# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1401 | 0 | 0.9772 | Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance. | 2024 | 39530854 |
| 1884 | 1 | 0.9772 | Genomic analysis of Klebsiella pneumoniae high-risk clone ST11 co-harbouring MCR-1.27 and KPC-2 recovered at a paediatric oncologic hospital in the Brazilian Amazon region. OBJECTIVES: The horizontal transfer of antibiotic resistance genes in Gram-negative bacteria, mainly through plasmids, is one of the greatest concerns for health systems worldwide and has been a growing threat in hospitals related to healthcare-associated infections by multidrug-resistant bacteria. Here we present p henotypic and genomic characterization of a KPC-2 and MCR-1.27-producing Klebsiella pneumoniae strain isolated from a paediatric patient at an oncologic hospital in Belém, Pará State, Brazilian Amazon region. METHODS: Antibiotic susceptibility test, whole genome sequencing, and in silico analysis were used to characterize the bacterial isolate (IEC48020) received in the Evandro Chagas Institute. RESULTS: The isolate was resistant to carbapenems, colistin, polymyxin B, and several other antimicrobials and was susceptible in vitro just to tigecycline, classified as an extensively drug-resistant phenotype. Genomic analysis revealed IEC48020 strain belonged to sequence type 11, clonal complex 258 high-risk clone and the presence of eight plasmids, two of them harbouring mcr-1.27 and bla(KPC-2) genes, and the presence of virulence-related genes encoding yersiniabactin, phospholipase D, and traT genes. CONCLUSIONS: The presence and dissemination of high-risk clone bacteria with high disseminating plasmids containing antibiotic resistance genes for last resource antibiotics treatment options is a threat to the healthcare system and demands efforts in surveillance and epidemiological research for better knowledge of the actual situation of antibiotic resistance in the healthcare system, especially in the Amazon region, Brazil. | 2023 | 37088246 |
| 5205 | 2 | 0.9772 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |
| 1434 | 3 | 0.9768 | Molecular characterization of carbapenemases production among environmental Gram-negative isolates at Addis Ababa, Ethiopia: first detection of NDM Producers in hospital environments. INTRODUCTION: The Gram-Negative bacteria, particularly carbapenem-resistant strains (CR-GNB), pose a global health threat due to high morbidity and mortality. Detecting carbapenemase-encoding genes is essential for understanding their spread in hospital environments. This study investigated environmental colonization by CR-GNB in Ethiopian hospitals, including genetic characterization of resistance genes. METHODOLOGY: A cross-sectional study analyzed 103 environmental GNB isolates collected from inanimate surfaces at Tikur Anbessa Specialized Hospital (TASH) and ALERT Hospital (June-September 2021). Conventional microbiological methods identified the isolates, and antimicrobial susceptibility was tested using the Kirby-Bauer disk diffusion method. Carbapenemase production was screened using the Modified Hodge test (MHT) and combined disk test (CDT). Resistance genes (blaKPC, blaNDM, blaOXA-48) were detected via PCR in isolates with reduced meropenem susceptibility. RESULTS: The predominant GNB were Acinetobacter baumannii (47%), Pseudomonas aeruginosa (33%), and E. coli (12%). Among 103 isolates, 62% showed reduced meropenem susceptibility. The most common CR-GNB was Acinetobacter baumannii (37.5%), followed by E. coli (18.8%) and Klebsiella pneumoniae (12.5%). Carbapenemase production was detected in 41.7% of isolates via PCR, with blaNDM being the most common (43 isolates). Linens (26.4%) and beds (21.4%) had the highest contamination rates. Most carbapenemase-producing isolates were multidrug-resistant (MDR). CONCLUSIONS: The presence of blaNDM and blaKPC genes highlights hospital surfaces as reservoirs for resistance genes, contributing to healthcare-associated infections. Routine surveillance and early detection of carbapenemase producers are crucial for infection control and antimicrobial resistance management. | 2025 | 40305531 |
| 1338 | 4 | 0.9767 | Molecular characterization of Aeromonas hydrophila detected in Channa marulius and Sperata sarwari sampled from rivers of Punjab in Pakistan. Aeromonas hydrophila is one of the major pathogenic bacteria responsible for causing severe outbreaks at fish farms and is also a major global public health concern. This bacterium harbors many virulence genes. The current study was designed to evaluate the antidrug and virulence potential of A. hydrophila by amplifying its antimicrobial resistance and virulence genes using PCR and examining their effects on fish tissues and organs. A total of 960 fish samples of Channa marulius and Sperata sarwari were collected from four sites of the rivers of the Punjab, Pakistan. A. hydrophila isolates were subjected to biochemical identification and detection of virulence and antimicrobial resistance (AMR) genes by PCR. We retrieved 181 (6.46%) A. hydrophila isolates from C. marulius and 177 (6.25%) isolates from S. sarwari. Amplification through PCR revealed the incidence of virulence genes in 95.7% of isolates in C. marulius and 94.4% in S. sarwari. Similarly, amplification through PCR also revealed occurrence of AMR genes in 87.1% of isolates in C. marulius and 83.9% in S. sarwari. Histopathological examination revealed congestion (5.2%) and hepatocyte necrosis (4.6%) in liver, lamellar fusion (3.3%) and the presence of bacterial colonies (3.7%) in gills, fin erosion (6%), and the presence of biofilms (3.5%) in tail fins of infected fish. Phylogenetic tree analysis of 16S rRNA and gyrB gene of A. hydrophila revealed 100% and 97% similarity, respectively, with 16S rRNA gene and gyrB of A. hydrophila isolated in previous studies. The results of antimicrobial susceptibility testing showed that all isolates demonstrated resistance to sulfamethoxazole, ampicillin, neomycin, and norfloxacin, while susceptibility to gentamicin, chloramphenicol, and tetracycline, and intermediate resistance was observed against cefotaxime. The results concluded that examined fish samples were markedly contaminated with virulent and multidrug strains of A. hydrophila which may be of a potential health risk. The study emphasizes the responsible antimicrobial use in aquaculture and the urgent need for effective strategies to control the spread of virulence and antimicrobial resistance genes in A. hydrophila. | 2024 | 38551906 |
| 2107 | 5 | 0.9767 | Virulence, antimicrobial resistance, and molecular characteristics of carbapenem-resistant Klebsiella pneumoniae in a hospital in Shijiazhuang City from China. Carbapenem-resistant Klebsiella pneumoniae (CRKP), as one of the most common drug-resistant bacteria threatening human health, is hyper-resistant to multiple antimicrobial drugs and carbapenems, which can be dealt with only limited clinical treatment options. This study described the epidemiological characteristics of CRKP in this tertiary care hospital from 2016 to 2020. Specimen sources included blood, sputum, alveolar lavage fluid, puncture fluid, secretions from a burn wound, and urine. Among the 87 carbapenem-resistant strains, ST11 was the predominant isolate, followed by ST15, ST273, ST340, and ST626. These STs were in broad agreement with the STs defined by pulsed-field gel electrophoresis clustering analysis in discriminating clusters of related strains. Most CRKP isolates contained the blaKPC-2 gene, some isolates carried the blaOXA-1, blaNDM-1, and blaNDM-5 genes, and the isolates carrying carbapenem resistance genes were more resistant to the antimicrobials of β-lactams, carbapenems, macrolides, and fluoroquinolone. The OmpK35 and OmpK37 genes were detected in all CRKP strains, and the Ompk36 gene was detected in some CRKP strains. All detected OmpK37 had 4 mutant sites, and OmpK36 had 11 mutant sites, while no mutant sites were found in OmpK35. More than half of the CRKP strains contained the OqxA and OqxB efflux pump genes. The virulence genes were most commonly combined with urea-wabG-fimH-entB-ybtS-uge-ycf. Only one CRKP isolate was detected with the K54 podoconjugate serotype. This study elucidated the clinical epidemiological features and molecular typing of CRKP, and grasped the distribution of drug-resistant genotypes, podocyte serotypes, and virulence genes of CRKP, providing some guidance for the subsequent treatment of CRKP infection. | 2023 | 37097488 |
| 2270 | 6 | 0.9766 | Antibiotic resistant bacteria and resistance genes in biofilms in clinical wastewater networks. Increasing isolation rates of resistant bacteria in the last years require identification of potential infection reservoirs in healthcare facilities. Especially the clinical wastewater network represents a potential source of antibiotic resistant bacteria. In this work, the siphons of the sanitary installations from 18 hospital rooms of two German hospitals were examined for antibiotic resistant bacteria and antibiotic residues including siphons of showers and washbasins and toilets in sanitary units of psychosomatic, haemato-oncological, and rehabilitation wards. In addition, in seven rooms of the haemato-oncological ward, the effect of 24 h of stagnation on the antibiotic concentrations and MDR (multi-drug-resistant) bacteria in biofilms was evaluated. Whereas no antibiotic residues were found in the psychosomatic ward, potential selective concentrations of piperacillin, meropenem and ciprofloxacin were detected at a rehabilitation ward and ciprofloxacin and trimethoprim were present at a haemato-oncology ward. Antibiotic resistant bacteria were isolated from the siphons of all wards, however in the psychosomatic ward, only one MDR strain with resistance to piperacillin, third generation cephalosporins and quinolones (3MRGN) was detected. In contrast, the other two wards yielded 11 carbapenemase producing MDR isolates and 15 3MRGN strains. The isolates from the haemato-oncological ward belonged mostly to two specific rare sequence types (ST) (P. aeruginosa ST823 and Enterobacter cloacae complex ST167). In conclusion, clinical wastewater systems represent a reservoir for multi-drug-resistant bacteria. Consequently, preventive and intervention measures should not start at the wastewater treatment in the treatment plant, but already in the immediate surroundings of the patient, in order to minimize the infection potential. | 2019 | 30905579 |
| 3068 | 7 | 0.9766 | Metagenomic profiling of pigeon faecal microbiota: insights into microbial diversity, pathogens, and antimicrobial resistance genes. Rock pigeon (Columba livia) droppings harbour diverse microorganisms, including potential pathogens. This study utilised shotgun metagenomic sequencing to analyse pigeon faecal microbiota and identify potential pathogens. Fresh faecal samples (273) were collected within Universiti Tunku Abdul Rahman Kampar campus, Malaysia. Total genome and viral genomes were extracted and sequenced using the Illumina NovaSeq 6000 platform. Taxonomic assignment, antimicrobial resistance (AMR) gene detection, and viral genome assembly were conducted using the CZ ID platform. The microbial diversity was predominated by bacteria, followed by eukaryotic viruses and fungi, with no archaea were detected. Pseudomonadota (84.44%) and Bacillota (15.26%) were the predominant bacterial phyla, with Pseudomonadota being 5.5 times more abundant, indicating potential enteric-like issues within the pigeon flocks. Approximately 5.11% of the bacterial community (comprising 38 species), was identified as potential pathogens, could primarily cause human enteric and respiratory infections. Nineteen AMR genes were detected, primarily associated with pathogenic Shigella, Salmonella, and Klebsiella. The presence of AMR genes and possible co-circulation among pathogenic bacteria impose the risk of emergence of multidrug-resistant bacteria. Nine avian virus species were detected. The predominant DNA virus, pigeon circovirus (73.23%) could cause immunosuppression, predisposing pigeons to secondary infections by E. coli, K. pneumoniae, and rotaviruses. The predominant RNA virus, rotaviruses (80.43%) could cause enteric diseases in both humans and birds. The fungal community comprised Kazachstania (94.11%) and Trichosporon (3.56%), with K. bovina and T. asahii identified as human pathogens. This study highlights the compelling need for effective pigeon control in dining areas, ventilation systems, and healthcare facilities. | 2025 | 40833454 |
| 2100 | 8 | 0.9766 | Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon. | 2021 | 34790487 |
| 5203 | 9 | 0.9766 | Draft genome sequence analysis of a novel MLST (ST5028) and multidrug-resistant Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1 isolated from a pig farm in China. OBJECTIVES: The avian breeding industry is an important element in exposing bacteria to antibiotics. As one of the major animal welfare and economic problems for the poultry industry, multidrug-resistant Klebsiella spp. have become a substantial source of antibiotic resistance genes. In the present work, we reported the draft genome sequence of a novel multilocus sequence type (MLST) (ST5028) Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) strain 456S1, which was isolated from a pig farm in China with broad-spectrum antimicrobial activities. METHODS: Classical microbiological methods were applied to isolate and identify the strain, genomic DNA was sequenced using an Illumina HiSeq platform, and the reads were de novo assembled into contigs using CLC Genomics Workbench. The assembled contigs were annotated, and whole-genome sequencing (WGS) analysis was performed. RESULTS: WGS analysis revealed that the genome of strain 456S1 comprised a circular chromosome of 5,419,059 bp (GC content, 57.8%), harbouring 12 important antibiotic resistance genes: aac(6')-ib-cr, aadA16, floR, dfrA27, fosA, tet(D), blaOKP-B-3, oqxA, oqxB, qnrB6, sul1 and arr-3. The Klebsiella quasipneumoniae subsp. similipneumoniae (Kp4) 456S1 was also found to belong to a novel sequence type (ST5028) determined by MLST. CONCLUSION: The genome sequence reported herein will provide useful information for antibiotic resistance and pathogenic mechanisms in Klebsiella quasipneumoniae and will be a reference for comparative analysis with genomic features among different sources of clinically important multidrug-resistant strains, especially among bacteria of animal and human origin. | 2021 | 33516893 |
| 2371 | 10 | 0.9765 | Sewage from a secondary hospital in Ribeirão Preto, southeastern Brazil: a source of multidrug-resistant Enterobacteriaceae. Antimicrobial resistance is one of the severe threats to global health. Hospital sewage can serve as a reservoir for multi-resistant bacteria and promote the spread of antimicrobial resistance. This study aimed to investigate the antimicrobial susceptibility and the pathogenic potential of Enterobacteriaceae isolated from the sewage of a secondary hospital in Ribeirão Preto, a city in southeastern Brazil. The strains were isolated by membrane filtration and identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF). The antimicrobial susceptibility profile was performed by disk diffusion. Polymerase chain reaction (PCR) assays were used to detect virulence genes among the strains. Twenty-eight isolates were obtained, with Klebsiella pneumoniae being the predominant species (71.4%, n = 20). All isolates were classified as multidrug-resistant, including four isolates that were non-susceptible to at least 50% of the tested antibiotics. All isolates were also non-susceptible to cefuroxime and sulfonamides antibiotics; however, they were susceptible to norfloxacin, ofloxacin, amikacin, gentamicin, netilmicin, ertapenem, cefazolin, cefaclor, and cefotetan. The virulence genes ycfM, fimH, mrkD, kfu, and entB were detected in several isolates. Our study showed that even in a secondary hospital, without the routine of major surgeries and intensive care admissions, the hospital sewage can harbor a high percentage of multidrug-resistant bacteria with pathogenic potential. This leads to the worrying risk of public health and environmental contamination. | 2022 | 36527506 |
| 1425 | 11 | 0.9765 | Distribution and Antimicrobial Resistance of Complicated Intraabdominal Infection Pathogens in Two Tertiary Hospitals in Egypt. Background: Management of complicated intraabdominal infections (cIAIs) requires containment of the source and appropriate initial antimicrobial therapy. Identifying the local data is important to guide the empirical selection of antimicrobial therapy. In this study, we aimed to describe the pathogen distribution and antimicrobial resistance of cIAI. Methods: In two major tertiary care hospitals in Egypt, we enrolled patients who met the case definition of cIAI from October 2022 to September 2023. Blood cultures were performed using the BACTAlert system (BioMerieux, Marcy l'Etoile, France). A culture of aspirated fluid, resected material, or debridement of the infection site was performed. Identification of pathogens and antimicrobial susceptibility testing were conducted by the VITEK-2 system (BioMerieux, Marcy l'Etoile, France). Gram-negative resistance genes were identified by PCR and confirmed by whole bacterial genome sequencing using the Nextera XT DNA Library Preparation Kit and sequencing with the MiSeq Reagent Kit 600 v3 (Illumina, USA) on the Illumina MiSeq. Results: We enrolled 423 patients, 275 (65.01%) males. The median age was 61.35 (range 25-72 years). We studied 452 recovered bacterial isolates. Gram-negative bacteria were the vast majority, dominated by E. coli, followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Proteus mirabilis (33.6%, 30.5%, 13.7%, 13%, and 5.4%, respectively). High rates of resistance were detected to third- and fourth-generation cephalosporins and fluoroquinolones. No resistance was detected to colistin. Resistance to amikacin and tigecycline was low among all isolates. Resistance to meropenem and ceftazidime/avibactam was moderate. ESBL genes were common in E. coli and K. pneumoniae. CTX-M15 gene was the most frequent. Among Enterobacterales, bla(OXA-48) and bla(NDM) were the most prevalent carbapenemase genes. Pseudomonas aeruginosa isolates harbored a wide variety of carbapenemase genes (OXA, NDM, VIM, SIM, GIM, SPM, IMP, AIM), dominated by metallo-beta-lactamases. In 20.6% of isolates, we identified two or more resistance genes. Conclusion: High resistance rates were detected to third- and fourth-generation cephalosporins and fluoroquinolones. Amikacin and tigecyclines were the most active antimicrobials. Our data call for urgent implementation of antimicrobial stewardship programs and reinforcement of infection control. | 2024 | 39172656 |
| 1424 | 12 | 0.9765 | Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes. | 2023 | 37289837 |
| 958 | 13 | 0.9764 | Whole-Genome Analysis of Multidrug-Resistant Klebsiella pneumoniae Kp04 Reveals Distinctive Antimicrobial and Arsenic-Resistance Genomic Features: A Case Study from Bangladesh. Multidrug-resistant bacteria, particularly extended-spectrum-beta-lactamase-producing (ESBL) bacteria, pose a significant global public health challenge. Klebsiella pneumoniae (KPN) is frequently implicated in cases of this resistance. This study aimed to investigate the presence of drug and metal resistance genes in clinical K. pneumoniae isolate Kp04 and comparative genomics of clinical KPN isolates characterized from Bangladesh. A total of 12 isolates were collected. Disk-diffusion assay showed that all five isolates were resistant to 14 out of 21 tested antibiotics and sensitive to only three-tigecycline, imipenem, and meropenem. KPN Kp04 was positive for both bla(SHV) and bla(CTX-M) ESBL genes in PCR. All five isolates produced PCR amplicons of the correct size for ampicillin (ampC), tetracycline (tetC), fluoroquinolone (qnrS), and aminoglycoside (aadA) resistance genes. The whole genome of Kp04 was sequenced using the MiSeq Platform (V3 kit, 2 × 300 cycles). We utilized different databases to detect Antibiotic-Resistant Genes (ARGs), virulence factor genes (VFGs), and genomic functional features of the Kp04 strain. Whole-genome sequencing identified 75 ESBL, virulence, and multiple drug-resistant (MDR) genes including bla(SHV), tetA, oqxA, oqxB, aadA, sul1-5, and mphA in KPN Kp04 isolate. Pan-genomic analysis of 43 Bangladeshi KPN isolates showed similarities between Dhaka and Chattogram isolates regarding virulence and antibiotic-resistant genes. Our results indicate the transmission of similar virulent KPN strains in Dhaka and Chattogram. This study would provide valuable information about drug sensitivity, antibiotic, and metal resistance features of K. pneumoniae circulated among hospitalized patients in Bangladeshi megacities. | 2024 | 39613891 |
| 948 | 14 | 0.9764 | Multidrug-Resistant Bacteria in Aquaculture Systems in Accra, Ghana. BACKGROUND: Antibiotic resistance (ABR) poses a critical global health challenge, necessitating its surveillance across both human and animal health sectors. This study evaluated ABR in bacteria harboured in reared inland fishes sold in Accra and the pond water from which they originated. METHOD: The study was cross-sectional, involving fishes and water sampled from 80 ponds. The gastrointestinal organs of the fishes were homogenised and cultured for bacteria, as were the water samples. The bacteria were identified using matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF-MS). Antimicrobial susceptibility test was done using the Kirby-Bauer method. Multidrug-resistant (MDR) bacteria were selected for further testing. The double disc diffusion method was used to detect extended-spectrum beta-lactamase (ESBL) production in isolates that were resistant to third-generation cephalosporins. Whole genome sequencing was performed on the ESBL-positive isolates using the Illumina Miseq platform. RESULTS: In total, 39 different bacterial species, with their individual numbers totalling 391, were isolated. The bacteria were predominantly Escherichia coli (17%), Aeromonas veronii (11%), Citrobacter freundii (8%), Bacillus cereus (5%), and Klebsiella pneumoniae (5%). The overall ABR rates were cefotaxime (32%), gentamicin (1%), ciprofloxacin (4%), chloramphenicol (19%), tetracycline (37%), meropenem (0%), and ertapenem (0%). Overall MDR and ESBL bacteria prevalence were 13.6% and 1.3%, respectively. The sequence types of the ESBL isolates were ST4684 (80%, n = 4) and ST2005 (20%, n = 1), and the serotypes were H34:09 (80%, n = 4) and H7 (20%, n = 1); the ABR genes were blaCTX-M-15, fosA7, and qnrS1. CONCLUSION: The fishes and the pond water were contaminated with a diverse range of bacteria, mainly Escherichia coli and Aeromonas veronii. The ABR, MDR, and ESBL rates were low to moderate. Moreover, the main sequence type and serotype of the ESBL isolates were ST4684 and H34:09, respectively, and the ABR genes were blaCTX-M-15, fosA7, and qnrS1. | 2024 | 39600552 |
| 1215 | 15 | 0.9763 | The role of the plasmid-mediated fluoroquinolone resistance genes as resistance mechanisms in pediatric infections due to Enterobacterales. INTRODUCTION: Fluoroquinolones (FQs) are not commonly prescribed in children, yet the increasing incidence of multidrug-resistant (MDR) Enterobacterales (Ent) infections in this population often reveals FQ resistance. We sought to define the role of FQ resistance in the epidemiology of MDR Ent in children, with an overall goal to devise treatment and prevention strategies. METHODS: A case-control study of children (0-18 years) at three Chicago hospitals was performed. Cases had infections by FQ-susceptible, β-lactamase-producing (bla) Ent harboring a non- or low-level expression of PMFQR genes (PMFQS Ent). Controls had FQR infections due to bla Ent with expressed PMFQR genes (PMFQR Ent). We sought bla genes by PCR or DNA (BD Max Check-Points assay(®)) and PMFQR genes by PCR. We performed rep-PCR, MLST, and E. coli phylogenetic grouping. Whole genome sequencing was additionally performed on PMFQS Ent positive isolates. Demographics, comorbidities, and device, antibiotic, and healthcare exposures were evaluated. Predictors of infection were assessed. RESULTS: Of 170 β-lactamase-producing Ent isolates, 85 (50%) were FQS; 23 (27%) had PMFQR genes (PMFQS cases). Eighty-five (50%) were FQR; 53 (62%) had PMFQR genes (PMFQR controls). The median age for children with PMFQS Ent and PMFQR Ent was 4.3 and 6.2 years, respectively (p = NS). Of 23 PMFQS Ent, 56% were Klebsiella spp., and of 53 PMFQR Ent, 76% were E. coli. The most common bla and PMFQR genes detected in PMFQS Ent were bla (SHV ESBL) (44%) and oqxAB (57%), and the corresponding genes detected in PMFQR Ent were bla (CTX-M-1-group ESBL) (79%) and aac(6')-Ib-cr (83%). Whole genome sequencing of PMFQS Ent revealed the additional presence of mcr-9, a transferable polymyxin resistance gene, in 47% of isolates, along with multiple plasmids and mobile genetic elements propagating drug resistance. Multivariable regression analysis showed that children with PMFQS Ent infections were more likely to have hospital onset infection (OR 5.7, 95% CI 1.6-22) and isolates containing multiple bla genes (OR 3.8, 95% CI 1.1-14.5). The presence of invasive devices mediated the effects of healthcare setting in the final model. Differences in demographics, comorbidities, or antibiotic use were not found. CONCLUSIONS: Paradoxically, PMFQS Ent infections were often hospital onset and PMFQR Ent infections were community onset. PMFQS Ent commonly co-harbored multiple bla and PMFQR genes, and additional silent, yet transferrable antibiotic resistance genes such as mcr-9, affecting therapeutic options and suggesting the need to address infection prevention strategies to control spread. Control of PMFQS Ent infections will require validating community and healthcare-based sources and risk factors associated with acquisition. | 2023 | 37900312 |
| 2777 | 16 | 0.9763 | Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding β-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of bla(SHV) and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. bla(GES)-type carbapenemases significantly contributed to the spread of drug resistance in the environment. | 2021 | 34455199 |
| 2098 | 17 | 0.9763 | Continuity of carbapenem resistance determinants in carioca river and Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil, after decade. Antimicrobial resistance is a major global issue in the 21st century, extending beyond hospitals to various ecosystems and organisms, including animals, soil, and bodies of water, thus becoming a One Health concern. This study investigates resistant Gram-negative bacteria and their antimicrobial resistance genes in water samples from the Carioca River (CR) and Rodrigo de Freitas Lagoon (RFL) in Rio de Janeiro, Brazil. The samples were collected from different locations, and bacteria were identified using Matrix-Assisted Laser Desorption/Ionization Time of Flight technology. Antimicrobial susceptibility was evaluated using the agar disk diffusion method and minimum inhibitory concentration testing. The presence of resistance determinants was investigated through conventional Polymerase Chain Reaction. Among the 101 Gram-negative isolates, 45% (46/101) were non-susceptible to carbapenems, with resistance genes found, including bla(KPC) (41%; 19/46), bla(GES) (26%; 12/46), bla(NDM) (6%; 3/46), bla(CTX−M) (6%; 3/46) and bla(VIM) (2%; 1/46). The intl1 was detected in 32% (15/46) of the bacterial isolates. When comparing the current study to a 2013 investigation, the consistent presence of bla(KPC) was observed at CR collection points. Additionally, bla(KPC) was detected in RFL. This highlights the persistent presence of bla(KPC) in the investigated environments, posing a threat to human, animal and environmental health. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1038/s41598-025-21876-9. | 2025 | 41168283 |
| 1220 | 18 | 0.9762 | Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae in Wastewater Effluent in Blantyre, Malawi. Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (Ec), Klebsiella pneumoniae (Kp), and Enterobacter cloacae (Enc) in effluent from WWTP in Blantyre, Malawi, to generate evidence and provide baseline information for interventions. Methods: Selective chromogenic agar was used to identify ESBL-producing bacteria. Results: A total of 288 samples were collected between April 2023 and March 2024, and 97.6% (281/288) yielded one or more presumptive ESBL isolates. Bacterial growth was confirmed as 48.9% Ec (255/522), 33.0% Kp (172/522), and 10.0% Enc (52/522). Antibiotic susceptibility testing showed the highest resistance to ceftriaxone (Ec, 100.0%; Kp, 98.3%; Enc, 100.0%) and the lowest resistance to meropenem (Ec, 6.3%, Kp, 1.2%; Enc, 3.8%) among the antibiotics that were tested. Multiple antibiotic resistance phenotypes were observed in 73.1% of the isolates, with the most prevalent phenotype being amoxicillin + clavulanate/cotrimoxazole/doxycycline/ciprofloxacin/gentamicin/azithromycin/ceftriaxone (55, 15.7%). Conclusions: The study demonstrated ongoing environmental contamination with antibiotic-resistant bacteria from sewage effluent. Therefore, the functionality of WWTPs should be improved to minimize the release of these organisms into the environment. | 2025 | 40558152 |
| 1119 | 19 | 0.9761 | Prevalence and molecular characterization of antibiotic resistance and associated genes in Klebsiella pneumoniae isolates: A clinical observational study in different hospitals in Chattogram, Bangladesh. OBJECTIVE: This study was performed to investigate the prevalence of multidrug resistance and molecular characterization of Klebsiella pneumoniae (KPN) from clinical isolates in the southern region of Bangladesh. Additional analysis of the prevalence of blaNDM-1, blaSHV-11, uge genes of KPN was also carried out among these clinical isolates. METHOD: The study was carried out using 1000 clinical isolates collected from two different hospitals of Chattogram. A drug susceptibility test was performed by the disk diffusion method to detect KPN's response to 16 antibiotics. The presence of antibiotic-resistant and (or) virulent genes blaNDM-1, blaSHV-11, uge were investigated using the PCR technique. Isolates having blaNDM-1, blaSHV-11, uge gene were further validated by sequencing followed by phylogenetic analysis. Phylogenetic relationships among these isolates were determined by Clustal omega and MEGA7. RESULT: A total of 79%, 77%, 74.9%, 71%, 66% and 65% isolates exhibited resistance against cefuroxime, cefixime, cefotaxime, ceftazidime, cefepime and ceftriaxone respectively. The frequency of resistance to other antibiotics varied from 26.5% to 61.8%. PCR analysis showed that 64% of strains harbored blaNDM-1 gene, and 38% strains harbored blaSHV-11 gene. Moreover, 47% of samples were carrying uge gene, and 19% of samples carried blaNDM-1, blaSHV-11, uge genes together. CONCLUSION: In this study, we've analysed the pattern of expression as well as prevalence of blaNDM-1, blaSHV-11, and uge genes in Klebsiella isolates. Upon molecular and statistical analysis, we found a high prevalence of multi-drug resistance KPN strains in the isolates. The Klebsiella isolates were confirmed to harbor multiple ESBL genes and 64% of the isolates were found to be producing NDM-1. As multidrug resistance is an alarming issue, continuous surveillance and routine clinical detection of resistant bacteria and plasmids are necessary to prevent catastrophic public health incidents. | 2021 | 34506611 |