# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 2522 | 0 | 0.9937 | Identification and specificity validation of unique and antimicrobial resistance genes to trace suspected pathogenic AMR bacteria and to monitor the development of AMR in non-AMR strains in the environment and clinical settings. The detection of developing antimicrobial resistance (AMR) has become a global issue. The detection of developing antimicrobial resistance has become a global issue. The growing number of AMR bacteria poses a new threat to public health. Therefore, a less laborious and quick confirmatory test becomes important for further investigations into developing AMR in the environment and in clinical settings. This study aims to present a comprehensive analysis and validation of unique and antimicrobial-resistant strains from the WHO priority list of antimicrobial-resistant bacteria and previously reported AMR strains such as Acinetobacter baumannii, Aeromonas spp., Anaeromonas frigoriresistens, Anaeromonas gelatinfytica, Bacillus spp., Campylobacter jejuni subsp. jejuni, Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Helicobacter pylori, Klebsiella pneumonia subsp. pneumoniae, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Typhimurium, Thermanaeromonas toyohensis, and Vibrio proteolyticus. Using in-house designed gene-specific primers, 18 different antibiotic resistance genes (algJ, alpB, AQU-1, CEPH-A3, ciaB, CMY-1-MOX-7, CMY-1-MOX-9, CMY-1/MOX, cphA2, cphA5, cphA7, ebpA, ECP_4655, fliC, OXA-51, RfbU, ThiU2, and tolB) from 46 strains were selected and validated. Hence, this study provides insight into the identification of strain-specific, unique antimicrobial resistance genes. Targeted amplification and verification using selected unique marker genes have been reported. Thus, the present detection and validation use a robust method for the entire experiment. Results also highlight the presence of another set of 18 antibiotic-resistant and unique genes (Aqu1, cphA2, cphA3, cphA5, cphA7, cmy1/mox7, cmy1/mox9, asaI, ascV, asoB, oxa-12, acr-2, pepA, uo65, pliI, dr0274, tapY2, and cpeT). Of these sets of genes, 15 were found to be suitable for the detection of pathogenic strains belonging to the genera Aeromonas, Pseudomonas, Helicobacter, Campylobacter, Enterococcus, Klebsiella, Acinetobacter, Salmonella, Haemophilus, and Bacillus. Thus, we have detected and verified sets of unique and antimicrobial resistance genes in bacteria on the WHO Priority List and from published reports on AMR bacteria. This study offers advantages for confirming antimicrobial resistance in all suspected AMR bacteria and monitoring the development of AMR in non-AMR bacteria, in the environment, and in clinical settings. | 2023 | 38058762 |
| 2523 | 1 | 0.9928 | Antibiotic resistance and virulence of bacteria in spices: a systematic review. BACKGROUND: Spices, widely valued for their flavor, color, and antioxidant properties, are increasingly used in culinary and food industries. Despite their benefits, spices may act as carriers for antibiotic-resistant and potentially pathogenic bacteria, posing a threat to food safety and public health. METHODS: This systematic review followed the PRISMA 2020 guidelines. A comprehensive search of six databases (Web of Science, PubMed, Scopus, Cochrane Library, Google Scholar, and Embase) was conducted for English-language articles from inception to 2023, focusing on bacterial contamination, antibiotic resistance, and virulence in spices. Inclusion was limited to peer-reviewed articles, and methodological quality was assessed using the JBI checklist. RESULTS: Of the 3,458 initially identified articles, 16 met the inclusion criteria. Most studies originated from Asia (n = 5) and the Americas (n = 4). Bacteria commonly isolated from spices included Bacillus cereus, Escherichia coli, Salmonella spp., and Staphylococcus aureus. High resistance levels were observed against ampicillin (83.3%) and penicillin (82.1%), while most isolates were susceptible to polymyxin B and cephalothin. Resistance genes such as bla, tetK, and ermB were frequently detected, along with virulence genes like nheA, hblC, cytK, and tpeL. CONCLUSION: Spices may serve as reservoirs for multidrug-resistant and virulent bacteria. Improved handling, processing, and decontamination practices are essential to mitigate foodborne risks and curb the spread of antimicrobial resistance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s42522-025-00172-6. | 2025 | 41088443 |
| 1347 | 2 | 0.9928 | Microbiological quality and antimicrobial resistance characterization of Salmonella spp. in fresh milk value chains in Ghana. Consumer perception of poor hygiene of fresh milk products is a major barrier to promotion of milk consumption as an intervention to alleviate the burden of malnutrition in Ghana. Fresh milk is retailed raw, boiled, or processed into unfermented cheese and spontaneously fermented products in unlicensed outlets. In this study, we have determined microbiological quality of informally retailed fresh milk products and characterized the genomic diversity and antimicrobial resistance (AMR) patterns of non-typhoidal Salmonella (NTS) in implicated products. A total of 159 common dairy products were purchased from five traditional milk markets in Accra. Samples were analysed for concentrations of aerobic bacteria, total and fecal coliforms, Escherichia coli, staphylococci, lactic acid bacteria and yeast and moulds. The presence of Salmonella, E. coli O157:H7, Listeria monocytogenes and Staphylococcus aureus were determined. AMR of Salmonella against 18 antibiotics was experimentally determined. Genome sequencing of 19 Salmonella isolates allowed determination of serovars, antigenic profiles, prediction of AMR genes in silico and inference of phylogenetic relatedness between strains. Raw and heat-treated milk did not differ significantly in overall bacterial quality (P = 0.851). E. coli O157:H7 and Staphylococcus aureus were present in 34.3% and 12.9% of dairy products respectively. Multidrug resistant (MDR) Salmonella enterica serovars Muenster and Legon were identified in 11.8% and 5.9% of unfermented cheese samples respectively. Pan genome analysis revealed a total of 3712 core genes. All Salmonella strains were resistant to Trimethoprim/Sulfamethoxazole, Cefoxitin, Cefuroxime Axetil and Cefuroxime. Resistance to Chloramphenicol (18%) and Ciprofloxacin (100%), which are first line antibiotics used in treatment of NTS bacteremia in Ghana, was evident. AMR was attributed to presence and/or mutations in the following genes: golS, sdiA for cephalosporins, aac(6')-Iy, ant(9) for aminoglycosides, mdtK, gyrA, gyrB, parC, parE for quinolones and cat1, cat4 for phenicols. Phylogenetic analysis based on accessory genes clustered S. Legon strains separately from the S. Muenster strains. These strains were from different markets suggesting local circulation of related strains. Our study justifies consumer resistance to consumption of unripened soft cheese without further lethal heat treatment, and provides evidence that supports the Ghana Health Service recommendation for use of 3rd generation cephalosporins for the treatment of MDR NTS infections. | 2018 | 29680695 |
| 2606 | 3 | 0.9924 | Pathogenic multiple antimicrobial resistant Escherichia coli serotypes in recreational waters of Mumbai, India: a potential public health risk. Globally, coastal waters have emerged into a pool of antibiotic resistance genes and multiple antibiotic resistant microorganisms, and pathogenicity of these resistant microorganisms in terms of serotypes and virulence genes has made the environment vulnerable. The current study underscores the presence of multiple antibiotic resistant pathogenic serotypes and pathotypes of Escherichia coli, the predominant faecal indicator bacteria (FIB), in surface water and sediment samples of famous recreational beaches (Juhu, Versova, Mahim, Dadar, and Girgaon) of Mumbai. Out of 65 faecal coliforms (FC) randomly selected, 38 isolates were biochemically characterized, serotyped (for 'O' antigen), antibiogram-phenotyped (for 22 antimicrobial agents), and genotyped by polymerase chain reaction (for virulence factors). These isolates belonged to 16 different serotypes (UT, O141, O2, O119, O120, O9, O35, O126, O91, O128, O87, O86, R, O101, O118, and O15) out of which UT (18.4%), O141 (15.7%), and O2 (13.1%) were predominant, indicating its remarkable diversity. Furthermore, the generated antibiogram profile revealed that 95% of these isolates were multiple antibiotic resistant. More than 60% of aminoglycoside-sensitive E. coli isolates exhibited resistance to penicillin, extended penicillin, quinolone, and cephalosporin classes of antibiotic while resistance to other antibiotics was comparatively less. Antibiotic resistance (AR) indexing indicated that these isolates may have rooted from a high-risk source of contamination. Preliminary findings revealed the presence of enterotoxin-encoding genes (stx1 and stx2 specific for enterohaemorrhagic E. coli and Shiga toxin-producing E. coli, heat-stable toxin enterotoxin specific for enterotoxigenic E. coli) in pathogenic serotypes. Thus, government authorities and environmental planners should create public awareness and adopt effective measures for coastal management to prevent serious health risks associated with these contaminated coastal waters. | 2017 | 28316051 |
| 942 | 4 | 0.9923 | Occurrence of multidrug resistant Gram-negative bacteria and resistance genes in semi-aquatic wildlife - Trachemys scripta, Neovison vison and Lutra lutra - as sentinels of environmental health. Emergence of antimicrobial resistance (AMR) in bacterial pathogens has been recognized as a major public health concern worldwide. In the present study, antimicrobial resistant Gram-negative bacteria (AMRGNB) and AMR genes were assessed in semi-aquatic wild animals from a highly populated and intensive farming region of Spain, Catalonia. Cloacal/rectal swab samples were collected from 241 animals coming from invasive species Trachemys scripta (n = 91) and Neovison vison (n = 131), and endangered-protected species Lutra lutra (n = 19). Accordingly, 133 (55.2%) isolates were identified as AMRGNB. Escherichia coli and Pseudomonas fluorescens were among the bacteria most frequently isolated in all animal species, but other nosocomial agents such as Klebsiella pneumoniae, Salmonella spp. or Citrobacter freundii, were also prevalent. The phenotypic susceptibility testing showed the highest resistance to β-lactams (91%). Molecular analysis showed 25.3% of turtles (15.4% ESBL/Ampc genes), 21% of Eurasian otters (10.5% ESBL/Ampc genes) and 14.5% of American minks (8.4% ESBL/Ampc genes) were positive to AMR genes. The genotyping frequency was tetM (20.6%), blaCMY-2 (13%), ermB (6.1%), blaCMY-1 (4.6%), blaCTX-M-15 (3.1%) and mcr-4 (0.8%). Turtles had a larger prevalence of AMRGNB and AMR genes than mustelids, but American mink carried mcr-4 colistin-resistance gene. Moreover, cluster analysis of AMR gene distribution revealed that an ESBL/AmpC cluster in a highly populated area comprising big metropolitan regions, and another tetM/emrB cluster in an expended area with highly intensive livestock production. Although the mcr-4 positive case was not included in those clusters, that case was found in a county with a high pig farm density. In conclusion, semi-aquatic wild animals are a good sentinel for environmental contamination with AMRGNB and AMR genes. Therefore, One Health Approach is urgently needed in highly populated regions, and with intensive livestock production like Catalonia. | 2022 | 35341839 |
| 1651 | 5 | 0.9922 | Comparative Genomic Analysis of Antimicrobial-Resistant Escherichia coli from South American Camelids in Central Germany. South American camelids (SAC) are increasingly kept in Europe in close contact with humans and other livestock species and can potentially contribute to transmission chains of epizootic, zoonotic and antimicrobial-resistant (AMR) agents from and to livestock and humans. Consequently, SAC were included as livestock species in the new European Animal Health Law. However, the knowledge on bacteria exhibiting AMR in SAC is too scarce to draft appropriate monitoring and preventive programs. During a survey of SAC holdings in central Germany, 39 Escherichia coli strains were isolated from composite fecal samples by selecting for cephalosporin or fluoroquinolone resistance and were here subjected to whole-genome sequencing. The data were bioinformatically analyzed for strain phylogeny, detection of pathovars, AMR genes and plasmids. Most (33/39) strains belonged to phylogroups A and B1. Still, the isolates were highly diverse, as evidenced by 28 multi-locus sequence types. More than half of the isolates (23/39) were genotypically classified as multidrug resistant. Genes mediating resistance to trimethoprim/sulfonamides (22/39), aminoglycosides (20/39) and tetracyclines (18/39) were frequent. The most common extended-spectrum-β-lactamase gene was bla(CTX-M-1) (16/39). One strain was classified as enteropathogenic E. coli. The positive results indicate the need to include AMR bacteria in yet-to-be-established animal disease surveillance protocols for SAC. | 2022 | 36144308 |
| 1346 | 6 | 0.9922 | High prevalence of multidrug resistant Escherichia coli isolated from fresh vegetables sold by selected formal and informal traders in the most densely populated Province of South Africa. Contaminated fresh produce has increasingly been implicated in foodborne disease outbreaks. As microbiological safety surveillance in South Africa is limited, a total of 545 vegetable samples (spinach, tomato, lettuce, cucumber, and green beans) were purchased from retailers, street traders, trolley vendors and farmers' markets. Escherichia coli, coliforms and Enterobacteriaceae were enumerated and the prevalence of Escherichia coli, Salmonella spp. and Listeria monocytogenes determined. E. coli isolates were characterized phenotypically (antibiotic resistance) and genotypically (diarrheagenic virulence genes). Coliforms, E. coli and Enterobacteriaceae counts were mostly not significantly different between formal and informal markets, with exceptions noted on occasion. When compared to international standards, 90% to 98% tomatoes, 70% to 94% spinach, 82% cucumbers, 93% lettuce, and 80% green bean samples, had satisfactory (≤ 100 CFU/g) E. coli counts. Of the 545 vegetable samples analyzed, 14.86% (n = 81) harbored E. coli, predominantly from leafy green vegetables. Virulence genes (lt, st, bfpA, eagg, eaeA, stx1, stx2, and ipaH) were not detected in the E. coli isolates (n = 67) characterized, however 40.30% were multidrug-resistant. Resistance to aminoglycosides (neomycin, 73.13%; gentamycin, < 10%), penicillins (ampicillin, 38.81%; amoxicillin, 41.79%; augmentin, < 10%), sulfonamides (cotrimoxazole, 22.39%), tetracycline (19.4%), chloramphenicol (11.94%), cephalosporins (cefepime, 34.33%), and carbapenemases (imipenem, < 10%) were observed. This study highlights the need for continued surveillance of multidrug resistant foodborne pathogens in fresh produce retailed formally and informally for potential consumer health risks. PRACTICAL APPLICATION: The results indicate that the microbiological quality of different vegetables were similar per product type, regardless of being purchased from formal retailers or informal street traders, trolley vendors or farmers' markets. Although no pathogenic bacteria (diarrheagenic E. coli, Salmonella spp. or L. monocytogenes) were isolated, high levels of multidrug-resistance was observed in the generic E. coli isolates. These findings highlight the importance of microbiological quality surveillance of fresh produce in formal and informal markets, as these products can be a reservoir of multidrug resistant bacteria harboring antibiotic resistance and virulence genes, potentially impacting human health. | 2021 | 33294974 |
| 1749 | 7 | 0.9921 | The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2021-2022. This report by the European Food Safety Authority and the European Centre for Disease prevention and Control, provides an overview of the main findings of the 2021-2022 harmonised Antimicrobial Resistance (AMR) monitoring in Salmonella spp., Campylobacter jejuni and C. coli from humans and food-producing animals (broilers, laying hens and fattening turkeys, fattening pigs and cattle under one year of age) and relevant meat thereof. For animals and meat thereof, AMR data on indicator commensal Escherichia coli, presumptive extended-spectrum beta-lactamases (ESBL)-/AmpC beta-lactamases (AmpC)-/carbapenemase (CP)-producing E. coli, and the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) are also analysed. Generally, resistance levels differed greatly between reporting countries and antimicrobials. Resistance to commonly used antimicrobials was frequently found in Salmonella and Campylobacter isolates from humans and animals. In humans, increasing trends in resistance to one of two critically antimicrobials (CIA) for treatment was observed in poultry-associated Salmonella serovars and Campylobacter, in at least half of the reporting countries. Combined resistance to CIA was however observed at low levels except in some Salmonella serovars and in C. coli from humans and animals in some countries. While CP-producing Salmonella isolates were not detected in animals in 2021-2022, nor in 2021 for human cases, in 2022 five human cases of CP-producing Salmonella were reported (four harbouring bla (OXA-48) or bla (OXA-48-like) genes). The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), bla (NDM-5) and bla (VIM-1) genes) in fattening pigs, cattle under 1 year of age, poultry and meat thereof by a limited number of MSs (5) in 2021 and 2022, requires a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC-producers in E. coli) showed an encouraging progress in reducing AMR in food-producing animals in several EU MSs over the last 7 years. | 2024 | 38419967 |
| 1209 | 8 | 0.9921 | Molecular Detection of Shiga Toxin-Producing Escherichia coli O177 Isolates, Their Antibiotic Resistance, and Virulence Profiles From Broiler Chickens. The World Health Organization (WHO) describes Shiga toxin-producing Escherichia coli (STEC) as a bacterium that can cause severe food-borne diseases. Common sources of infection include undercooked meat products and faecal contamination in vegetables. This study aimed to isolate, identify and assess the virulence and antibiotic resistance profiles of STEC isolates from broiler chicken faeces. Faecal samples were cultured, and polymerase chain reaction (PCR) was utilized to identify the isolates. Subsequently, the confirmed isolates were screened for seven virulence markers using PCR. The antibiotic susceptibility of the isolates to 13 different antibiotics was determined using the disk diffusion method. PCR was also employed to screen for antibiotic resistance genes. The uidA gene, which encodes the beta-glucuronidase enzyme, was detected in 62 (64.6%) of the 91 presumptively identified E. coli isolates. Of these, 23 isolates (37.1%) were confirmed to be E. coli O177 serogroup through amplification of wzy gene. All E. coli O177 isolates possessed the virulence stx2 gene, while 65% carried the stx1 gene. Among the E. coli O177 isolates, three harboured a combination of vir + stx2 + stx1 + hlyA genes, while one isolate contained a combination of eaeA + stx2 + stx1 + hlyA genes. All E. coli O177 isolates carried one or more antimicrobial resistance (AMR) genes, with 17 isolates (73.7%) identified as multidrug resistance (MDR). This is the first study to report the presence of E. coli O177 serotype from broiler chickens in South Africa. The findings reveal that broiler chicken faeces are a significant reservoir for MDR E. coli O177 and a potential source of AMR genes. These results underscore the importance of continuous surveillance and monitoring of the spread of AMR infectious bacteria in food-producing animals and their environments. The study also emphasizes that monitoring and control of poultry meat should be considered a major public health concern. | 2024 | 39665069 |
| 1340 | 9 | 0.9921 | Prevalence, Virulence, and Antimicrobial Resistance of Campylobacter spp. in Raw Milk, Beef, and Pork Meat in Northern Poland. The purpose of this study was to determine whether raw milk, unpasteurized dairy products, pork, and beef available for sale in the Kujawsko-Pomorskie and Wielkopolska regions in Poland are contaminated with Campylobacter spp. bacteria and may be a potential source of infection. For isolated strains, antibiotic susceptibility and the presence of genes responsible for virulence were examined. Material for research included 1058 food samples collected between 2014 and 2018 with 454 samples of raw milk and unpasteurized dairy products (milk from vending machines, milk from owners of dairy cows, cheese, milk cream) and 604 samples of raw meat (pork, beef). The results indicated that 9.3% of the samples were positive for Campylobacter spp., and Campylobacter jejuni was predominant in this study. Campylobacter bacteria was not found in milk collected from vending machines, as well as cheese and milk cream samples. Campylobacter was noted in 12.7% of beef samples, 11.8% of raw milk purchased from individual suppliers, and 10.9% of pork samples. Resistance to erythromycin (2.0%), azithromycin (3.1%), gentamicin (4.1%), tetracycline (65.3%), and ciprofloxacin (71.4%) was determined using the disc diffusion method. Furthermore, the prevalence of racR, sodB, csrA, virB11, cdtB, iam, and wlaN genes were examined using the PCR method. The sodB, csrA, and cdtB genes exhibited the highest detection rate, but none of the genes were identified in 100% of the isolates. Statistically significant differences between the presence of virulence marker genes, including for iam, racR, and csrA markers, were noted among different sources of the isolates. Differences in the distribution of iam, wlaN, and virB11 were also shown between C. jejuni and C. coli strains. As a result of the analysis, it has been concluded that unpasteurized milk, beef, and pork could be a sources of Campylobacter pathogens. Moreover, this study revealed virulent properties of Campylobacter isolated from such food products and high resistance rates to fluoroquinolones, which may represent difficulties in campylobacteriosis treatment. | 2019 | 31533265 |
| 852 | 10 | 0.9920 | Antimicrobial Resistance in Bacteria Isolated from Exotic Pets: The Situation in the Iberian Peninsula. Literature related to antimicrobial resistant (AMR) bacteria in exotic pets is minimal, being essential to report objective data on this topic, which represents a therapeutic challenge for veterinary medicine and public health. Between 2016 and 2020, laboratory records of 3156 exotic pet specimens' microbiological diagnoses and antibiotic susceptibility testing (AST) results were examined. The samples were classified into three animal classes: birds (n = 412), mammalia (n = 2399), and reptilian (n = 345). The most prevalent bacteria in birds and mammals were Staphylococcus spp. (15% and 16%), while in reptiles they were Pseudomonas spp. (23%). Pseudomonas was the genus with the highest levels of AMR in all animal groups, followed by Enterococcus spp. By contrast, Gram-positive cocci and Pasteurella spp. were the most sensitive bacteria. Moreover, in reptiles, Stenotrophomonas spp., Morganella spp., and Acinetobacter spp. presented high levels of AMR. Multidrug-resistant (MDR) bacteria were isolates from reptiles (21%), birds (17%), and mammals (15%). The Enterobacterales had the highest MDR levels: S. marcescens (94.4%), C. freundii (50%), M. morganii (47.4%), K. pneumoniae (46.6%), E. cloacae (44%), and E. coli (38.3%). The prevalence of MDR P. aeruginosa strains was 8%, detecting one isolate with an XDR profile. Regarding antimicrobial use, many antibiotics described as critically important for human use had significant AMR prevalence in bacteria isolated from exotic pets. Under the One-Health approach, these results are alarming and of public health concern since potential transmission of AMR bacteria and genes can occur from exotic pets to their owners in both senses. For this reason, the collaboration between veterinarians and public health professionals is crucial. | 2022 | 35953901 |
| 5591 | 11 | 0.9920 | Widespread dissemination of Salmonella, Escherichia coli and Campylobacter resistant to medically important antimicrobials in the poultry production continuum in Canada. The Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) monitors Escherichia coli, Salmonella and Campylobacter and their resistance to antimicrobials in broiler chickens at the farm and slaughter plant levels. In response to many years of CIPARS' observations and farmers' data, the Chicken Farmers of Canada implemented a strategy to reduce antimicrobial use in 2014. As resistance genes can be transmitted vertically from parents to their offspring, a study was conducted in broiler breeder flocks to assess the frequency of target bacteria, their antimicrobial resistance (AMR) and to obtain a comprehensive picture of AMR in poultry production. Spent breeder flocks slaughtered between 2018 and 2021 were sampled and data from broiler flocks at the farm and slaughter plants were assessed. Salmonella was most frequently detected in farm broiler chickens (46%), while Campylobacter was most frequently detected in broiler breeders (73%). In Campylobacter, high levels (20-24%) of ciprofloxacin resistance were found across the three production stages, and was highest in farm broiler chickens (24%). In E. coli, an indicator organism, low-level ceftriaxone resistance and occasional isolates that were non-susceptible to ciprofloxacin were noted. Using the indicator, fully susceptible E. coli, broiler breeders had the highest frequency (54%) compared to farm (36%) and slaughtered (35%) broiler chickens. In Salmonella broiler breeders had the highest resistance to most antimicrobials tested.Fully susceptible Salmonella was lowest in broiler breeders (16%) compared to farm (42%) and slaughtered (42%) broiler chickens. Salmonella serovars differed between the production stages, but S. Kentucky was the most predominant. Resistance to critically important antimicrobials in human medicine and regional variations in resistance profiles were observed. This study suggests that broiler breeders carry foodborne bacteria resistant to antimicrobials used in human medicine, demonstrating their role in the maintenance of AMR in poultry and the need to adopt a harmonized sector-wide AMU strategy. | 2025 | 39999076 |
| 2557 | 12 | 0.9920 | Consumer Exposure to Antimicrobial Resistant Bacteria From Food at Swiss Retail Level. Background: Antimicrobial resistance (AMR) in bacteria is an increasing health concern. The spread of AMR bacteria (AMRB) between animals and humans via the food chain and the exchange of AMR genes requires holistic approaches for risk mitigation. The AMRB exposure of humans via food is currently only poorly understood leaving an important gap for intervention design. Method: This study aimed to assess AMRB prevalence in retail food and subsequent exposure of Swiss consumers in a systematic literature review of data published between 1996 and 2016 covering the Swiss agriculture sector and relevant imported food. Results: Data from 313 out of 9,473 collected studies were extracted yielding 122,438 food samples and 38,362 bacteria isolates of which 30,092 samples and 8,799 isolates were AMR positive. A median AMRB prevalence of >50% was observed for meat and seafood harboring Campylobacter, Enterococcus, Salmonella, Escherichia coli, Listeria, and Vibrio spp. and to a lesser prevalence for milk products harboring starter culture bacteria. Gram-negative AMRB featured predominantly AMR against aminoglycosides, cephalosporins, fluoroquinolones, penicillins, sulfonamides, and tetracyclines observed at AMR exposures scores of levels 1 (medium) and 2 (high) for Campylobacter, Salmonella, E. coli in meat as well as Vibrio and E. coli in seafood. Gram-positive AMRB featured AMR against glycoproteins, lincosamides, macrolides and nitrofurans for Staphylococcus and Enterococcus in meat sources, Staphylococcus in seafood as well as Enterococcus and technologically important bacteria (incl. starters) in fermented or processed dairy products. Knowledge gaps were identified for AMR prevalence in dairy, plant, fermented meat and novel food products and for the role of specific indicator bacteria (Staphylococcus, Enterococcus), starter culture bacteria and their mobile genetic elements in AMR gene transfer. Conclusion: Raw meat, milk, seafood, and certain fermented dairy products featured a medium to high potential of AMR exposure for Gram-negative and Gram-positive foodborne pathogens and indicator bacteria. Food at retail, additional food categories including fermented and novel foods as well as technologically important bacteria and AMR genetics are recommended to be better integrated into systematic One Health AMR surveillance and mitigation strategies to close observed knowledge gaps and enable a comprehensive AMR risk assessment for consumers. | 2018 | 29559960 |
| 1654 | 13 | 0.9920 | High frequency of B2 phylogroup among non-clonally related fecal Escherichia coli isolates from wild boars, including the lineage ST131. Wild boars are worldwide distributed mammals which population is increasing in many regions, like the Iberian Peninsula, leading to an increased exposition to humans. They are considered reservoirs of different zoonotic pathogens and have been postulated as potential vectors of antimicrobial-resistant (AMR) bacteria. This study aimed to determine the prevalence of antimicrobial resistance and phylogenetic distribution of Escherichia coli from wild boar feces. Antimicrobial resistance and integron content was genetically characterized and E. coli of B2 phylogroup was further analyzed by molecular typing and virulence genotyping. The prevalence of AMR E. coli was low, with only 7.5% of isolates being resistant against at least one antimicrobial, mainly ampicillin, tetracycline and/or sulfonamide. An unexpected elevated rate of B2 phylogroup (47.5%) was identified, most of them showing unrelated pulsed-field-gel-electrophoresis patterns. ST131/B2 (fimH 22 sublineage), ST28/B2, ST1170/B2, ST681/B2 and ST625/B2 clones, previously described in extraintestinal infections in humans, were detected in B2 isolates, and carried one or more genes associated with extraintestinal pathogenic E. coli (ExPEC). This study demonstrated a low prevalence of antimicrobial resistance in E. coli from wild boars, although they are not exempt of AMR bacteria, and a predominance of genetically diverse B2 phylogroup, including isolates carrying ExPEC which may contribute to the spread of virulence determinants among different ecosystems. | 2017 | 28365752 |
| 1750 | 14 | 0.9919 | The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. Antimicrobial resistance (AMR) data on zoonotic and indicator bacteria from humans, animals and food are collected annually by the EU Member States (MSs) and reporting countries, jointly analysed by EFSA and ECDC and presented in a yearly EU Summary Report. This report provides an overview of the main findings of the 2020-2021 harmonised AMR monitoring in Salmonella spp., Campylobacter jejuni and C. coli in humans and food-producing animals (broilers, laying hens and turkeys, fattening pigs and bovines under 1 year of age) and relevant meat thereof. For animals and meat thereof, indicator E. coli data on the occurrence of AMR and presumptive Extended spectrum β-lactamases (ESBL)-/AmpC β-lactamases (AmpC)-/carbapenemases (CP)-producers, as well as the occurrence of methicillin-resistant Staphylococcus aureus are also analysed. In 2021, MSs submitted for the first time AMR data on E. coli isolates from meat sampled at border control posts. Where available, monitoring data from humans, food-producing animals and meat thereof were combined and compared at the EU level, with emphasis on multidrug resistance, complete susceptibility and combined resistance patterns to selected and critically important antimicrobials, as well as Salmonella and E. coli isolates exhibiting ESBL-/AmpC-/carbapenemase phenotypes. Resistance was frequently found to commonly used antimicrobials in Salmonella spp. and Campylobacter isolates from humans and animals. Combined resistance to critically important antimicrobials was mainly observed at low levels except in some Salmonella serotypes and in C. coli in some countries. The reporting of a number of CP-producing E. coli isolates (harbouring bla (OXA-48), bla (OXA-181), and bla (NDM-5) genes) in pigs, bovines and meat thereof by a limited number of MSs (4) in 2021, requests a thorough follow-up. The temporal trend analyses in both key outcome indicators (rate of complete susceptibility and prevalence of ESBL-/AmpC- producers) showed that encouraging progress have been registered in reducing AMR in food-producing animals in several EU MSs over the last years. | 2023 | 36891283 |
| 1282 | 15 | 0.9919 | Subclinical Mastitis in Selected Bovine Dairy Herds in North Upper Egypt: Assessment of Prevalence, Causative Bacterial Pathogens, Antimicrobial Resistance and Virulence-Associated Genes. Mastitis is a significant disease affecting dairy cattle farms in Egypt. The current study aimed to investigate the prevalence and major bacterial pathogens causing subclinical mastitis (SCM) in three bovine dairy herds, with a history of SCM, at three Governorates in North Upper Egypt. The antimicrobial resistance profiles and specific virulence-associated genes causing bovine SCM were investigated. One thousand sixty-quarter milk samples (QMS) were collected aseptically from 270 apparently healthy cows in three farms and examined. The total prevalence of SCM was 46% and 44.8% based on California Mastitis Test (CMT) and Somatic Cell Count (SCC), respectively. Bacteriological examination of CMT positive quarters revealed that the prevalence of bacterial isolation in subclinically mastitic quarters was 90.4% (26 and 64.3% had single and mixed isolates, respectively). The most frequent bacterial isolates were E. coli (49.8%), Staphylococcus aureus (44.9%), streptococci (44.1%) and non-aureus staphylococci (NAS) (37.1%). Antimicrobial susceptibility testing of isolates revealed a high degree of resistance to the most commonly used antimicrobial compound in human and veterinary medicine. Implementation of PCR revealed the presence of mecA and blaZ genes in 60% and 46.7% of S. aureus isolates and in 26.7% and 53.3% of NAS, respectively. Meanwhile 73.3% of streptococci isolates harbored aph(3')-IIIa gene conferring resistance to aminoglycosides and cfb gene. All E. coli isolates harbored tetA gene conferring resistance to tetracycline and sul1 gene conferring resistance to sulfonamides. The fimH and tsh genes were found in 80% and 60%, respectively. A significant association between the phenotypes and genotypes of AMR in different bacteria was recorded. The presence of a high prevalence of SCM in dairy animals impacts milk production and milk quality. The coexistence of pathogenic bacteria in milk is alarming, threatens human health and has a public health significance. Herd health improvement interventions are required to protect human health and society. | 2021 | 34072543 |
| 2601 | 16 | 0.9919 | Enhancing the one health initiative by using whole genome sequencing to monitor antimicrobial resistance of animal pathogens: Vet-LIRN collaborative project with veterinary diagnostic laboratories in United States and Canada. BACKGROUND: Antimicrobial resistance (AMR) of bacterial pathogens is an emerging public health threat. This threat extends to pets as it also compromises our ability to treat their infections. Surveillance programs in the United States have traditionally focused on collecting data from food animals, foods, and people. The Veterinary Laboratory Investigation and Response Network (Vet-LIRN), a national network of 45 veterinary diagnostic laboratories, tested the antimicrobial susceptibility of clinically relevant bacterial isolates from animals, with companion animal species represented for the first time in a monitoring program. During 2017, we systematically collected and tested 1968 isolates. To identify genetic determinants associated with AMR and the potential genetic relatedness of animal and human strains, whole genome sequencing (WGS) was performed on 192 isolates: 69 Salmonella enterica (all animal sources), 63 Escherichia coli (dogs), and 60 Staphylococcus pseudintermedius (dogs). RESULTS: We found that most Salmonella isolates (46/69, 67%) had no known resistance genes. Several isolates from both food and companion animals, however, showed genetic relatedness to isolates from humans. For pathogenic E. coli, no resistance genes were identified in 60% (38/63) of the isolates. Diverse resistance patterns were observed, and one of the isolates had predicted resistance to fluoroquinolones and cephalosporins, important antibiotics in human and veterinary medicine. For S. pseudintermedius, we observed a bimodal distribution of resistance genes, with some isolates having a diverse array of resistance mechanisms, including the mecA gene (19/60, 32%). CONCLUSION: The findings from this study highlight the critical importance of veterinary diagnostic laboratory data as part of any national antimicrobial resistance surveillance program. The finding of some highly resistant bacteria from companion animals, and the observation of isolates related to those isolated from humans demonstrates the public health significance of incorporating companion animal data into surveillance systems. Vet-LIRN will continue to build the infrastructure to collect the data necessary to perform surveillance of resistant bacteria as part of fulfilling its mission to advance human and animal health. A One Health approach to AMR surveillance programs is crucial and must include data from humans, animals, and environmental sources to be effective. | 2019 | 31060608 |
| 1852 | 17 | 0.9919 | Genomic and Resistance Epidemiology of Gram-Negative Bacteria in Africa: a Systematic Review and Phylogenomic Analyses from a One Health Perspective. Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including bla (TEM-1), bla (CTX-M), bla (NDM), bla (IMP), bla (VIM), and bla (OXA-48/181)), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX(3/4), ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited.IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance. | 2020 | 33234606 |
| 1210 | 18 | 0.9919 | Detection of numerous verotoxigenic E. coli serotypes, with multiple antibiotic resistance from cattle faeces and soil. Verotoxigenic E. coli (VTEC) belong to a diverse range of serotypes. Serotypes O157 and O26 are predominately identified in VTEC-associated disease in Europe, however due to difficulty in detection little is known about the epidemiology of non-O157 serotypes. This study reports the identification of 7 VTEC serotypes from cattle faeces and soil. Cattle faeces samples (n=128) were taken from animals in 6 different farms, with soil samples (n=20) obtained from 1 farm. After sample incubation in modified tryptone soy broth (mTSB) supplemented with streptomycin sulphate samples were plated onto sorbitol MacConkey (SMAC) also supplemented with streptomycin sulphate. Bacteria detected on the plates were subjected to biochemical testing, antibiotic resistance profiling, and PCR to detect typical virulence genes, beta-lactamase and class 1 integron associated genes. Serotyping was performed on isolates positive for virulence genes. E. coli was identified from 103 samples, with verotoxin genes present in 7 E. coli isolates. Of these 7 isolates, 5 were resistant to 5 or more antibiotics. The isolate resistant to 9 antimicrobials contained a class 1 integron structure. Serotyping identified 7 separate VTEC, O2:H27, O26:H11, O63:H(-), O148:H8, O149:H1, O174:H21 and ONT:H25. Six of these VTEC have been previously associated with human disease, however with the exception of O26:H11, these serotypes have been rarely reported worldwide. Increased surveillance is required to determine the prevalence of these and other non-O157 VTEC. The presence of multi-antibiotic resistance in these isolates is of concern, and the overall implications for public health must be ascertained. | 2009 | 18838234 |
| 1655 | 19 | 0.9918 | Genomic analysis of Escherichia coli circulating in the Brazilian poultry sector. Escherichia coli are gut commensal bacteria and opportunistic pathogens, and the emergence of antimicrobial resistance threatens the safety of the food chain. To know the E. coli strains circulating in the Brazilian poultry sector is important since the country corresponds to a significant chicken meat production. Thus, we analyzed 90 publicly genomes available in a database using web-based tools. Genomic analysis revealed that sul alleles were the most detected resistance genes, followed by aadA, bla(CTX-M), and dfrA. Plasmids of the IncF family were important, followed by IncI1-Iα, Col-like, and p0111. Genes of specific metabolic pathways that contribute to virulence (terC and gad) were predominant, followed by sitA, traT, and iss. Additionally, pap, usp, vat, sfa/foc, ibeA, cnf1, eae, and sat were also predicted. In this regard, 11 E. coli were characterized as avian pathogenic E. coli and one as atypical enteropathogenic E. coli. Phylogenetic analysis confirmed the predominant occurrence of B1 but also A, D, B2, F, E, G, C, and Clade I phylogroups, whereas international clones ST38, ST73, ST117, ST155, and ST224 were predicted among 53 different sequence types identified. Serotypes O6:H1 and:H25 were prevalent, and fimH31 and fimH32 were the most representatives among the 36 FimH types detected. Finally, single nucleotide polymorphisms-based phylogenetic analysis confirmed high genomic diversity among E. coli strains. While international E. coli clones have adapted to the Brazilian poultry sector, the virulome background of these strains support a pathogenic potential to humans and animals, with lineages carrying resistance genes that can lead to hard-to-treat infections. | 2022 | 35864380 |