcus (40%), Bacillus (27.27%) and Enterococcus (8%) isolates. The aminoglycoside resistance determinant aph (3_)-IIIa was detected in Staphylococcus (40%) and Bacillus (one isolate), aph(2_)-1d in Bacillus (27.27%) and Enterococcus (8%), aph(2_)-Ib in Bacillus (one isolate), and the bifunctional aac(6_)1e-aph(2_)-Ia in Staphylococcus (20%), Enterococcus (8%) and Bacillus (one isolate). Chloramphenicol resistance cat gene was detected in Enterococcus (8%) and Staphylococcus (20%), and blaZ only in Staphylococcus (20%). All other antibiotic or biocide resistance genes investigated were not detected in any isolate. Isolates carrying multiple biocide and antibiotic determinants were frequent among Bacillus (36.36%) and Staphylococcus (50%), but not Enterococcus. These results suggest that biocide and antibiotic determinants may be co-selected.201424361832
5494130.9512Molecular characterization of antimicrobial resistance in Brachyspira species isolated from UK chickens: Identification of novel variants of pleuromutilin and beta-lactam resistance genes. Brachyspira species are Gram negative, anaerobic bacteria that colonise the gut of many animals, including poultry. In poultry, Brachyspira species can be commensal (B. innocens, B. murdochii, 'B. pulli') or pathogenic (B. pilosicoli, B. intermedia, B. alvinipulli or rarely B. hyodysenteriae), the latter causing avian intestinal spirochaetosis (AIS). Antimicrobial therapy options for treatment is limited, frequently involving administration of the pleuromutilin, tiamulin, in water. In this study 38 Brachyspira isolates from chickens in the UK, representing both commensal and pathogenic species, were whole genome sequenced to identify antimicrobial resistance (AMR) mechanisms and the minimum inhibitory concentration (MIC) to a number of antimicrobials was also determined. We identified several new variants of bla(OXA) in B. pilosicoli and B. pulli isolates, and variations in tva which led to two new tva variants in B.murdochii and B.pulli. A number of isolates also harboured mutations known to encode AMR in the 16S and 23S rRNA genes. The percentage of isolates that were genotypically multi-drug resistance (MDR) was 16%, with the most common resistance profile being: tetracycline, pleuromutilin and beta-lactam, which were found in three 'B. pulli' and one B. pilosicoli. There was good correlation with the genotype and the corresponding antibiotic MIC phenotypes: pleuromutilins (tiamulin and valnemulin), macrolides (tylosin and tylvalosin), lincomycin and doxycycline. The occurrence of resistance determinants identified in this study in pathogenic Brachyspira, especially those which were MDR, is likely to impact treatment of AIS and clearance of infections on farm.202438306769
5406140.9511Detection of poxtA- and optrA-carrying E. faecium isolates in air samples of a Spanish swine farm. OBJECTIVE: Two linezolid-resistant Enterococcus faecium isolates, C10004 and C10009, were recovered from air samples of a Spanish swine farm and comprehensively characterized. METHODS: Detection of linezolid resistance mechanisms (mutations and acquisition of resistance genes) was performed by PCR/sequencing. Isolates were characterized by multilocus sequence typing (MLST), antimicrobial susceptibility testing, detection of antimicrobial resistance and virulence genes, and analysis of the genetic environment of the linezolid resistance genes. The characterization of isolate C10009 was performed by Whole-Genome-Sequencing and of isolate C10004 by PCR and amplicon sequencing, where applicable. Conjugation experiments to assess the transferability of the optrA and poxtA genes implicated in linezolid resistance were performed. RESULTS: The linezolid-resistant E. faecium isolates C10004 and C10009, assigned to ST128 and ST437, respectively, harbored the optrA and poxtA genes. Neither mutations in the 23S rRNA nor in the genes for the ribosomal proteins L3, L4 and L22 were detected. C10004 and C10009 carried fourteen and thirteen antimicrobial resistance genes, respectively. The sequence alignment indicated that the genetic environment of the poxtA gene was identical in both isolates, with a downstream-located fexB gene. The poxtA gene was transferred by conjugation together with the fexB gene, and also with tet(M) and tet(L) in the case of isolate C10004. The optrA gene could not be transferred. CONCLUSIONS: This is the first report of the poxtA gene in Spain. The presence of poxtA- and optrA-carrying E. faecium isolates in air samples represents a public health concern, indicating an involvement of swine farms in the spread of linezolid-resistant bacteria.202031884049
2336150.9511Distribution of disinfectant resistant genes in mcr-1-carrying Escherichia coli isolated from children in southern China. BACKGROUND: Colistin, a polymyxin antibiotic, serves as a crucial defense against multidrug-resistant gram-negative bacteria, despite its nephrotoxicity. However, the plasmid-mediated mobilization of the polymyxin resistance gene, mcr-1, presents a significant public health threat. The widespread use of disinfectants has resulted in Escherichia coli (E. coli) carrying mcr-1 also showing disinfectant resistance. The aim of this study is to investigate the distribution of disinfectant genes and resistance to disinfectants in mcr-1-carring E coli from children in the South China. METHODS: We evaluated the distribution of twelve disinfectant-resistance genes by PCR. Evaluated the correlation between disinfectant-resistance genes and resistance to disinfectants and antibiotics. We also examined the correlation between the strains' biofilm formation and the presence of disinfectant-resistance genes. Bioinformatic tools were employed to analyze resistance genes, virulence genes, and insertion sequences. Five strains were randomly selected to examine the effects of sub-inhibitory concentration (sub-MIC) of 8 disinfectants on the expression of the mcr-1 gene by qRT-PCR. RESULTS: The most prevalent of the nine biocide resistance genes were mdfA, sugE(c), ydgE, and ydgF (n = 21; all 100 %). The qacG, qacF, sugE(p) and tehA gene was not detected. Furthermore, benzalkonium chloride (BC) and potassium hydrogen persulfate (PMPS)-based disinfectants were effective against all mcr-1-carrying E. coli strains. The majority of mcr-1 were distributed among the InHI2 plasmid types, although three strains lacked mcr-1 on their plasmids. Biofilm formation was observed in 48 % of the strains. emrD and sitABCD showed significant associations with the susceptibility of the strains to 84 disinfectants (P of 0.0351 and 0.0300). In addition, sitABCD was significantly associated with susceptibility to povidone-iodine (PVP-I) (P value of 0.0062). Compared to the untreated group, stimulation with sub-MIC of peracetic acid (PAA) and PVP-I resulted in decreased or increased mcr-1 expression in five E. coli strains, respectively (P of 0.0011 for PAA and P of 0.0476 for PVP-I). CONCLUSION: BC and PMPS based disinfectants were effective against all mcr-1 carrying E. coli strains. Most of the mcr-1 genes were distributed among the InHI2 plasmid types. The emrD and sitABCD genes are highly associated with resistance to 84 disinfectants, and the sitABCD gene was highly associated with resistance to PVP-I. PVP-I selective pressure may encourage the maintenance of mcr-1 gene in E. coli.202539551109
5408160.9511Identification and pathogenicity of an XDR Streptococcus suis isolate that harbours the phenicol-oxazolidinone resistance genes optrA and cfr, and the bacitracin resistance locus bcrABDR. One hundred and seven Streptococcus suis isolates were collected from healthy pigs or asymptomatic carriers in Jiangsu, China in 2016-2017. Thirty-eight percent of the isolates were linezolid-resistant and all carried the optrA gene. Among them, one isolate, SFJ44, was resistant to all 20 of the antibiotics tested, except for ceftiofur, and thus exhibited an extensively-drug-resistant phenotype. This isolate carried the optrA gene and the bacitracin resistance locus bcrABDR on an antibiotic-resistance-associated genomic island (ARGI1), and harboured the resistance genes cfr, aadE, sat4, spw-like, aphA3, mef(A), msr(D), erm(A)-like, erm(B), tetAB(P)', tet(M) and catQ on ARGI2∼4. The IS1216E-bcrABDR-ISEnfa1 segment showed >99.9% sequence identity to corresponding sequences from other species. The cfr gene was located on ARGI4, and two IS6 family insertion sequences, IS1216E and ISTeha2, were found upstream and downstream of cfr-ΔISEnfa5, respectively. A circular intermediate of bcrABDR-ISEnfa1 was detected, suggesting the role of ISEnfa1 in dissemination of bcrABDR. Other antibiotic resistance genes might be acquired from different Gram-positive pathogens. Infection of zebrafish showed that SFJ44 exhibited a virulence level comparable to serotype 2 hypervirulent strain SC070731, highlighting the need for surveillance of the pathogenicity of multi-drug-resistant S. suis isolates. This is the first report of the co-existence of optrA and cfr, and of the bcrABDR locus in streptococci. As it has been suggested that S. suis may act as an antibiotic resistance reservoir contributing to the spread of resistance genes to major streptococcal pathogens, the potential dissemination of these resistance genes among Gram-positive bacteria is of concern and routine surveillance should be strengthened.201930981924
1737170.9511Isolation and Characterisation of Human-Derived bla(KPC-3)-Producing Salmonella enterica Serovar Rissen in 2018. In this study, we describe a Salmonella enterica serovar (S.) Rissen strain with a reduced susceptibility to meropenem, isolated from a urinary infection in an 89-year-old woman in 2018 during activity surveillance in Italy (Enter-Net Italia). The genomic characteristics, pathogenicity, and antimicrobial resistance mechanisms were investigated via a genomic approach. Antimicrobial susceptibility testing revealed a "susceptible, increased exposure" phenotype to meropenem in the S. Rissen strain (4_29_19). Whole-genome sequencing (WGS) was performed using both the NovaSeq 6000 S4 PE150 XP platform (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore). The S. Rissen 4_29_19 strain harboured two plasmids: a pKpQIL-like plasmid carrying the bla(KPC-3) resistance gene in a Tn4401a transposon (pKPC_4_29_19), and a ColE-like plasmid (p4_4_29_19) without resistance genes, highly prevalent among Enterobacterales. Comparative analysis revealed that the pKPC_4_29_19 plasmid was highly related to the pKpQIL reference plasmid (GU595196), with 57% coverage and 99.96% identity, but lacking a region of about 30 kb, involving the FIIK(2) replicon region and the entire transfer locus, causing the loss of its ability to conjugate. To our knowledge, this is the first time that a pKpQIL-like plasmid, carrying bla(KPC-3), highly diffused in Klebsiella pneumoniae strains, has been identified in a Salmonella strain in our country. The acquisition of bla(KPC) genes by Salmonella spp. is extremely rare, and is reported only sporadically. In zoonotic bacteria isolated from humans, the presence of a carbapenem resistance gene carried by mobile genetic elements, usually described in healthcare-associated infection bacteria, represents an important concern for public health.202337760674
5455180.9511Two novel plasmids harbouring the multiresistance gene cfr in porcine Staphylococcus equorum. BACKGROUND: The emergence and transmission of the multidrug resistance gene cfr have raised public health concerns worldwide. OBJECTIVES: Multidrug-resistant Staphylococcus equorum isolates can pose a threat to public health. In this study, we have characterised the whole-genome of one Staphylococcus equorum isolate harbouring two distinct cfr-carrying plasmids. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution. Genomic DNA was sequenced using both the Illumina HiSeq X Ten and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: Staphylococcus equorum isolate SN42 exhibited resistance or high MICs to linezolid, erythromycin, tetracycline, oxacillin, clindamycin, virginiamycin, tiamulin, chloramphenicol and florfenicol. It carried two cfr-harbouring plasmids: the RepA N-family plasmid pSN42-51 K and the Inc18-family plasmid pSN42-50 K. These two plasmids exhibited low structural similarities to the so far reported cfr-carrying plasmids. Both plasmids harboured an arsenic resistance operon, copper and cadmium resistance genes as well as the lincosamide-pleuromutilin-streptogramin A resistance gene lsa(B). In addition, plasmid pSN42-51 K carried two erm(B) genes for macrolide-lincosamide-streptogramin B resistance, the streptomycin resistance gene ant(6)-Ia as well as mercury resistance genes while pSN42-50 K was associated with the heavy metal translocating P-type ATPase gene hmtp. The co-carriage and co-existence of these antimicrobial resistance and heavy metal resistance genes increases the likelihood of co-selection of the cfr-carrying plasmids. CONCLUSION: This is the first report of S. equorum carrying two distinct cfr-carrying plasmids, underscoring the need for ongoing surveillance to address the potential dissemination of multi-drug resistance in bacteria from food-producing animals to ensure food safety and public health.202439362467
1538190.9509KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: bla(KPC-80), bla(KPC-81), bla(KPC-96) and bla(KPC-97). Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of bla(KPC-2) resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant bla(KPC) genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for bla(KPC-80), bla(KPC-96), and bla(KPC-97) by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including bla(TEM-1), bla(OXA-18) and bla(OXA-1), were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of bla(KPC-2) and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE: The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, bla(KPC-2). The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.202438319084