ALS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
000.9372Antibiotic Resistance in Staphylococci Isolated from Pigeons. Résumé- La flore microbienne du nez de 45 pigeons voyageurs a été examinée selon la présence de bactéries virtuellement pathologiques. La plupart de bactéries isolées sont Staphylococcus intermedius et S. lentus, qui montrent une grande résistance envers les antibiotiques qui arrêtent la synthèse des proteines. Ces gènes de résistance sont localisés chez S. lentus sur les petits plasmides et chez S. intermedius surtout sur le chromosome. Ce fait correspond a l'état de S. intermedius des chiens, mais il y a une grande différence en comparison avec les autres espèces pathologiques des staphylocoques des bêtes et des êtres humains. La différence concerne non seulement le schème de l'antibiorésistance, mais aussi la localisation inhabituelle des gènes de résistance. Ces observations indiquent qu'il y aurait peut-être un échange de S. intermedius entre le pigeon et le chien, de sorte que le pigeon représenterait une source d'infection pour le chien. [Schwarz, S., Werckenthin, C. Antibiotic resistance in staphylococci isolated from pigeons (Résistance antibiotique aux souches de Staphylococcus intermedius isolées de pigeons). Zusammenfassung- Die mikrobielle Nasenflora von 45 Brieftauben wurde hinsichtlich des Vorkommens potentiell pathogener Bakterien untersucht. Staphylococcus intermedius und S. lentus Isolate wurden am häufigsten nachgewiesen und zeigten in hohem Maße Resistenzen gegenüber Anibiotika, die die bakterielle Proteinbiosynthese hemmen. Die entsprechenden Resistenzgene wurden bei S. lentusüberwiegend auf kleinen Plasmiden nachgewiesen, während sie bei S. intermedius ausschließlich chromosomal kodiert waren. Diesbezüglich entsprachen die S. intermedius Stämme von Tauben denen von Hunden, unterschieden sich aber deutlich von anderen pathogenen Staphylokokkenspezies von Tieren und Menschen sowohl in ihrem Resistenzmuster, als auch in der für Staphylokokken unüblichen subzellulären Lage der Resistenzgene. Diese Beobachtungen deuten auf einen möglichen Austausch von S. intermedius Stämmen zwischen Tauben und Hunden hin, wobei Tauben eine potentielle Infektionsquelle für Hunde darstellen könnten. [Schwarz, S., Werckenthin, C. Antibiotic resistance in staphylococci isolated from pigeons (Antibiotikaresistenz bei Staphylococcus intermedius von Tauben). Resumen- La flora bacteriana nasal de 45 palomas mensajeras fuera investigado respecto a la presencia de bacilos potencialamente patogenos. Isolaciones de Staphylococcus intermedius y S. lentus fueran probado lo mas frecuente y monstraban resistencias muy altas contra antibióticos lo que inhiben la biosintesis bacteriana de proteinas. Los genes de resisténcia adecuados de S. lentus fueran probado preponderantemente en plasmidos pequeños, mientras que en S. intermedius estaban codificado solamente cromosomal. En estas caracteristicas las cepas de S. intermedius de palomas conformen con aquellos de perros, pero se diferenciaban claramente de otras espécies patogenes de Staphylococcus de animales y de humanos no sólo en sus modelos de resisténcia sino también en la localisatión inusitado subcellular de los genes de resisténcia en los staphylococces. Estos obeservaciónes sugieran un intercambio posible de cepas de S. intermedius entre paloma y perro a los quales la paloma podria ser un fuente infeccioso para perros. [Schwarz, S., Werckenthin, C. Antibiotic resistance in staphylococci isolated from pigeons (Resisténcia de antibióticos de Staphylococcus intermedius de palomas). Abstract- A total of 45 carrier pigeons were investigated for the nasal carriage of potentially pathogenic bacteria. Strains of Staphylococcus intermedius and S. lentus were frequently isolated and most were resistant to one or more antibiotics which inhibit bacterial protein biosynthesis. In S. lentus, the respective resistance genes could be detected on small plasmids, whereas they were carried on the chromosome in S. intermedius. Thus, S. intermedius from pigeons appeared similar to S. intermedius from dogs, but differed from other pathogenic staphylococci of human and animal origin not only in its resistance pattern, but also in the location of the resistance genes. This observation might indicate a possible exchange of S. intermedius strains between pigeons and dogs and consequently identify pigeons as a potential source of infection for dogs.199434645038
65210.9082A simple method to generate chromosomal mutations in Lactobacillus plantarum strain TF103 to eliminate undesired fermentation products. Gram-positive bacteria have been explored to convert lignocellulosic biomass to biofuel and bioproducts. Our long-term goal is to create genetically engineered lactic acid bacteria (LAB) strains that convert agricultural biomass into ethanol and other value-added products. The immediate approaches toward this goal involve genetic manipulations by either introducing ethanol production pathway genes or inactivating pathways genes that lead to production of undesired byproducts. The widely studied species Lactobacillus plantarum is now considered a model for genetic manipulations of LAB. In this study, L. plantarum TF103 strain, in which two of the chromosomal L-ldh and D-ldh genes are inactivated, was used to introduce additional mutations on the chromosome to eliminate undesired fermentation products. We targeted the acetolactate synthase gene (als) that converts pyruvate to acetolactate, to eliminate the production of acetoin and 2,3-butanodial. A pBluescript derivative containing sections of the als coding region and an erythromycin resistance gene was directly introduced into L. plantarum TF103 cells to create mutations under selection pressure. The resulting erythromycin resistant (Emr) TF103 strain appears to have chromosomal mutations of both the als and the adjacent lysP genes as revealed by polymerase chain reaction and Southern blot analyses. Mutations were thus generated via targeted homologous recombination using a Gram-negative cloning vector, eliminating the use of a shuttle vector. This method should facilitate research in targeted inactivation of other genes in LAB.200616915693
65120.9082A simple method to generate chromosomal mutations in Lactobacillus plantarum strain TF103 to eliminate undesired fermentation products. Gram-positive bacteria have been explored to convert lignocellulosic biomass to biofuel and bioproducts. Our long-term goal is to create genetically engineered lactic acid bacteria (LAB) strains that convert agricultural biomass into ethanol and other value-added products. The immediate approaches toward this goal involve genetic manipulations by either introducing ethanol production pathway genes or inactivating pathways genes that lead to production of undesired byproducts. The widely studied species Lactobacillus plantarum is now considered a model for genetic manipulations of LAB. In this study, L. plantarum TF103 strain, in which two of the chromosomal L-ldh and D-ldh genes are inactivated, was used to introduce additional mutations on the chromosome to eliminate undesired fermentation products. We targeted the acetolactate synthase gene (als) that converts pyruvate to acetolactate, to eliminate the production of acetoin and 2,3-butanodial. A pBluescript derivative containing sections of the als coding region and an erythromycin resistance gene was directly introduced into L. plantarum TF103 cells to create mutations under selection pressure. The resulting erythromycin resistant (Em(r)) TF103 strain appears to have chromosomal mutations of both the als and the adjacent lysP genes as revealed by polymerase chain reaction and Southern blot analyses. Mutations were thus generated via targeted homologous recombination using a Gram-negative cloning vector, eliminating the use of a shuttle vector. This method should facilitate research in targeted inactivation of other genes in LAB.200618563659
601030.9053The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Putrescine, one of the main biogenic amines associated to microbial food spoilage, can be formed by bacteria from arginine via ornithine decarboxylase (ODC), or from agmatine via agmatine deiminase (AgDI). This study aims to correlate putrescine production from agmatine to the pathway involving N-carbamoylputrescine formation via AdDI (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), or putrescine carbamoyltransferase (the ptcA product) in bacteria. PCR methods were developed to detect the two genes involved in putrescine production from agmatine. Putrescine production from agmatine could be linked to the aguA and ptcA genes in Lactobacillus hilgardii X1B, Enterococcus faecalis ATCC 11700, and Bacillus cereus ATCC 14579. By contrast Lactobacillus sakei 23K was unable to produce putrescine, and although a fragment of DNA corresponding to the gene aguA was amplified, no amplification was observed for the ptcA gene. Pseudomonas aeruginosa PAO1 produces putrescine and is reported to harbour aguA and aguB genes, responsible for agmatine deiminase and N-carbamoylputrescine amidohydrolase activities. The enzyme from P. aeruginosa PAO1 that converts N-carbamoylputrescine to putrescine (the aguB product) is different from other microorganisms studied (the ptcA product). Therefore, the aguB gene from P. aeruginosa PAO1 could not be amplified with ptcA-specific primers. The aguB and ptcA genes have frequently been erroneously annotated in the past, as in fact these two enzymes are neither homologous nor analogous. Furthermore, the aguA, aguB and ptcA sequences available from GenBank were subjected to phylogenetic analysis, revealing that gram-positive bacteria harboured ptcA, whereas gram-negative bacteria harbour aguB. This paper also discusses the role of the agmatine deiminase system (AgDS) in acid stress resistance.201021404211
51940.9029The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate. The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH(-) mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH(-) mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide "added protection" for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway.201222563425
80350.9027Nucleotide sequences and genetic analysis of hydrogen oxidation (hox) genes in Azotobacter vinelandii. Azotobacter vinelandii contains a heterodimeric, membrane-bound [NiFe]hydrogenase capable of catalyzing the reversible oxidation of H2. The beta and alpha subunits of the enzyme are encoded by the structural genes hoxK and hoxG, respectively, which appear to form part of an operon that contains at least one further potential gene (open reading frame 3 [ORF3]). In this study, determination of the nucleotide sequence of a region of 2,344 bp downstream of ORF3 revealed four additional closely spaced or overlapping ORFs. These ORFs, ORF4 through ORF7, potentially encode polypeptides with predicted masses of 22.8, 11.4, 16.3, and 31 kDa, respectively. Mutagenesis of the chromosome of A. vinelandii in the area sequenced was carried out by introduction of antibiotic resistance gene cassettes. Disruption of hoxK and hoxG by a kanamycin resistance gene abolished whole-cell hydrogenase activity coupled to O2 and led to loss of the hydrogenase alpha subunit. Insertional mutagenesis of ORF3 through ORF7 with a promoterless lacZ-Kmr cassette established that the region is transcriptionally active and involved in H2 oxidation. We propose to call ORF3 through ORF7 hoxZ, hoxM, hoxL, hoxO, and hoxQ, respectively. The predicted hox gene products resemble those encoded by genes from hydrogenase-related operons in other bacteria, including Escherichia coli and Alcaligenes eutrophus.19921624446
160.9025Constructs for insertional mutagenesis, transcriptional signal localization and gene regulation studies in root nodule and other bacteria. Cassettes have been developed that contain an antibiotic resistance marker with and without a promoterless gusA reporter gene. The nptII (encoding kanamycin resistance) or aacCI (encoding gentamicin resistance) genes were equipped with the tac promoter (Ptac) and the trpA terminator (TtrpA) and then cloned between NotI sites to construct the CAS-Nm (Ptac-nptII-TtrpA) and CAS-Gm (Ptac/PaacCI-aacCI-TtrpA) cassettes. The markers were also cloned downstream to a modified promoterless Escherichia coli gusA gene (containing TGA stop codons in all three reading frames prior to its RBS and start codon) to construct the CAS-GNm (gusA-Ptac-nptII-TtrpA) or CAS-GGm (gusA-Ptac/PaacCI-aacCI-TtrpA) cassettes. Cassettes containing the promoterless gusA create type I fusions with a target DNA sequence to detect transcriptional activity. The promoterless gusA gene has also been cloned into a broad-host-range IncP1 plasmid. This construct will enable transcriptional activity to be monitored in different genetic backgrounds. Each cassette was cloned as a NotI fragment into the NotI site of a pUT derivative to construct four minitransposons. The mTn5-Nm (containing Ptac-nptII-TtrpA) and mTn5-Gm (containing Ptac/PaacCI-aacCI-TtrpA) minitransposons have been constructed specifically for insertional inactivation studies. The minitransposons mTn5-GNm (containing gusA-Ptac-nptII-TtrpA) and mTn5-GGm (containing gusA-Ptac/PaacCI-aacCI-TtrpA) can be used for transcription signal localization or insertional inactivation. The TAC-31R and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-Nm, CAS-Gm, mTn5-Nm and mTn5-Gm. The WIL3 and TAC-105F primers can be used to sequence DNA flanking both sides of CAS-GNm, CAS-GGm, mTn5-GNm and mTn5-GGm. The specific application of these constructs to generate acid- or nodule-inducible fusions is presented. The new constructs provide useful tools for insertional mutagenesis, transcriptional signal localization and gene regulation studies in the root nodule bacteria and possibly other gram-negative bacteria.199910411257
875770.9021Soybean FGAM synthase promoters direct ectopic nematode feeding site activity. Soybean cyst nematode (SCN) resistance in soybean is a complex oligogenic trait. One of the most important nematode resistance genes, rhg1, has been mapped to a distal region of molecular linkage group G in soybean. A simplified genetic system to identify soybean genes with modified expression in response to SCN led to the identification of several genes within the nematode feeding sites. The genes were mapped to reveal their linkage relationship to known QTLs associated with soybean cyst nematode (SCN) resistance. One candidate, a phosphoribosyl formyl glycinamidine (FGAM) synthase (EC 6.3.5.3) gene, mapped to the same genomic interval as the major SCN resistance gene rhg1 within linkage group G. Isolation of FGAM synthase from a soybean bacterial artificial chromosome (BAC) library revealed two highly homologous paralogs. The genes appeared to be well conserved between bacteria and humans. Promoter analysis of the two soybean homologs was carried out with the Arabidopsis thaliana - Heterodera schachtii system to investigate gene response to nematode feeding. The two promoters and their derived deletion constructions effected green fluorescent protein (GFP) expression within nematode feeding sites. The 1.0-kb promoter sequence immediately adjacent to the translation start site was sufficient to direct expression of GFP within syncytia. A wound-inducible element and a floral organ expression sequence were also identified within these promoters. Although a nematode-responsive element could not be identified, the observed expression of GFP within feeding sites supports the hypothesis that plant gene expression is redirected within feeding sites to benefit the parasite.200415060594
872980.9020Protein S-Acyl Transferase GhPAT27 Was Associated with Verticillium wilt Resistance in Cotton. Protein palmitoylation is an ability of the frame of the cell marker protein is one of the most notable reversible changes after translation. However, studies on protein palmitoylation in cotton have not yet been performed. In our current research, the PAT gene family was systematically identified and bioinformatically analyzed in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, and 211 PAT genes were authenticated and classified into six subfamilies. Sixty-nine PAT genes were identified in upland cotton, mainly at the ends of its the 26 chromosomes of upland cotton. The majority of these genes are located in the nucleus of the plant. Gene structure analysis revealed that each member encodes a protein that which contains at least one DHHC structural domain. Cis-acting element analysis indicated that GhPATs genes are mainly involved in hormone production, light response and stress response. Gene expression pattern analysis indicated that most GhPATs genes were differentially expressed upon induction by pathogenic bacteria, drought, salt, hot and cold stresses, and some GhPATs could be induced by multiple abiotic stresses simultaneously. GhPATs genes showed different expression patterns in tissue-specific assays and were found to be preferentially expressed in roots, followed by expression in stems and leaves. Virus-induced gene silencing (VIGS) experiments showed that cotton was significantly less resistant to Verticillium dahliae when GhPAT27 was silenced. We conclude that the GhPAT27 gene, which mediates S-palmitoylation acetylation, may be involved in the regulation of upland cotton resistance to Verticillium wilt (VW). Overall, this work has provided a fundamental framework for understanding the latent capabilities of GhPATs and a solid foundation for molecular breeding and plant pathogen resistance in cotton.202236297782
52990.9017Crystal structure of the transcriptional repressor PagR of Bacillus anthracis. PagR is a transcriptional repressor in Bacillus anthracis that controls the chromosomal S-layer genes eag and sap, and downregulates the protective antigen pagA gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 A resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 degrees.201019926656
123100.9016Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together.19989523453
748110.9015Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Contact-dependent growth inhibition (CDI) systems function to deliver toxins into neighboring bacterial cells. CDI+ bacteria export filamentous CdiA effector proteins, which extend from the inhibitor-cell surface to interact with receptors on neighboring target bacteria. Upon binding its receptor, CdiA delivers a toxin derived from its C-terminal region. CdiA C-terminal (CdiA-CT) sequences are highly variable between bacteria, reflecting the multitude of CDI toxin activities. Here, we show that several CdiA-CT regions are composed of two domains, each with a distinct function during CDI. The C-terminal domain typically possesses toxic nuclease activity, whereas the N-terminal domain appears to control toxin transport into target bacteria. Using genetic approaches, we identified ptsG, metI, rbsC, gltK/gltJ, yciB, and ftsH mutations that confer resistance to specific CdiA-CTs. The resistance mutations all disrupt expression of inner-membrane proteins, suggesting that these proteins are exploited for toxin entry into target cells. Moreover, each mutation only protects against inhibition by a subset of CdiA-CTs that share similar N-terminal domains. We propose that, following delivery of CdiA-CTs into the periplasm, the N-terminal domains bind specific inner-membrane receptors for subsequent translocation into the cytoplasm. In accord with this model, we find that CDI nuclease domains are modular payloads that can be redirected through different import pathways when fused to heterologous N-terminal "translocation domains." These results highlight the plasticity of CDI toxin delivery and suggest that the underlying translocation mechanisms could be harnessed to deliver other antimicrobial agents into Gram-negative bacteria.201526305955
46120.9012The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants.201829603592
91130.9012A locus conferring resistance to Colletotrichum higginsianum is shared by four geographically distinct Arabidopsis accessions. Colletotrichum higginsianum is a hemibiotrophic fungal pathogen that causes anthracnose disease on Arabidopsis and other crucifer hosts. By exploiting natural variation in Arabidopsis we identified a resistance locus that is shared by four geographically distinct accessions (Ws-0, Kondara, Gifu-2 and Can-0). A combination of quantitative trait loci (QTL) and Mendelian mapping positioned this locus within the major recognition gene complex MRC-J on chromosome 5 containing the Toll-interleukin-1 receptor/nucleotide-binding site/leucine-rich repeat (TIR-NB-LRR) genes RPS4 and RRS1 that confer dual resistance to C. higginsianum in Ws-0 (Narusaka et al., 2009). We find that the resistance shared by these diverse Arabidopsis accessions is expressed at an early stage of fungal invasion, at the level of appressorial penetration and establishment of intracellular biotrophic hyphae, and that this determines disease progression. Resistance is not associated with host hypersensitive cell death, an oxidative burst or callose deposition in epidermal cells but requires the defense regulator EDS1, highlighting new functions of TIR-NB-LRR genes and EDS1 in limiting early establishment of fungal biotrophy. While the Arabidopsis accession Ler-0 is fully susceptible to C. higginsianum infection, Col-0 displays intermediate resistance that also maps to MRC-J. By analysis of null mutants of RPS4 and RRS1 in Col-0 we show that these genes, individually, do not contribute strongly to C. higginsianum resistance but are both required for resistance to Pseudomonas syringae bacteria expressing the Type III effector, AvrRps4. We conclude that distinct allelic forms of RPS4 and RRS1 probably cooperate to confer resistance to different pathogens.200919686535
49140.9007Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes.201627289079
8744150.9003The Arabidopsis GPI-Anchored LTPg5 Encoded by At3g22600 Has a Role in Resistance against a Diverse Range of Pathogens. Arabidopsis contains 34 genes for glycosylphosphatidylinositol (GPI)-anchored LTPg proteins. A motif analysis has placed these into four groups. With one exception, all are produced with a signal peptide and are most likely attached to the cell membrane via the GPI anchor. Several of the LTPg genes across the four groups are downregulated in syncytia induced by the beet cyst nematode Heterodera schachtii. We have here studied At3g22600 encoding LTPg5, which is the most strongly downregulated LTPg gene. It is mainly expressed in roots, and a promoter::GUS line was used to confirm the downregulation in syncytia and also showed downregulation in galls of the root knot nematode Meloidogyne incognita. In contrast, infection with bacteria (Pseudomonas syringae) and fungi (Botrytis cinerea) led to the induction of the gene in leaves. This diverse regulation of LTPg5 indicated a role in resistance, which we confirmed with overexpression lines and a T-DNA mutant. The overexpression lines were more resistant to both nematode species and to P. syringae and B. cinerea, while a knock-out mutant was more susceptible to H. schachtii and P. syringae. Thus, LTPg5 encoded by At3g22600 is part of the Arabidopsis resistance mechanism against pathogens. LTPg5 has probably no direct antimicrobial activity but could perhaps act by associating with a receptor-like kinase, leading to the induction of defense genes such as PR1.202032150834
48160.9001Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance.201322947164
547170.9000Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter.200717586628
36180.9000Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.202135055983
8759190.8996Genetic and transcriptomic dissection of host defense to Goss's bacterial wilt and leaf blight of maize. Goss's wilt, caused by the Gram-positive actinobacterium Clavibacter nebraskensis, is an important bacterial disease of maize. The molecular and genetic mechanisms of resistance to the bacterium, or, in general, Gram-positive bacteria causing plant diseases, remain poorly understood. Here, we examined the genetic basis of Goss's wilt through differential gene expression, standard genome-wide association mapping (GWAS), extreme phenotype (XP) GWAS using highly resistant (R) and highly susceptible (S) lines, and quantitative trait locus (QTL) mapping using 3 bi-parental populations, identifying 11 disease association loci. Three loci were validated using near-isogenic lines or recombinant inbred lines. Our analysis indicates that Goss's wilt resistance is highly complex and major resistance genes are not commonly present. RNA sequencing of samples separately pooled from R and S lines with or without bacterial inoculation was performed, enabling identification of common and differential gene responses in R and S lines. Based on expression, in both R and S lines, the photosynthesis pathway was silenced upon infection, while stress-responsive pathways and phytohormone pathways, namely, abscisic acid, auxin, ethylene, jasmonate, and gibberellin, were markedly activated. In addition, 65 genes showed differential responses (up- or down-regulated) to infection in R and S lines. Combining genetic mapping and transcriptional data, individual candidate genes conferring Goss's wilt resistance were identified. Collectively, aspects of the genetic architecture of Goss's wilt resistance were revealed, providing foundational data for mechanistic studies.202337652038