# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 190 | 0 | 0.9604 | The Two TpsB-Like Proteins in Anabaena sp. Strain PCC 7120 Are Involved in Secretion of Selected Substrates. The outer membrane of Gram-negative bacteria acts as an initial diffusion barrier that shields the cell from the environment. It contains many membrane-embedded proteins required for functionality of this system. These proteins serve as solute and lipid transporters or as machines for membrane insertion or secretion of proteins. The genome of Anabaena sp. strain PCC 7120 codes for two outer membrane transporters termed TpsB1 and TpsB2. They belong to the family of the two-partner secretion system proteins which are characteristic of pathogenic bacteria. Because pathogenicity of Anabaena sp. strain PCC 7120 has not been reported, the function of these two cyanobacterial TpsB proteins was analyzed. TpsB1 is encoded by alr1659, while TpsB2 is encoded by all5116 The latter is part of a genomic region containing 11 genes encoding TpsA-like proteins. However, tpsB2 is transcribed independently of a tpsA gene cluster. Bioinformatics analysis revealed the presence of at least 22 genes in Anabaena sp. strain PCC 7120 putatively coding for substrates of the TpsB system, suggesting a rather global function of the two TpsB proteins. Insertion of a plasmid into each of the two genes resulted in altered outer membrane integrity and antibiotic resistance. In addition, the expression of genes coding for the Clp and Deg proteases is dysregulated in these mutants. Moreover, for two of the putative substrates, a dependence of the secretion on functional TpsB proteins could be confirmed. We confirm the existence of a two-partner secretion system in Anabaena sp. strain PCC 7120 and predict a large pool of putative substrates.IMPORTANCE Cyanobacteria are important organisms for the ecosystem, considering their contribution to carbon fixation and oxygen production, while at the same time some species produce compounds that are toxic to their environment. As a consequence, cyanobacterial overpopulation might negatively impact the diversity of natural communities. Thus, a detailed understanding of cyanobacterial interaction with the environment, including other organisms, is required to define their impact on ecosystems. While two-partner secretion systems in pathogenic bacteria are well known, we provide a first description of the cyanobacterial two-partner secretion system. | 2021 | 33257527 |
| 6014 | 1 | 0.9588 | Whole genome sequencing and analysis of plant growth promoting bacteria isolated from the rhizosphere of plantation crops coconut, cocoa and arecanut. Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H2S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified. | 2014 | 25162593 |
| 191 | 2 | 0.9585 | Mariprofundus ferrooxydans PV-1 the first genome of a marine Fe(II) oxidizing Zetaproteobacterium. Mariprofundus ferrooxydans PV-1 has provided the first genome of the recently discovered Zetaproteobacteria subdivision. Genome analysis reveals a complete TCA cycle, the ability to fix CO(2), carbon-storage proteins and a sugar phosphotransferase system (PTS). The latter could facilitate the transport of carbohydrates across the cell membrane and possibly aid in stalk formation, a matrix composed of exopolymers and/or exopolysaccharides, which is used to store oxidized iron minerals outside the cell. Two-component signal transduction system genes, including histidine kinases, GGDEF domain genes, and response regulators containing CheY-like receivers, are abundant and widely distributed across the genome. Most of these are located in close proximity to genes required for cell division, phosphate uptake and transport, exopolymer and heavy metal secretion, flagellar biosynthesis and pilus assembly suggesting that these functions are highly regulated. Similar to many other motile, microaerophilic bacteria, genes encoding aerotaxis as well as antioxidant functionality (e.g., superoxide dismutases and peroxidases) are predicted to sense and respond to oxygen gradients, as would be required to maintain cellular redox balance in the specialized habitat where M. ferrooxydans resides. Comparative genomics with other Fe(II) oxidizing bacteria residing in freshwater and marine environments revealed similar content, synteny, and amino acid similarity of coding sequences potentially involved in Fe(II) oxidation, signal transduction and response regulation, oxygen sensation and detoxification, and heavy metal resistance. This study has provided novel insights into the molecular nature of Zetaproteobacteria. | 2011 | 21966516 |
| 8471 | 3 | 0.9579 | Effects of Klebsiella michiganensis LDS17 on Codonopsis pilosula growth, rhizosphere soil enzyme activities, and microflora, and genome-wide analysis of plant growth-promoting genes. Codonopsis pilosula is a perennial herbaceous liana with medicinal value. It is critical to promote Codonopsis pilosula growth through effective and sustainable methods, and the use of plant growth-promoting bacteria (PGPB) is a promising candidate. In this study, we isolated a PGPB, Klebsiella michiganensis LDS17, that produced a highly active 1-aminocyclopropane-1-carboxylate deaminase from the Codonopsis pilosula rhizosphere. The strain exhibited multiple plant growth-promoting properties. The antagonistic activity of strain LDS17 against eight phytopathogenic fungi was investigated, and the results showed that strain LDS17 had obvious antagonistic effects on Rhizoctonia solani, Colletotrichum camelliae, Cytospora chrysosperma, and Phomopsis macrospore with growth inhibition rates of 54.22%, 49.41%, 48.89%, and 41.11%, respectively. Inoculation of strain LDS17 not only significantly increased the growth of Codonopsis pilosula seedlings but also increased the invertase and urease activities, the number of culturable bacteria, actinomycetes, and fungi, as well as the functional diversity of microbial communities in the rhizosphere soil of the seedlings. Heavy metal (HM) resistance tests showed that LDS17 is resistant to copper, zinc, and nickel. Whole-genome analysis of strain LDS17 revealed the genes involved in IAA production, siderophore synthesis, nitrogen fixation, P solubilization, and HM resistance. We further identified a gene (koyR) encoding a plant-responsive LuxR solo in the LDS17 genome. Klebsiella michiganensis LDS17 may therefore be useful in microbial fertilizers for Codonopsis pilosula. The identification of genes related to plant growth and HM resistance provides an important foundation for future analyses of the molecular mechanisms underlying the plant growth promotion and HM resistance of LDS17. IMPORTANCE: We comprehensively evaluated the plant growth-promoting characteristics and heavy metal (HM) resistance ability of the LDS17 strain, as well as the effects of strain LDS17 inoculation on the Codonopsis pilosula seedling growth and the soil qualities in the Codonopsis pilosula rhizosphere. We conducted whole-genome analysis and identified lots of genes and gene clusters contributing to plant-beneficial functions and HM resistance, which is critical for further elucidating the plant growth-promoting mechanism of strain LDS17 and expanding its application in the development of plant growth-promoting agents used in the environment under HM stress. | 2024 | 38563743 |
| 579 | 4 | 0.9577 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 107 | 5 | 0.9576 | Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria. Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe(3)O(4)) or/and greigite (Fe(3)S(4)) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic. | 2011 | 21509043 |
| 124 | 6 | 0.9575 | A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite. | 2005 | 16133099 |
| 2 | 7 | 0.9571 | A Widespread Glycosidase Confers Lobophorin Resistance and Host-Dependent Structural Diversity. Identifying new environmental resistance determinants is significant to combat rising antibiotic resistance. Herein we report the unexpected correlation of a lobophorin (LOB) resistance-related glycosidase KijX with the host-dependent chemical diversity of LOBs, by a process of glycosylation, deglycosylation and reglycosylation. KijX homologues are widespread among bacteria, archaea and fungi, and encode the same glycohydrolytic activity on LOBs. The crystal structure of AcvX (a KijX homologue) shows a similar fold to that of the glycoside hydrolase family 113 and a special negatively charged groove to accommodate and deglycosylate LOBs. Antagonistic assays indicate kijX as a defense weapon of actinomycetes to combat LOB producers in environment, reflecting an elegant coevolution relationship. Our study provides insight into the KijX-related glycosidases as preexisting resistance determinants and represents an example of resistance genes accidentally integrated into natural product assembly. | 2023 | 37076762 |
| 123 | 8 | 0.9571 | Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. | 1998 | 9523453 |
| 6388 | 9 | 0.9567 | A Metagenome from a Steam Vent in Los Azufres Geothermal Field Shows an Abundance of Thermoplasmatales archaea and Bacteria from the Phyla Actinomycetota and Pseudomonadota. Los Azufres National Park is a geothermal field that has a wide number of thermal manifestations; nevertheless, the microbial communities in many of these environments remain unknown. In this study, a metagenome from a sediment sample from Los Azufres National Park was sequenced. In this metagenome, we found that the microbial diversity corresponds to bacteria (Actinomycetota, Pseudomonadota), archaea (Thermoplasmatales and Candidatus Micrarchaeota and Candidatus Parvarchaeota), eukarya (Cyanidiaceae), and viruses (Fussellovirus and Caudoviricetes). The functional annotation showed genes related to the carbon fixation pathway, sulfur metabolism, genes involved in heat and cold shock, and heavy-metal resistance. From the sediment, it was possible to recover two metagenome-assembled genomes from Ferrimicrobium and Cuniculiplasma. Our results showed that there are a large number of microorganisms in Los Azufres that deserve to be studied. | 2023 | 37504286 |
| 8657 | 10 | 0.9566 | The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation. Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges. | 2019 | 30915045 |
| 8259 | 11 | 0.9566 | Secondary Metabolite Transcriptomic Pipeline (SeMa-Trap), an expression-based exploration tool for increased secondary metabolite production in bacteria. For decades, natural products have been used as a primary resource in drug discovery pipelines to find new antibiotics, which are mainly produced as secondary metabolites by bacteria. The biosynthesis of these compounds is encoded in co-localized genes termed biosynthetic gene clusters (BGCs). However, BGCs are often not expressed under laboratory conditions. Several genetic manipulation strategies have been developed in order to activate or overexpress silent BGCs. Significant increases in production levels of secondary metabolites were indeed achieved by modifying the expression of genes encoding regulators and transporters, as well as genes involved in resistance or precursor biosynthesis. However, the abundance of genes encoding such functions within bacterial genomes requires prioritization of the most promising ones for genetic manipulation strategies. Here, we introduce the 'Secondary Metabolite Transcriptomic Pipeline' (SeMa-Trap), a user-friendly web-server, available at https://sema-trap.ziemertlab.com. SeMa-Trap facilitates RNA-Seq based transcriptome analyses, finds co-expression patterns between certain genes and BGCs of interest, and helps optimize the design of comparative transcriptomic analyses. Finally, SeMa-Trap provides interactive result pages for each BGC, allowing the easy exploration and comparison of expression patterns. In summary, SeMa-Trap allows a straightforward prioritization of genes that could be targeted via genetic engineering approaches to (over)express BGCs of interest. | 2022 | 35580059 |
| 581 | 12 | 0.9565 | Inorganic polyphosphates and heavy metal resistance in microorganisms. The mechanisms of heavy metal resistance in microbial cells involve multiple pathways. They include the formation of complexes with specific proteins and other compounds, the excretion from the cells via plasma membrane transporters in case of procaryotes, and the compartmentalization of toxic ions in vacuoles, cell wall and other organelles in case of eukaryotes. The relationship between heavy metal tolerance and inorganic polyphosphate metabolism was demonstrated both in prokaryotic and eukaryotic microorganisms. Polyphosphates, being polyanions, are involved in detoxification of heavy metals through complex formation and compartmentalization. The bacteria and fungi cultivated in the presence of some heavy metal cations contain the enhanced levels of polyphosphate. In bacteria, polyphosphate sequesters heavy metals; some of metal cations stimulate an exopolyphosphatase activity, which releases phosphate from polyphosphates, and MeHPO(4)(-) ions are then transported out of the cells. In fungi, the overcoming of heavy metal stresses is associated with the accumulation of polyphosphates in cytoplasmic inclusions, vacuoles and cell wall and the formation of cation/polyphosphate complexes. The effects of knockout mutations and overexpression of the genes encoding polyphosphate-metabolizing enzymes on heavy metal resistance are discussed. | 2018 | 30151754 |
| 8651 | 13 | 0.9565 | Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility. | 2025 | 39096471 |
| 328 | 14 | 0.9564 | Multiresistance genes of Rhizobium etli CFN42. Multidrug efflux pumps of bacteria are involved in the resistance to various antibiotics and toxic compounds. In Rhizobium etli, a mutualistic symbiont of Phaseolus vulgaris (bean), genes resembling multidrug efflux pump genes were identified and designated rmrA and rmrB. rmrA was obtained after the screening of transposon-generated fusions that are inducible by bean-root released flavonoids. The predicted gene products of rmrAB shared significant homology to membrane fusion and major facilitator proteins, respectively. Mutants of rmrA formed on average 40% less nodules in bean, while mutants of rmrA and rmrB had enhanced sensitivity to phytoalexins, flavonoids, and salicylic acid, compared with the wild-type strain. Multidrug resistance genes emrAB from Escherichia coli complemented an rmrA mutant from R. etli for resistance to high concentrations of naringenin. | 2000 | 10796024 |
| 8193 | 15 | 0.9564 | Sinorhizobium meliloti Functions Required for Resistance to Antimicrobial NCR Peptides and Bacteroid Differentiation. Legumes of the Medicago genus have a symbiotic relationship with the bacterium Sinorhizobium meliloti and develop root nodules housing large numbers of intracellular symbionts. Members of the nodule-specific cysteine-rich peptide (NCR) family induce the endosymbionts into a terminal differentiated state. Individual cationic NCRs are antimicrobial peptides that have the capacity to kill the symbiont, but the nodule cell environment prevents killing. Moreover, the bacterial broad-specificity peptide uptake transporter BacA and exopolysaccharides contribute to protect the endosymbionts against the toxic activity of NCRs. Here, we show that other S. meliloti functions participate in the protection of the endosymbionts; these include an additional broad-specificity peptide uptake transporter encoded by the yejABEF genes and lipopolysaccharide modifications mediated by lpsB and lpxXL, as well as rpoH1, encoding a stress sigma factor. Strains with mutations in these genes show a strain-specific increased sensitivity profile against a panel of NCRs and form nodules in which bacteroid differentiation is affected. The lpsB mutant nodule bacteria do not differentiate, the lpxXL and rpoH1 mutants form some seemingly fully differentiated bacteroids, although most of the nodule bacteria are undifferentiated, while the yejABEF mutants form hypertrophied but nitrogen-fixing bacteroids. The nodule bacteria of all the mutants have a strongly enhanced membrane permeability, which is dependent on the transport of NCRs to the endosymbionts. Our results suggest that S. meliloti relies on a suite of functions, including peptide transporters, the bacterial envelope structures, and stress response regulators, to resist the aggressive assault of NCR peptides in the nodule cells. IMPORTANCE The nitrogen-fixing symbiosis of legumes with rhizobium bacteria has a predominant ecological role in the nitrogen cycle and has the potential to provide the nitrogen required for plant growth in agriculture. The host plants allow the rhizobia to colonize specific symbiotic organs, the nodules, in large numbers in order to produce sufficient reduced nitrogen for the plants' needs. Some legumes, including Medicago spp., produce massively antimicrobial peptides to keep this large bacterial population in check. These peptides, known as NCRs, have the potential to kill the rhizobia, but in nodules, they rather inhibit the division of the bacteria, which maintain a high nitrogen-fixing activity. In this study, we show that the tempering of the antimicrobial activity of the NCR peptides in the Medicago symbiont Sinorhizobium meliloti is multifactorial and requires the YejABEF peptide transporter, the lipopolysaccharide outer membrane, and the stress response regulator RpoH1. | 2021 | 34311575 |
| 592 | 16 | 0.9563 | Metabolism of Tryptophan and Tryptophan Analogs by Rhizobium meliloti. The alfalfa symbiont Rhizobium meliloti Rm1021 produces indole-3-acetic acid in a regulated manner when supplied with exogenous tryptophan. Mutants with altered response to tryptophan analogs still produce indole-3-acetic acid, but are Fix(-) because bacteria do not fully differentiate into the nitrogen-fixing bacteriod form. These mutations are in apparently essential genes tightly linked to a dominant streptomycin resistance locus. | 1990 | 16667364 |
| 580 | 17 | 0.9563 | Acid-tolerant bacteria and prospects in industrial and environmental applications. Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F(1)-F(0)-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria. | 2023 | 37093306 |
| 37 | 18 | 0.9563 | N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. Many Gram-negative bacteria use small signal molecules, such as N-acyl-homoserine lactones (AHLs), to communicate with each other and coordinate their collective behaviors. Recently, increasing evidence has demonstrated that long-chained quorum-sensing signals play roles in priming defense responses in plants. Our previous work indicated that a short-chained signal, N-3-oxo-octanoyl homoserine lactone (3OC8-HSL), enhanced Arabidopsis resistance to the hemi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 through priming the salicylic acid (SA) pathway. Here, we found that 3OC8-HSL could also prime resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) through the jasmonic acid (JA) pathway, and is dependent on auxin responses, in both Chinese cabbage and Arabidopsis. The subsequent Pcc invasion triggered JA accumulation and increased the down-stream genes' expressions of JA synthesis genes (LOX, AOS, and AOC) and JA response genes (PDF1.2 and VSP2). The primed state was not observed in the Arabidopsis coi1-1 and jar1-1 mutants, which indicated that the primed resistance to Pcc was dependent on the JA pathway. The 3OC8-HSL was not transmitted from roots to leaves and it induced indoleacetic acid (IAA) accumulation and the DR5 and SAUR auxin-responsive genes' expressions in seedlings. When Arabidopsis and Chinese cabbage roots were pretreated with exogenous IAA (10 μM), the plants had activated the JA pathway and enhanced resistance to Pcc, which implied that the JA pathway was involved in AHL priming by coordinating with the auxin pathway. Our findings provide a new strategy for the prevention and control of soft rot in Chinese cabbage and provide theoretical support for the use of the quorum-sensing AHL signal molecule as a new elicitor. | 2022 | 35774826 |
| 8772 | 19 | 0.9562 | The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress. | 2024 | 39002396 |