AMONGST - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
494900.9980Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Conjugative plasmids were common in enterobacteria isolated before the medical use of antibiotics. Plasmid F of Escherichia coli K-12 was one example and we identified others in over 20% of a collection of strains isolated between 1917 and 1954, the Murray collection. In the past 25 years, conjugative plasmids encoding antibiotic resistances have become common in bacteria of the same genera as those of the Murray Collection--Salmonella, Shigella, Klebsiella, Proteus, Escherichia. The present study was made to show whether the 'pre-antibiotic' plasmids belonged to the same groups, as defined by incompatibility tests (Inc groups), as modern R plasmids. Of 84 such plasmids established in E. coli K-12, none with antibiotic resistance determinants, 65 belonged to the same groups as present resistance (R) plasmids. Thus the remarkable way in which medically important bacteria have acquired antibiotic resistance in the past 25 years seems to have been by the insertion of new genes into existing plasmids rather than by the spread of previously rare plasmids.19836316165
447210.9978Conjugative plasmids in bacteria of the 'pre-antibiotic' era. Antibiotic resistance is common in bacteria that cause disease in man and animals and is usually determined by plasmids. The prevalence of such plasmids, and the range of drugs to which they confer resistance, have increased greatly in the past 25 yr. It has become clear from work in many laboratories that plasmids have acquired resistance genes, of ultimately unknown origin, as insertions into their circular DNA. The intensive use of antibiotics since their introduction in the 1940s can explain the spread of plasmids that have acquired such genes but little is known of the incidence of plasmids in pathogenic bacteria before the widespread use of antibiotics in medicine. E.D.G. Murray collected strains of Enterobacteriaceae from 1917 to 1954; we now report that 24% of these encode information for the transfer of DNA from one bacterium to another. From at least 19% of the strains, conjugative plasmids carrying no antibiotic resistance were transferred to Escherichia coli K-12.19836835408
156120.9978The extent of carbapenemase-encoding genes in public genome sequences. Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla (NDM), bla (OXA), bla (VIM), bla (IMP) and bla (KPC). We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.202133732552
460730.9978Genetics of resistance to trimethoprim in cotrimoxazole resistant uropathogenic Escherichia coli: integrons, transposons, and single gene cassettes. Cotrimoxazole, the combined formulation of sulfamethoxazole and trimethoprim, is one of the treatments of choice for several infectious diseases, particularly urinary tract infections. Both components of cotrimoxazole are synthetic antimicrobial drugs, and their combination was introduced into medical therapeutics about half a century ago. In Gram-negative bacteria, resistance to cotrimoxazole is widespread, being based on the acquisition of genes from the auxiliary genome that confer resistance to each of its antibacterial components. Starting from previous knowledge on the genotype of resistance to sulfamethoxazole in a collection of cotrimoxazole resistant uropathogenic Escherichia coli strains, this work focused on the identification of the genetic bases of the trimethoprim resistance of these same strains. Molecular techniques employed included PCR and Sanger sequencing of specific amplicons, conjugation experiments and NGS sequencing of the transferred plasmids. Mobile genetic elements conferring the trimethoprim resistance phenotype were identified and included integrons, transposons and single gene cassettes. Therefore, strains exhibited several ways to jointly resist both antibiotics, implying different levels of genetic linkage between genes conferring resistance to sulfamethoxazole (sul) and trimethoprim (dfrA). Two structures were particularly interesting because they represented a highly cohesive arrangements ensuring cotrimoxazole resistance. They both carried a single gene cassette, dfrA14 or dfrA1, integrated in two different points of a conserved cluster sul2-strA-strB, carried on transferable plasmids. The results suggest that the pressure exerted by cotrimoxazole on bacteria of our environment is still promoting the evolution toward increasingly compact gene arrangements, carried by mobile genetic elements that move them in the genome and also transfer them horizontally among bacteria.202438946902
250740.9978Epidemiology of resistance to diaminopyrimidines. Resistance to trimethoprim emerged in Enterobacteriaceae and later in other Gram-negative and Gram-positive bacteria within two years of the clinical introduction of the drug. Resistance is borne in many different replicons often present in multiply-resistant epidemic bacteria. The incidence of trimethoprim resistance is highly variable, depending upon methodology, type of patients, local epidemiology: this can be illustrated by the high variation of trimethoprim resistance among Salmonella, Shigella or MRSA in various countries and by the incidence of resistance in penicillin-resistant Streptococcus pneumoniae.19938195837
494750.9978Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Plasmids are circular deoxyribonucleic acid molecules that exist in bacteria, usually independent of the chromosome. The study of plasmids is important to medical microbiology because plasmids can encode genes for antibiotic resistance or virulence factors. Plasmids can also serve as markers of various bacterial strains when a typing system referred to as plasmid profiling, or plasmid fingerprinting is used. In these methods partially purified plasma deoxyribonucleic acid species are separated according to molecular size by agarose gel electrophoresis. In a second procedure, plasmid deoxyribonucleic acid which has been cleaved by restriction endonucleases can be separated by agarose gel electrophoresis and the resulting pattern of fragments can be used to verify the identity of bacterial isolates. Because many species of bacteria contain plasmids, plasmid profile typing has been used to investigate outbreaks of many bacterial diseases and to trace inter- and intra-species spread of antibiotic resistance.19882852997
446460.9978Class 1 integrons, gene cassettes, mobility, and epidemiology. Integrons are genetic elements that, although unable to move themselves, contain gene cassettes that can be mobilized to other integrons or to secondary sites in the bacterial genome. The majority of approximately 60 known gene cassettes encode resistance to antibiotics. Recently, a number of gene cassettes encoding extended-spectrum beta-lactamases or carbapenemases have been described. Up to at least five cassettes may be present in an integron, which leads to multiresistance. Frequently, more than one integron is observed within the same bacterial cell. Integrons are widespread in their species distribution. Although integrons are normally reported from Enterobacteriaceae and other gram-negative bacteria, an integron has been described in Corynebacterium glutamicum, a gram-positive species. The gene cassette in this integron showed even higher expression when compared to the expression in Escherichia coli. Integrons have been reported from all continents and are found frequently. The widespread occurrence of integrons is thought to be due to their association with transposon plasmids, conjugative plasmids, or both. Integrons form an important source for the spread of antibiotic resistance, at least in gram-negative bacteria but also potentially in gram-positive bacteria. The aim of this review is to describe the versatility of integrons, especially their mobility and their ability to collect resistance genes.199910614949
475570.9978Research progress on the oxazolidinone drug linezolid resistance. OBJECTIVE: The oxazolidinone drug linezolid is mainly used for severe infections caused by multidrug-resistant Gram-positive bacteria. However, emerging linezolid resistance is aggravating difficulties in the treatment of certain infectious diseases. The objective of this review was to provide a reference for researchers and clinicians to be able to better face together the serious challenge of antimicrobial resistance. MATERIALS AND METHODS: A systematic literature search was performed using PubMed, Web of Science, Google Scholar, and the China National Knowledge Infrastructure (CNKI) database. The articles were scrutinized to extract information on oxazolidinone drug linezolid resistance, and the prevalence of the resistance gene optrA. We reviewed the latest advances in epidemic properties, resistance mechanism, and transfer mechanism of linezolid resistance genes in different isolates isolated from various samples worldwide. RESULTS: Initially, it was thought that linezolid resistance was related to the change in drug target mediated by mutations in the 23S rRNA gene, rplC, rplD, and cfr. optrA was discovered in 2015, and is a gene encoding oxazolidinone resistance, which exists in both plasmids and chromosomes, but mostly plasmids. The emergence of the novel plasmid-borne ABC transporter gene optrA expanded the understanding of the mechanism of linezolid resistance. CONCLUSIONS: At present, the prevalence of linezolid resistance has become increasingly serious. The resistance gene optrA has been reported in Enterococcus, Staphylococcus squirrel and Streptococcus, which indicates that this gene has a strong ability to spread across bacteria, so the prevalence and spread of optrA gene should be monitored carefully.202033015768
988480.9978Incompatibility Group I1 (IncI1) Plasmids: Their Genetics, Biology, and Public Health Relevance. Bacterial plasmids are extrachromosomal genetic elements that often carry antimicrobial resistance (AMR) genes and genes encoding increased virulence and can be transmissible among bacteria by conjugation. One key group of plasmids is the incompatibility group I1 (IncI1) plasmids, which have been isolated from multiple Enterobacteriaceae of food animal origin and clinically ill human patients. The IncI group of plasmids were initially characterized due to their sensitivity to the filamentous bacteriophage If1. Two prototypical IncI1 plasmids, R64 and pColIb-P9, have been extensively studied, and the plasmids consist of unique regions associated with plasmid replication, plasmid stability/maintenance, transfer machinery apparatus, single-stranded DNA transfer, and antimicrobial resistance. IncI1 plasmids are somewhat unique in that they encode two types of sex pili, a thick, rigid pilus necessary for mating and a thin, flexible pilus that helps stabilize bacteria for plasmid transfer in liquid environments. A key public health concern with IncI1 plasmids is their ability to carry antimicrobial resistance genes, including those associated with critically important antimicrobials used to treat severe cases of enteric infections, including the third-generation cephalosporins. Because of the potential importance of these plasmids, this review focuses on the distribution of the plasmids, their phenotypic characteristics associated with antimicrobial resistance and virulence, and their replication, maintenance, and transfer.202133910982
154890.9978Metallo-beta-lactamases of Pseudomonas aeruginosa--a novel mechanism resistance to beta-lactam antibiotics. Since about twenty years, following the introduction into therapeutic of news beta-lactam antibiotics (broad-spectrum cephalosporins, monobactams and carbapenems), a very significant number of new beta-lactamases appeared. These enzymes confer to the bacteria which put them, the means of resisting new molecules. The genetic events involved in this evolution are of two types: evolution of old enzymes by mutation and especially appearance of new genes coming for some, from bacteria of the environment. Numerous mechanisms of enzymatic resistance to the carbapenems have been described in Pseudomonas aeruginosa. The important mechanism of inactivation carbapenems is production variety of b-lactam hydrolysing enzymes associated to carbapenemases. The metallo-beta-enzymes (IMP, VIM, SPM, GIM types) are the most clinically significant carbapenemases. P. aeruginosa posses MBLs and seem to have acquired them through transmissible genetic elements (plasmids or transposons associated with integron) and can be transmission to other bacteria. They have reported worldwide but mostly from South East Asia and Europe. The enzymes, belonging to the molecular class B family, are the most worrisome of all beta-lactamases because they confer resistance to carbapenems and all the beta-lactams (with the exception of aztreonam) and usually to aminoglycosides and quinolones. The dissemination of MBLs genes is thought to be driven by regional consumption of extended--spectrum antibiotics (e.g. cephalosporins and carbapenems), and therefore care must be taken that these drugs are not used unnecessarily.200818519228
4925100.9978Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. The global spread and diversification of multidrug-resistant Gram-negative (MRGN) bacteria poses major challenges to healthcare. In particular, carbapenem-resistant Klebsiella pneumoniae strains have been frequently identified in infections and hospital-wide outbreaks. The most frequently underlying resistance gene (bla(KPC)) has been spreading over the last decade in the health care setting. bla(KPC) seems to have rapidly diversified and has been found in various species and on different plasmid types. To review the progress and dynamics of this diversification, all currently available KPC plasmids in the NCBI database were analysed in this work. Plasmids were grouped into 257 different representative KPC plasmids, of which 79.4% could be clearly assigned to incompatibility (Inc) group or groups. In almost half of all representative plasmids, the KPC gene is located on Tn4401 variants, emphasizing the importance of this transposon type for the transmission of KPC genes to other plasmids. The transposons also seem to be responsible for the occurrence of altered or uncommon fused plasmid types probably due to incomplete transposition. Moreover, many KPC plasmids contain genes that encode proteins promoting recombinant processes and mutagenesis; in consequence accelerating the diversification of KPC genes and other colocalized resistance genes.201931375735
9929110.9978Global dissemination of beta-lactamases mediating resistance to cephalosporins and carbapenems. While the main era of beta-lactam discovery programs is over, these agents continue to be the most widely prescribed antimicrobials in both community and hospital settings. This has led to considerable beta-lactam pressure on pathogens, resulting in a literal explosion of new beta-lactamase variants of existing enzyme classes. Recent advances in the molecular tools used to detect and characterize beta-lactamases and their genes has, in part, fueled the large increase in communications identifying novel beta-lactamases, particularly in Gram-negative bacilli. It now seems clear that the beta-lactams themselves have shaped the field of new enzymes, and the evolution of key amino acid substitutions around the active sites of beta-lactamases continues to drive resistance. Over 130 variants of TEM beta-lactamase now exist, and more are reported in the scientific literature each month. The most disturbing current trend is that many bla structural genes normally limited to the chromosome are now mobilized on plasmids and integrons, broadening the spread of resistance to include carbapenems and cephamycins. Furthermore, in some Enterobacteriaceae, concomitant loss of outer membrane porins act in concert with these transmissible beta-lactamase genes to confer resistance to the most potent beta-lactams and inhibitor combinations available. Continued reviews of the literature are necessary in order to keep abreast of the ingenuity with which bacteria are changing the current genetic landscape to confer resistance to this important class of antimicrobials.200415482196
4842120.9978Plasmid-borne AmpC beta-lactamases. Historically, it was thought that ampC genes encoding class C beta-lactamases were located solely on the chromosome but, within the last 12 years, an increasing number of ampC genes have been found on plasmids. These have mostly been acquired by ampC-deficient pathogenic bacteria, which consequently are supplied with new and additional resistance phenotypes. This review discusses the phylogenetic origin of the plasmid-encoded AmpC beta-lactamases, their occurrence, and mode of spread, as well as their hydrolytic properties.200212166675
9883130.9978Plasmids in Gram negatives: molecular typing of resistance plasmids. A plasmid is defined as a double stranded, circular DNA molecule capable of autonomous replication. By definition, plasmids do not carry genes essential for the growth of host cells under non-stressed conditions but they have systems which guarantee their autonomous replication also controlling the copy number and ensuring stable inheritance during cell division. Most of the plasmids confer positively selectable phenotypes by the presence of antimicrobial resistance genes. Plasmids evolve as an integral part of the bacterial genome, providing resistance genes that can be easily exchanged among bacteria of different origin and source by conjugation. A multidisciplinary approach is currently applied to study the acquisition and spread of antimicrobial resistance in clinically relevant bacterial pathogens and the established surveillance can be implemented by replicon typing of plasmids. Particular plasmid families are more frequently detected among Enterobacteriaceae and play a major role in the diffusion of specific resistance genes. For instance, IncFII, IncA/C, IncL/M, IncN and IncI1 plasmids carrying extended-spectrum beta-lactamase genes and acquired AmpC genes are currently considered to be "epidemic resistance plasmids", being worldwide detected in Enterobacteriaceae of different origin and sources. The recognition of successful plasmids is an essential first step to design intervention strategies preventing their spread.201121992746
4948140.9978Yersinia pestis antibiotic resistance: a systematic review. Yersinia pestis, the cause of plague and a potential biological weapon, has always been a threatening pathogen. Some strains of Y. pestis have varying degrees of antibiotic resistance. Thus, this systematic review was conducted to alert clinicians to this pathogen's potential antimicrobial resistance. A review of the literature was conducted for experimental reports and systematic reviews on the topics of plague, Y. pestis, and antibiotic resistance. From 1995 to 2021, 7 Y. pestis isolates with 4 antibiotic resistance mechanisms were reported. In Y. pestis 17/95, 16/95, and 2180H, resistance was mediated by transferable plasmids. Each plasmid contained resistance genes encoded within specific transposons. Strain 17/95 presented multiple drug resistance, since plasmid 1202 contained 10 resistance determinants. Strains 16/95 and 2180H showed single antibiotic resistance because both additional plasmids in these strains carried only 1 antimicrobial determinant. Strains 12/87, S19960127, 56/13, and 59/13 exhibited streptomycin resistance due to an rpsl gene mutation, a novel mechanism that was discovered recently. Y. pestis can acquire antibiotic resistance in nature not only via conjugative transfer of antimicrobial-resistant plasmids from other bacteria, but also by gene point mutations. Global surveillance should be strengthened to identify antibiotic-resistant Y. pestis strains by whole-genome sequencing and drug susceptibility testing.202235255676
1543150.9977AmpC beta-lactamases. AmpC beta-lactamases are clinically important cephalosporinases encoded on the chromosomes of many of the Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and beta-lactamase inhibitor-beta-lactam combinations. In many bacteria, AmpC enzymes are inducible and can be expressed at high levels by mutation. Overexpression confers resistance to broad-spectrum cephalosporins including cefotaxime, ceftazidime, and ceftriaxone and is a problem especially in infections due to Enterobacter aerogenes and Enterobacter cloacae, where an isolate initially susceptible to these agents may become resistant upon therapy. Transmissible plasmids have acquired genes for AmpC enzymes, which consequently can now appear in bacteria lacking or poorly expressing a chromosomal bla(AmpC) gene, such as Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis. Resistance due to plasmid-mediated AmpC enzymes is less common than extended-spectrum beta-lactamase production in most parts of the world but may be both harder to detect and broader in spectrum. AmpC enzymes encoded by both chromosomal and plasmid genes are also evolving to hydrolyze broad-spectrum cephalosporins more efficiently. Techniques to identify AmpC beta-lactamase-producing isolates are available but are still evolving and are not yet optimized for the clinical laboratory, which probably now underestimates this resistance mechanism. Carbapenems can usually be used to treat infections due to AmpC-producing bacteria, but carbapenem resistance can arise in some organisms by mutations that reduce influx (outer membrane porin loss) or enhance efflux (efflux pump activation).200919136439
9965160.9977The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.201222326849
9906170.9977Multi-resistant Gram-negative bacilli: from epidemics to endemics. PURPOSE OF REVIEW: Infections due to multi-drug resistant Gram-negative bacilli represent a worrying situation for the management of hospitalized patients. In addition, these bacteria are increasingly involved in epidemics throughout the world. This review focuses on recent data that may help to understand the emergence and dissemination of multi-drug resistant bacilli and the current trend from epidemic to endemic situations. RECENT FINDINGS: Well-established clones enhance their resistance phenotype by the acquisition of new resistant genes, via gene capture genetic units (plasmids, transposons or integrons), thus facilitating the co-selective process under different antimicrobial selective pressures and therefore the long-term persistence of organisms in selective environments. Not only resistant bacterial clones are selected, but also their genetic structures carrying resistance genes. Therefore, current epidemiology of multi-drug resistant bacilli is not only focused on bacterial clones but also on any kind of resistance gene capture units. In this scenario a multiclonal population structure of bacterial organisms corresponds to a collection of different strains sharing resistance genes carried by horizontally transferred genetic structures. As different strains tend to prefer different environments, this concept helps understand why the epidemiology of multi-drug resistant Gram-negative bacilli is moving from epidemics to endemics. SUMMARY: The emergence and spread of multi-drug resistant bacilli in the nosocomial setting should be understood in terms of a complex interplay of bacterial clonality, resistance genes and genetic structures promoting rapid dissemination of antimicrobial resistance. Intervention strategies in the forthcoming scenario should identify existing epidemic and/or endemic situations involving clonal organisms or resistance genes carried by epidemic gene capture units.200312861084
4958180.9977Updated Multiplex PCR for Detection of All Six Plasmid-Mediated qnr Gene Families. Plasmid-mediated qnr genes have been reported in bacteria worldwide and are widely associated with other relevant determinants of resistance in multiresistance plasmids. Here, we provide an update on a previously described multiplex PCR in order to detect all six qnr families (including qnrA, qnrS, qnrB, qnrC, qnrD, and qnrVC) described until now. The proposed method makes possible the screening of these genes, reducing cost and time, and it may demonstrate an underestimated prevalence of the latest variants described.201627736767
5030190.9977Characterization of ESBL disseminating plasmids. Bacteria producing extended-spectrum β-lactamases (ESBLs) constitute a globally increasing problem that contributes to treatment complications and elevated death rates. The extremely successful dissemination by ESBL-producing Enterobacteriaceae during the latest decades is a result of the combination of mobilization, evolution and horizontal spread of β-lactamase genes on plasmids. In parallel, spread of these plasmids to particularly well-adapted bacterial clones (outbreak clones) has expanded. In this review we describe ESBL-producing bacteria and the genetic mechanisms for dissemination of ESBL resistance. We describe available methodology for studying plasmids and the importance of including plasmids in epidemiological typing as natural parts of the organisms. Plasmids play a fundamental role in how resistance arises and disseminates.201626135711