# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2546 | 0 | 0.8772 | Clinical considerations on antimicrobial resistance potential of complex microbiological samples. Antimicrobial resistance (AMR) is one of our greatest public health challenges. Targeted use of antibiotics (ABs) can reduce the occurrence and spread of AMR and boost the effectiveness of treatment. This requires knowledge of the AB susceptibility of the pathogens involved in the disease. Therapeutic recommendations based on classical AB susceptibility testing (AST) are based on the analysis of only a fraction of the bacteria present in the disease process. Next and third generation sequencing technologies allow the identification of antimicrobial resistance genes (ARGs) present in a bacterial community. Using this metagenomic approach, we can map the antimicrobial resistance potential (AMRP) of a complex, multi-bacterial microbial sample. To understand the interpretiveness of AMRP, the concordance between phenotypic AMR properties and ARGs was investigated by analyzing data from 574 Escherichia coli strains of five different studies. The overall results show that for 44% of the studied ABs, phenotypically resistant strains are genotypically associated with a 90% probability of resistance, while for 92% of the ABs, the phenotypically susceptible strains are genotypically susceptible with a 90% probability. ARG detection showed a phenotypic prediction with at least 90% confidence in 67% of ABs. The probability of detecting a phenotypically susceptible strain as resistant based on genotype is below 5% for 92% of ABs. While the probability of detecting a phenotypically resistant strain as susceptible based on genotype is below 5% for 44% of ABs. We can assume that these strain-by-strain concordance results are also true for bacteria in complex microbial samples, and conclude that AMRP obtained from metagenomic ARG analysis can help choose efficient ABs. This is illustrated using AMRP by a canine external otitis sample. | 2025 | 39897495 |
| 9995 | 1 | 0.8762 | Direct fluorescence in situ hybridization (FISH) in Escherichia coli with a target-specific quantum dot-based molecular beacon. Quantum dots (QDs) are inorganic fluorescent nanocrystals with excellent properties such as tunable emission spectra and photo-bleaching resistance compared with organic dyes, which make them appropriate for applications in molecular beacons. In this work, quantum dot-based molecular beacons (QD-based MBs) were fabricated to specifically detect β-lactamase genes located in pUC18 which were responsible for antibiotic resistance in bacteria Escherichia coli (E. coli) DH5α. QD-based MBs were constructed by conjugating mercaptoacetic acid-quantum dots (MAA-QDs) with black hole quencher 2 (BHQ2) labeled thiol DNA vial metal-thiol bonds. Two types of molecular beacons, double-strands beacons and hairpin beacons, were observed in product characterization by gel electrophoresis. Using QD-based MBs, one-step FISH in tiny bacteria DH5α was realized for the first time. QD-based MBs retained their bioactivity when hybridizing with complementary target DNA, which showed excellent advantages of eliminating background noise caused by adsorption of non-specific bioprobes and achieving clearer focus of genes in plasmids pUC18, and capability of bacterial cell penetration and signal specificity in one-step in situ hybridization. | 2010 | 20729070 |
| 5187 | 2 | 0.8753 | Recovery of 52 bacterial genomes from the fecal microbiome of the domestic cat (Felis catus) using Hi-C proximity ligation and shotgun metagenomics. We used Hi-C proximity ligation with shotgun sequencing to retrieve metagenome-assembled genomes (MAGs) from the fecal microbiomes of two domestic cats (Felis catus). The genomes were assessed for completeness and contamination, classified taxonomically, and annotated for putative antimicrobial resistance (AMR) genes. | 2023 | 37695121 |
| 5889 | 3 | 0.8748 | Monitoring of Virulence Genes, Drug-Resistance in Campylobacter coli Isolated from Golden Retrievers. The investigation was performed on 75 of Golden Retriever puppies. Faecal samples were collected on the 42 day of the puppies life (con-trol). Probiotic preparation was administered on 43 day of the puppies life and 10 days after the application of the probiotic, faecal samples were collected again (on 53 day of puppies life). All isolates of Campylobacter coli isolated prior to the administration of the probiotic were found to contain the cadF gene responsible for adhesion, as well as, the flaA gene influencing motility of the examined bacteria. Significant differences (P < 0.05) were recorded only in the case of enrofloxacin. | 2016 | 30015450 |
| 1254 | 4 | 0.8748 | Genetic diversity and antimicrobial resistance of Staphylococcus aureus from recurrent tonsillitis in children. The aim of this study was to analyze the prevalence of Staphylococcus aureus in the tonsils of children subjected tonsillectomy due to recurrent tonsilitis and to determine the spa types of the pathogens, carriage of virulence genes and antimicrobial resistance profiles. The study included 73 tonsillectomized children. Bacteria, including S. aureus were isolated from tonsillar surface prior to tonsillectomy, recovered from tonsillar core at the time of the surgery, and from posterior pharynx 2-4 weeks after the procedure. Staphylococcus aureus isolates were compared by spa typing, tested for antimicrobial susceptibility and for the presence of superantigenic toxin genes (sea-seu, eta, etb, tst, lukS/lukF-PV) by multiplex polymerase chain reaction. Seventy-three patients (mean 7.1 ± 4.1 years, 61.6% male) were assessed. The most commonly isolated bacteria were S. aureus. The largest proportion of staphylococcal isolates originated from tonsillar core (63%), followed by tonsillar surface (45.1%) and posterior pharynx in tonsillectomized children (18.2%, p = 0.007). Five (6.3%) isolates were identified as MRSA (mecA-positive). Up to 67.5% of the isolates synthesized penicillinases (blaZ-positive isolates), and 8.8% displayed MLS(B) resistance. The superantigenic toxin genes were detected in more than half of examined isolates (56.3%). spa types t091, t084, and t002, and clonal complexes (CCs) CC7, CC45, and CC30 turned out to be most common. Staphylococcus aureus associated with RT in children showed pathogenicity potential and considerable genetic diversity, and no clones were found to be specific for this condition although further studies are needed. | 2020 | 31692060 |
| 5194 | 5 | 0.8747 | Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development. | 2019 | 30429253 |
| 2344 | 6 | 0.8747 | Analysis of antibiotic resistance and genetic profile of conjunctival bacteria flora before and after cataract surgery. PURPOSE: To analyze antibiotic resistance and genetic profile of conjunctival bacteria flora before and after cataract surgery with the focus on coagulase-negative staphylococci (CNS) during cataract surgery and discuss the implications of this colonization as a potential risk of acquiring endophthalmitis. METHODS: After approval of the institutional review board and informed consent from patients had been obtained, conjunctival swabs for culture from 59 patients undergoing cataract surgery were taken of the fellow eye at baseline (C0) and from the eye to be operated before (T0) and after (T1) irrigation with povine-iodine 5%, and at the end of surgery (T2). Genes responsible for virulence (mecA, ica and atlE) and antibiotic profile were determined; strain clonality of persistent colonizing Staphylococcus epidermidis strains was established by the Multi-locus sequence typing (MLST). RESULTS: The frequency of CNS was significantly reduced in T1 (13.6%) from 81.4% in T0 and 86.4% in C0. The frequency of mecA, ica and atlE genes was 34.4%, 37.5% and 61.4%, respectively; and methicillin phenotypic resistance was 35.4%. S. epidermidis was the most frequent species isolated in every time point. MLST revealed in 7 patients 100% coincidence of the seven alleles of the S. epidermidis isolated previous to povine-iodine 5% disinfection and at the end of the surgery. CNS isolates from T1 or T2 corresponded to the same species, antibiotic and virulence profile as those isolates from C0 or T0. CONCLUSION: Povidone-iodine 5% prophylaxis before surgery significantly reduced conjunctival contamination; in those that persisted, the source of contamination was mostly the patient's microbiota confirmed by the MLST system. | 2023 | 35943639 |
| 5193 | 7 | 0.8744 | Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. BACKGROUND: Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS: These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS: Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION: Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes. | 2024 | 38128408 |
| 503 | 8 | 0.8738 | Interaction of the chromosomal Tn 551 with two thermosensitive derivatives, pS1 and p delta D, of the plasmid pI9789 in Staphylococcus aureus. The plasmid pI9789::Tn552 carries genes conferring resistance to penicillins and to cadmium, mercury and arsenate ions. The presence of Tn551 at one location in the chromosome of Staphylococcus aureus enhances the frequency of suppression of thermosensitivity of replication of the plasmids pS1 and p delta D which are derivatives of pI9789::Tn552. Bacteriophage propagated on the bacteria in which thermosensitivity of replication had been suppressed was used to transduce cadmium resistance to S. aureus PS80N. The cadmium-resistant transductants obtained carried plasmid pS1 or p delta D with a copy of Tn551 inserted into a specific site on pS1 but into several different sites on p delta D. The possible mechanisms of the suppression are discussed. | 1995 | 7758929 |
| 1473 | 9 | 0.8735 | Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics. | 2020 | 31790779 |
| 5185 | 10 | 0.8735 | Genomic characterisation of nasal isolates of coagulase-negative Staphylococci from healthy medical students reveals novel Staphylococcal cassette chromosome mec elements. Coagulase-negative staphylococci (CoNS) are a diverse group of Gram-positive bacteria that are part of the normal human microbiota. Once thought to be non-pathogenic, CoNS has emerged in recent years as opportunistic pathogens of concern particularly in healthcare settings. In this study, the genomes of four methicillin-resistant CoNS isolates obtained from the nasal swabs of healthy university medical students in Malaysia were sequenced using the Illumina short-read platform. Genome sequencing enabled the identification of the four isolates as Staphylococcus warneri UTAR-CoNS1, Staphylococcus cohnii subsp. cohnii UTAR-CoNS6, Staphylococcus capitis subsp. urealyticus UTAR-CoNS20, and Staphylococcus haemolyticus UTAR-CoNS26. The genome of S. cohnnii UTAR-CoNS6 harboured the mecA methicillin-resistance gene on a Staphylococcal cassette chromosome mec (SCCmec) element similar to SCCmec type XIV (5 A) but the SCCmec cassettes identified in the other three CoNS genomes were novel and untypeable. Some of these SCCmec elements also encoded heavy metal resistance genes while the SCCmec type XIV (5 A) variant in S. cohnii UTAR-CoNS6 harboured the complete ica operon, a known virulence factor that functions in biofilm formation. In S. cohnii UTAR-CoNS6, the macrolide resistance genes msrA and mphC along with copper and cadmium resistance genes were located on a 26,630 bp plasmid, pUCNS6. This study showcased the diversity of CoNS in the nasal microbiota of medical students but the discovery of novel SCCmec elements, various antimicrobial and heavy metal resistance along with virulence genes in these isolates is of concern and warrants vigilance due to the likelihood of spread, especially to hospitalised patients. | 2025 | 40595841 |
| 2992 | 11 | 0.8735 | Salmonella and Antimicrobial Resistance in Wild Rodents-True or False Threat? Transmission of pathogenic and resistant bacteria from wildlife to the bacterial gene pool in nature affects the ecosystem. Hence, we studied intestine content of five wild rodent species: the yellow-necked wood mouse (Apodemus flavicollis, n = 121), striped field mouse (Apodemus agrarius, n = 75), common vole (Microtus arvalis, n = 37), bank vole (Myodes glareolus, n = 3), and house mouse (Mus musculus, n = 1) to assess their potential role as an antimicrobial resistance (AMR) and Salmonella vector. The methods adopted from official AMR monitoring of slaughtered animals were applied and supplemented with colistin resistance screening. Whole-genome sequencing of obtained bacteria elucidated their epidemiological relationships and zoonotic potential. The study revealed no indications of public health relevance of wild rodents from the sampled area in Salmonella spread and their limited role in AMR dissemination. Of 263 recovered E. coli, the vast majority was pan-susceptible, and as few as 5 E. coli showed any resistance. In four colistin-resistant strains neither the known mcr genes nor known mutations in pmr genes were found. One of these strains was tetracycline-resistant due to tet(B). High diversity of virulence factors (n = 43) noted in tested strains including ibeA, cdtB, air, eilA, astA, vat, pic reported in clinically relevant types of enteric E. coli indicate that rodents may be involved in the ecological cycle of these bacteria. Most of the strains represented unique sequence types and ST10805, ST10806, ST10810, ST10824 were revealed for the first time, showing genomic heterogeneity of the strains. The study broadened the knowledge on phylogenetic diversity and structure of the E. coli population in wild rodents. | 2020 | 32967245 |
| 3117 | 12 | 0.8733 | Detection of antimicrobial resistance genes in urban air. To understand antibiotic resistance in pathogenic bacteria, we need to monitor environmental microbes as reservoirs of antimicrobial resistance genes (ARGs). These bacteria are present in the air and can be investigated with the whole metagenome shotgun sequencing approach. This study aimed to investigate the feasibility of a method for metagenomic analysis of microbial composition and ARGs in the outdoor air. Air samples were collected with a Harvard impactor in the PM(10) range at 50 m from a hospital in Budapest. From the DNA yielded from samples of PM(10) fraction single-end reads were generated with an Ion Torrent sequencer. During the metagenomic analysis, reads were classified taxonomically. The core bacteriome was defined. Reads were assembled to contigs and the ARG content was analyzed. The dominant genera in the core bacteriome were Bacillus, Acinetobacter, Leclercia and Paenibacillus. Among the identified ARGs best hits were vanRA, Bla1, mphL, Escherichia coli EF-Tu mutants conferring resistance to pulvomycin; BcI, FosB, and mphM. Despite the low DNA content of the samples of PM(10) fraction, the number of detected airborne ARGs was surprisingly high. | 2021 | 34964297 |
| 431 | 13 | 0.8733 | Nucleotide sequence analysis of the complement resistance gene from plasmid R100. The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct. | 1982 | 6284713 |
| 2644 | 14 | 0.8733 | Prevalence of Antimicrobial-Resistant Escherichia coli in Migratory Greater White-Fronted Geese (Anser albifrons) and their Habitat in Miyajimanuma, Japan. The spread of antimicrobial-resistant bacteria (ARB) in natural environments including wild animals is a concern for public health. Birds cover large areas, and some fly across borders to migrate in large flocks. As a migratory bird, the Greater White-fronted Goose (Anser albifrons) travels to Miyajimanuma, North Japan, each spring and autumn. To investigate the ARB in migratory birds and their surroundings, we collected 110 fecal samples of A. albifrons and 18 water samples from Miyajimanuma in spring and autumn of 2019. Isolation of Escherichia coli was performed using selective agars with or without antimicrobials (cefazolin and nalidixic acid). Isolates of E. coli were recovered from 56 fecal samples (50.9%) and five water samples (27.8%) on agars without antimicrobials. No isolates were recovered on agars with antimicrobials. One E. coli isolate derived from a fecal sample exhibited resistance to β-lactams (ampicillin and cefazolin), whereas all other isolates exhibited susceptibility to all tested antimicrobials. The resistant isolate harbored blaACC, which could be transferred to other bacteria and confer resistance to β-lactams. These results suggest a low prevalence of antimicrobial resistance in wild migratory birds and their living environments; however, wild migratory birds sometimes carry ARB harboring transferrable antimicrobial resistance genes and therefore present a risk of spreading antimicrobial resistance. | 2021 | 34410412 |
| 3056 | 15 | 0.8733 | Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7. | 1992 | 1482138 |
| 5122 | 16 | 0.8732 | Clinical long-read metagenomic sequencing of culture-negative infective endocarditis reveals genomic features and antimicrobial resistance. BACKGROUND: Infective endocarditis (IE) poses significant diagnostic challenges, particularly in blood culture-negative cases where fastidious bacteria evade detection. Metagenomic-based nanopore sequencing enables rapid pathogen detection and provides a new approach for the diagnosis of IE. METHOD: Two cases of blood culture-negative infective endocarditis (IE) were analyzed using nanopore sequencing with an in silico host-depletion approach. Complete genome reconstruction and antimicrobial resistance gene annotation were successfully performed. RESULTS: Within an hour of sequencing, EPI2ME classified nanopore reads, identifying Corynebacterium striatum in IE patient 1 and Granulicatella adiacens in IE patient 2. After 18 h, long-read sequencing successfully reconstructed a single circular genome of C. striatum in IE patient 1, whereas short-read sequencing was used to compare but produced fragmented assemblies. Based on these results, long-read sequencing was exclusively used for IE patient 2, allowing for the complete and accurate assembly of G. adiacens, confirming the presence of these bacteria in the clinical samples. In addition to pathogen identification, antimicrobial resistance (AMR) genes were detected in both genomes. Notably, in C. striatum, regions containing a class 1 integron and multiple novel mobile genetic elements (ISCost1, ISCost2, Tn7838 and Tn7839) were identified, collectively harbouring six AMR genes. This is the first report of such elements in C. striatum, highlighting the potential of nanopore long-read sequencing for comprehensive pathogen characterization in IE cases. CONCLUSIONS: This study highlights the effectiveness of host-depleted, long-read nanopore metagenomics for direct pathogen identification and accurate genome reconstruction, including antimicrobial resistance gene detection. The approach enables same-day diagnostic reporting within a matter of hours. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-025-11741-5. | 2025 | 41087996 |
| 5123 | 17 | 0.8732 | Ultrafast and Cost-Effective Pathogen Identification and Resistance Gene Detection in a Clinical Setting Using Nanopore Flongle Sequencing. Rapid bacterial identification and antimicrobial resistance gene (ARG) detection are crucial for fast optimization of antibiotic treatment, especially for septic patients where each hour of delayed antibiotic prescription might have lethal consequences. This work investigates whether the Oxford Nanopore Technology's (ONT) Flongle sequencing platform is suitable for real-time sequencing directly from blood cultures to identify bacteria and detect resistance-encoding genes. For the analysis, we used pure bacterial cultures of four clinical isolates of Escherichia coli and Klebsiella pneumoniae and two blood samples spiked with either E. coli or K. pneumoniae that had been cultured overnight. We sequenced both the whole genome and plasmids isolated from these bacteria using two different sequencing kits. Generally, Flongle data allow rapid bacterial ID and resistome detection based on the first 1,000-3,000 generated sequences (10 min to 3 h from the sequencing start), albeit ARG variant identification did not always correspond to ONT MinION and Illumina sequencing-based data. Flongle data are sufficient for 99.9% genome coverage within at most 20,000 (clinical isolates) or 50,000 (positive blood cultures) sequences generated. The SQK-LSK110 Ligation kit resulted in higher genome coverage and more accurate bacterial identification than the SQK-RBK004 Rapid Barcode kit. | 2022 | 35369431 |
| 5206 | 18 | 0.8732 | Draft genome sequence of an extensively drug-resistant Pseudomonas aeruginosa isolate belonging to ST644 isolated from a footpad infection in a Magellanic penguin (Spheniscus magellanicus). OBJECTIVES: The incidence of multidrug-resistant bacteria in wildlife animals has been investigated to improve our knowledge of the spread of clinically relevant antimicrobial resistance genes. The aim of this study was to report the first draft genome sequence of an extensively drug-resistant (XDR) Pseudomonas aeruginosa ST644 isolate recovered from a Magellanic penguin with a footpad infection (bumblefoot) undergoing rehabilitation process. METHODS: The genome was sequenced on an Illumina NextSeq(®) platform using 150-bp paired-end reads. De novo genome assembly was performed using Velvet v.1.2.10, and the whole genome sequence was evaluated using bioinformatics approaches from the Center of Genomic Epidemiology, whereas an in-house method (mapping of raw whole genome sequence reads) was used to identify chromosomal point mutations. RESULTS: The genome size was calculated at 6436450bp, with 6357 protein-coding sequences and the presence of genes conferring resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracyclines, quinolones and fosfomycin; in addition, mutations in the genes gyrA (Thr83Ile), parC (Ser87Leu), phoQ (Arg61His) and pmrB (Tyr345His), conferring resistance to quinolones and polymyxins, respectively, were confirmed. CONCLUSION: This draft genome sequence can provide useful information for comparative genomic analysis regarding the dissemination of clinically significant antibiotic resistance genes and XDR bacterial species at the human-animal interface. | 2018 | 29277728 |
| 5605 | 19 | 0.8731 | Antibiotic resistance in conjunctival and enteric bacterial flora in raptors housed in a zoological garden. Antimicrobial resistance (AMR) in a wide range of infectious agents is a growing public health threat. Birds of prey are considered indicators of the presence of AMR bacteria in their ecosystem because of their predatory behaviour. Only few data are reported in the literature on AMR strains isolated from animals housed in zoos and none about AMR in raptors housed in zoological gardens. This study investigated the antibiotic sensitivity profile of the isolates obtained from the conjunctival and cloacal bacterial flora of 14 healthy birds of prey, 6 Accipitriformes, 3 Falconiformes and 5 Strigiformes, housed in an Italian zoological garden. Staphylococcus spp. was isolated from 50% of the conjunctival swabs, with S. xylosus as the most common species. From cloacal swabs, Escherichia coli was cultured from all animals, while Klebsiella spp. and Proteus spp. were isolated from a smaller number of birds. Worthy of note is the isolation of Escherichia fergusonii and Serratia odorifera, rarely isolated from raptors. Staphylococci were also isolated. All the isolates were multidrug resistant (MDR). To the author's knowledge, this is the first report regarding the presence of MDR strains within raptors housed in a zoological garden. Since resistance genes can be transferred to other pathogenic bacteria, this represents a potential hazard for the emergence of new MDR pathogens. In conclusion, the obtained data could be useful for ex-situ conservation programmes aimed to preserve the health of the endangered species housed in a zoo. | 2016 | 29067199 |