# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1218 | 0 | 0.9803 | Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1. | 2020 | 31999747 |
| 2100 | 1 | 0.9793 | Prevalence of Bacteria and Antimicrobial Resistance Genes in Hospital Water and Surfaces. Purpose Antimicrobial resistance (AMR) has become a worldwide environmental and public health problem, causing more than 250,000 deaths per year. Unregulated usage, unsafe hospital practices, and misuse in veterinary contribute to the development of multidrug resistance in various bacteria. Hospital water was hypothesized to be a hotspot for AMR transmission because of (1) increased exposure to antibiotic load, (2) poor drainage and sanitation system, (3) interaction between environmental and clinical microbes. The purpose of the research was to assess the biodiversity and AMR in hospital tap waters. Methodology In this study, the microflora of the hospital tap water and hospital surfaces was observed by obtaining water samples from the intensive care unit (ICU), surgical wards, and washrooms. These were processed through membrane filtration and spread on seven different media (Aeromonas Medium, Azide Dextrose Agar, MacConkey Agar, Mannitol Salt Agar, Pseudomonas Cetrimide Agar, Salmonella Shigella Agar, and Thiosulfate Citrate Bile Salts Sucrose Agar). Surface samples were collected from the faucet, basin, and drain and directly spread on the media plates. Isolates were identified using standard bacteriological and biochemical tests. Kirby-Bauer disk diffusion method was performed using 21 antibiotic disks from 10 different antibiotic classes. They included ampicillin (AMP), amoxicillin (AML), piperacillin-tazobactam (TZP), cefipime (FEP), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone (CRO), imipenem (IMP), meropenem (MEM), ciprofloxacin (CIP), moxifloxacin (MXF), levofloxacin (LEV), amikacin (AK), gentamicin (CN), tigecycline (TGC), aztreonam (ATM), erythromycin (E), clindamycin (DA), rifampicin (RD), colistin (CT), and chloramphenicol (C). The results were interpreted according to EUCAST guidelines for the antibiogram of the isolates; 38 isolates were selected out of 162 based on different parameters for genotyping and detection of six beta-lactamase genes (blaSHV, blaTEM, blaCTX-M, blaOXA, blaKPC, blaNDM). Results Among these 162 isolates, 82 were obtained from water sources and 80 were collected from surfaces (faucet, basin, drain). The isolates included a variety of bacteria including Aeromonas spp. (20%), Klebsiella spp. (13%), Staphylococcus aureus (13%), Pseudomonas spp.(10%), Escherichia coli (9%), Vibrio spp. (8%), Enterococcus spp. (6%), Shigella spp. (6%), Salmonella spp. (4%), Acinetobacter spp. (3%), Staphylococcus epidermitis (3%), Streptococci spp. (2%), Proteus spp. (1%), Citrobacter spp. (1%), and Serratia spp. (1%). A diverse range of microbes were identified including clinically relevant bacteria, which shows that the urban water cycle is already contaminated with multidrug-resistant microflora of the hospital settings. Macrolide and lincosamide showed the highest resistance followed by penicillin, monobactam, and cephalosporins. blaSHV and blaTEM were prevalent in samples. blaNDM was also found which manifests as a real threat since it causes resistance against carbapenems and colistin, antibiotics reserved as a last resort against infections. Conclusions This study presented the ground reality of antibiotic resistance in Pakistan and how its subsequent spread poses a great threat to the strides made in the field of medicine and public health. Strict regulations regarding antibiotic usage, hospital effluent, and urban water sanitation must be imposed to curb the devastating effects of this increasing phenomenon. | 2021 | 34790487 |
| 1220 | 2 | 0.9791 | Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae in Wastewater Effluent in Blantyre, Malawi. Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (Ec), Klebsiella pneumoniae (Kp), and Enterobacter cloacae (Enc) in effluent from WWTP in Blantyre, Malawi, to generate evidence and provide baseline information for interventions. Methods: Selective chromogenic agar was used to identify ESBL-producing bacteria. Results: A total of 288 samples were collected between April 2023 and March 2024, and 97.6% (281/288) yielded one or more presumptive ESBL isolates. Bacterial growth was confirmed as 48.9% Ec (255/522), 33.0% Kp (172/522), and 10.0% Enc (52/522). Antibiotic susceptibility testing showed the highest resistance to ceftriaxone (Ec, 100.0%; Kp, 98.3%; Enc, 100.0%) and the lowest resistance to meropenem (Ec, 6.3%, Kp, 1.2%; Enc, 3.8%) among the antibiotics that were tested. Multiple antibiotic resistance phenotypes were observed in 73.1% of the isolates, with the most prevalent phenotype being amoxicillin + clavulanate/cotrimoxazole/doxycycline/ciprofloxacin/gentamicin/azithromycin/ceftriaxone (55, 15.7%). Conclusions: The study demonstrated ongoing environmental contamination with antibiotic-resistant bacteria from sewage effluent. Therefore, the functionality of WWTPs should be improved to minimize the release of these organisms into the environment. | 2025 | 40558152 |
| 1215 | 3 | 0.9790 | The role of the plasmid-mediated fluoroquinolone resistance genes as resistance mechanisms in pediatric infections due to Enterobacterales. INTRODUCTION: Fluoroquinolones (FQs) are not commonly prescribed in children, yet the increasing incidence of multidrug-resistant (MDR) Enterobacterales (Ent) infections in this population often reveals FQ resistance. We sought to define the role of FQ resistance in the epidemiology of MDR Ent in children, with an overall goal to devise treatment and prevention strategies. METHODS: A case-control study of children (0-18 years) at three Chicago hospitals was performed. Cases had infections by FQ-susceptible, β-lactamase-producing (bla) Ent harboring a non- or low-level expression of PMFQR genes (PMFQS Ent). Controls had FQR infections due to bla Ent with expressed PMFQR genes (PMFQR Ent). We sought bla genes by PCR or DNA (BD Max Check-Points assay(®)) and PMFQR genes by PCR. We performed rep-PCR, MLST, and E. coli phylogenetic grouping. Whole genome sequencing was additionally performed on PMFQS Ent positive isolates. Demographics, comorbidities, and device, antibiotic, and healthcare exposures were evaluated. Predictors of infection were assessed. RESULTS: Of 170 β-lactamase-producing Ent isolates, 85 (50%) were FQS; 23 (27%) had PMFQR genes (PMFQS cases). Eighty-five (50%) were FQR; 53 (62%) had PMFQR genes (PMFQR controls). The median age for children with PMFQS Ent and PMFQR Ent was 4.3 and 6.2 years, respectively (p = NS). Of 23 PMFQS Ent, 56% were Klebsiella spp., and of 53 PMFQR Ent, 76% were E. coli. The most common bla and PMFQR genes detected in PMFQS Ent were bla (SHV ESBL) (44%) and oqxAB (57%), and the corresponding genes detected in PMFQR Ent were bla (CTX-M-1-group ESBL) (79%) and aac(6')-Ib-cr (83%). Whole genome sequencing of PMFQS Ent revealed the additional presence of mcr-9, a transferable polymyxin resistance gene, in 47% of isolates, along with multiple plasmids and mobile genetic elements propagating drug resistance. Multivariable regression analysis showed that children with PMFQS Ent infections were more likely to have hospital onset infection (OR 5.7, 95% CI 1.6-22) and isolates containing multiple bla genes (OR 3.8, 95% CI 1.1-14.5). The presence of invasive devices mediated the effects of healthcare setting in the final model. Differences in demographics, comorbidities, or antibiotic use were not found. CONCLUSIONS: Paradoxically, PMFQS Ent infections were often hospital onset and PMFQR Ent infections were community onset. PMFQS Ent commonly co-harbored multiple bla and PMFQR genes, and additional silent, yet transferrable antibiotic resistance genes such as mcr-9, affecting therapeutic options and suggesting the need to address infection prevention strategies to control spread. Control of PMFQS Ent infections will require validating community and healthcare-based sources and risk factors associated with acquisition. | 2023 | 37900312 |
| 1494 | 4 | 0.9788 | Characterization of a Novel Chromosomal Class C β-Lactamase, YOC-1, and Comparative Genomics Analysis of a Multidrug Resistance Plasmid in Yokenella regensburgei W13. Yokenella regensburgei, a member of the family Enterobacteriaceae, is usually isolated from environmental samples and generally resistant to early generations of cephalosporins. To characterize the resistance mechanism of Y. regensburgei strain W13 isolated from the sewage of an animal farm, whole genome sequencing, comparative genomics analysis and molecular cloning were performed. The results showed that a novel chromosomally encoded class C β-lactamase gene with the ability to confer resistance to β-lactam antibiotics, designated bla (YOC) (-) (1), was identified in the genome of Y. regensburgei W13. Kinetic analysis revealed that the β-lactamase YOC-1 has a broad spectrum of substrates, including penicillins, cefazolin, cefoxitin and cefotaxime. The two functionally characterized β-lactamases with the highest amino acid identities to YOC-1 were CDA-1 (71.69%) and CMY-2 (70.65%). The genetic context of the bla (YOC) (-) (1) -ampR-encoding region was unique compared with the sequences in the NCBI nucleotide database. The plasmid pRYW13-125 of Y. regensburgei W13 harbored 11 resistance genes (bla (OXA) (-) (10), bla (LAP) (-) (2), dfrA14, tetA, tetR, cmlA5, floR, sul2, ant(3″)-IIa, arr-2 and qnrS1) within an ∼34 kb multidrug resistance region; these genes were all related to mobile genetic elements. The multidrug resistance region of pYRW13-125 shared the highest identities with those of two plasmids from clinical Klebsiella pneumoniae isolates, indicating the possibility of horizontal transfer of these resistance genes between bacteria of various origins. | 2020 | 32973731 |
| 1996 | 5 | 0.9788 | Conjugation of plasmid harboring bla (NDM-1) in a clinical Providencia rettgeri strain through the formation of a fusion plasmid. Providencia rettgeri has recently gained increased importance owing to the New Delhi metallo-β-lactamase (NDM) and other β-lactamases produced by its clinical isolates. These enzymes reduce the efficiency of antimicrobial therapy. Herein, we reported the findings of whole-genome sequence analysis and a comprehensive pan-genome analysis performed on a multidrug-resistant P. rettgeri 18004577 clinical strain recovered from the urine of a hospitalized patient in Shandong, China, in 2018. Providencia rettgeri 18004577 was found to have a genome assembly size of 4.6 Mb with a G + C content of 41%; a circular plasmid p18004577_NDM of 273.3 Kb, harboring an accessory multidrug-resistant region; and a circular, stable IncT plasmid p18004577_Rts of 146.2 Kb. Additionally, various resistance genes were identified in its genome, including bla (NDM-1), bla (OXA-10), bla (PER-4), aph(3')-VI, ant(2'')-Ia, ant(3')-Ia, sul1, catB8, catA1, mph(E), and tet. Conjugation experiments and whole-genome sequencing revealed that the bla (NDM-1) gene could be transferred to the transconjugant via the formation of pJ18004577_NDM, a novel hybrid plasmid. Based on the genetic comparison, the main possible formation process for pJ18004577_NDM was the insertion of the [ΔISKox2-IS26-ΔISKox2]-aph(3')-VI-bla (NDM-1) translocatable unit module from p18004577_NDM into plasmid p18004577_Rts in the Russian doll insertion structure (ΔISKox2-IS26-ΔISKox2), which played a role similar to that of IS26 using the "copy-in" route in the mobilization of [aph(3')-VI]-bla (NDM-1). The array, multiplicity, and diversity of the resistance and virulence genes in this strain necessitate stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of the resistance genes. Roary analysis based on 30 P. rettgeri strains pan genome identified 415 core, 756 soft core, 5,744 shell, and 12,967 cloud genes, highlighting the "close" nature of P. rettgeri pan-genome. After a comprehensive pan-genome analysis, representative biological information was revealed that included phylogenetic distances, presence or absence of genes across the P. rettgeri bacteria clade, and functional distribution of proteins. Moreover, pan-genome analysis has been shown to be an effective approach to better understand P. rettgeri bacteria because it helps develop various tailored therapeutic strategies based on their biological similarities and differences. | 2022 | 36687647 |
| 1991 | 6 | 0.9787 | A strain defined as a novel species in the Acinetobacter genus co-harboring chromosomal associated tet(X3) and plasmid associated bla (NDM-1) from a beef cattle farm in Hebei, China. INTRODUCTION: The co-existence phenomenon of antibiotic resistance genes (ARGs), particularly of last-resort antibiotics in multi-drug resistant (MDR) bacteria, is of particular concern in the least studied bacterial species. METHODS: In 2023, strain M2 was isolated from the sludge sample at a commercial bovine farm in Hebei province, China, using a MacConkey plate containing meropenem. PCR amplification and Sanger sequencing verified it co-carrying bla (NDM) and tet(X) genes. It was classified within the Acinetobacter genus by MALDI-TOF-MS and 16S rDNA analyses. Whole-genome sequencing (WGS) was performed on the Oxford Nanopore platform, with species-level identification via ANI and dDDH. Antimicrobial susceptibility testing was performed against 20 antibiotics. Conjugation assays employed the filter-mating method using E. coli J53 and Salmonella LGJ2 as recipients. RESULTS: This strain was confirmed as a novel species of Acinetobacter genus, showing resistance to meropenem, ampicillin, ceftazidime, cefepime, gentamicin, kanamycin, fosfomycin, imipenem, ertapenem, and tetracycline. Despite carrying tet(X3), it remained susceptible to tigecycline, omadacycline, and doxycycline. The genome carried 11 ARG types, multiple metal resistance genes (MRGs), and virulence factor (VF) genes. The bla (NDM-1) was located in a skeleton, ISAba125-bla (NDM-1)-ble (MBL)-trpF, which was carried by an ISAba14-mediated rolling-circle-like structure in pM2-2-NDM-1 (rep_cluster_481). Integrative and conjugative element (ICE) and multiple pdif modules (driven by the XerCD site-specific recombination (XerCD SSR) system), which were associated with the mobilization of resistance determinants, were identified in this plasmid. Chromosomal tet(X3) was mediated by ISVsa3, forming a skeleton, ISVsa3-XerD-tet (X3)-res-ISVsa3. DISCUSSION: The co-occurrence of bla (NDM) and tet(X) in a novel species of the Acinetobacter genus hints that substantial undiscovered bacteria co-carrying high-risk ARGs are concealing in the agroecological system, which should cause particular concern. | 2025 | 40673007 |
| 1535 | 7 | 0.9786 | Complete Genome Sequencing of Acinetobacter baumannii AC1633 and Acinetobacter nosocomialis AC1530 Unveils a Large Multidrug-Resistant Plasmid Encoding the NDM-1 and OXA-58 Carbapenemases. Carbapenem-resistant Acinetobacter spp. are considered priority drug-resistant human-pathogenic bacteria. The genomes of two carbapenem-resistant Acinetobacter spp. clinical isolates obtained from the same tertiary hospital in Terengganu, Malaysia, namely, A. baumannii AC1633 and A. nosocomialis AC1530, were sequenced. Both isolates were found to harbor the carbapenemase genes bla(NDM-1) and bla(OXA-58) in a large (ca. 170 kb) plasmid designated pAC1633-1 and pAC1530, respectively, that also encodes genes that confer resistance to aminoglycosides, sulfonamides, and macrolides. The two plasmids were almost identical except for the insertion of ISAba11 and an IS4 family element in pAC1633-1, and ISAba11 along with relBE toxin-antitoxin genes flanked by inversely orientated pdif (XerC/XerD) recombination sites in pAC1530. The bla(NDM-1) gene was encoded in a Tn125 composite transposon structure flanked by ISAba125, whereas bla(OXA-58) was flanked by ISAba11 and ISAba3 downstream and a partial ISAba3 element upstream within a pdif module. The presence of conjugative genes in plasmids pAC1633-1/pAC1530 and their discovery in two distinct species of Acinetobacter from the same hospital are suggestive of conjugative transfer, but mating experiments failed to demonstrate transmissibility under standard laboratory conditions. Comparative sequence analysis strongly inferred that pAC1633-1/pAC1530 was derived from two separate plasmids in an IS1006-mediated recombination or transposition event. A. baumannii AC1633 also harbored three other plasmids designated pAC1633-2, pAC1633-3, and pAC1633-4. Both pAC1633-3 and pAC1633-4 are cryptic plasmids, whereas pAC1633-2 is a 12,651-bp plasmid of the GR8/GR23 Rep3-superfamily group that encodes the tetA(39) tetracycline resistance determinant in a pdif module.IMPORTANCE Bacteria of the genus Acinetobacter are important hospital-acquired pathogens, with carbapenem-resistant A. baumannii listed by the World Health Organization as the one of the top priority pathogens. Whole-genome sequencing of carbapenem-resistant A. baumannii AC1633 and A. nosocomialis AC1530, which were isolated from the main tertiary hospital in Terengganu, Malaysia, led to the discovery of a large, ca. 170-kb plasmid that harbored genes encoding the New Delhi metallo-β-lactamase-1 (NDM-1) and OXA-58 carbapenemases alongside genes that conferred resistance to aminoglycosides, macrolides, and sulfonamides. The plasmid was a patchwork of multiple mobile genetic elements and comparative sequence analysis indicated that it may have been derived from two separate plasmids through an IS1006-mediated recombination or transposition event. The presence of such a potentially transmissible plasmid encoding resistance to multiple antimicrobials warrants vigilance, as its spread to susceptible strains would lead to increasing incidences of antimicrobial resistance. | 2021 | 33504662 |
| 1536 | 8 | 0.9786 | Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens. | 2021 | 34468190 |
| 2777 | 9 | 0.9785 | Detection of carbapenemase-producing, hypervirulent Klebsiella spp. in wastewater and their potential transmission to river water and WWTP employees. Wastewater treatment plants (WWTPs) release drug-resistant microorganisms to water bodies (with effluents), and WWTP employees are exposed to bioaerosol emissions from the processed wastewater. Bacteria of the genus Klebsiella, in particular carbapenemase-producing (CP), hyper-virulent (Hvr) strains of Klebsiella pneumoniae, play a special role in this process. Klebsiella spp. strains isolated from wastewater, river water and the upper respiratory tract of WWTP employees were analyzed in this study. The isolated strains were identified as K. pneumoniae (K. pn) or K. non-pneumoniae (K. npn). The prevalence of nine types of genes encoding resistance to beta-lactams, nine genes encoding virulence factors and K1/K2 capsular serotypes, three genes encoding multi drug effluent pump systems, and the class 1 integron-integrase gene was determined by PCR. A total of 284 Klebsiella spp. isolates were obtained in the study: 270 environmental strains and 14 strains from the upper respiratory tract. Among environmental isolates 90.7% (245/270) harbored beta-lactam resistance genes, 17.4% (47/270) were classified as CP strains, 11.1% (30/270) were classified as Hvr strains, and 1.9% (5/270) were classified as CP-Hvr strains. CP-Hvr strains were also isolated from WWTP employees. Genes encoding β-lactamases (including carbapenemases), complete efflux pump systems and the K1 serotype were identified more frequently in K. pn strains. In turn, K. npn strains were characterized by a higher prevalence of bla(SHV) and intI1 genes and K2 serotype gene. The strains isolated from wastewater and river water also differed in the abundance of drug resistance and virulence genes. The results of the study indicate that CP-Hvr K. pn strains are possibly transmitted from wastewater via bioareosol to the upper respiratory tract of WWTP employees. bla(GES)-type carbapenemases significantly contributed to the spread of drug resistance in the environment. | 2021 | 34455199 |
| 2768 | 10 | 0.9785 | Prevalence and abundance of antibiotic-resistant genes in culturable bacteria inhabiting a non-polar passu glacier, karakorum mountains range, Pakistan. Natural pristine environments including cold habitats are thought to be the potent reservoirs of antibiotic-resistant genes and have been recurrently reported in polar glaciers' native bacteria, nevertheless, their abundance among the non-polar glaciers' inhabitant bacteria is mostly uncharted. Herein we evaluated antibiotic resistance profile, abundance of antibiotic-resistant genes plus class 1, 2, and 3 integron integrases in 65 culturable bacterial isolates retrieved from a non-polar glacier. The 16S rRNA gene sequencing analysis identified predominantly Gram-negative 43 (66.15%) and Gram-positive 22 (33.84%) isolates. Among the Gram-negative bacteria, Gammaproteobacteria were dominant (62.79%), followed by Betaproteobacteria (18.60%) and Alphaproteobacteria (9.30%), whereas Phyla Actinobacteria (50%) and Firmicutes (40.90%) were predominant among Gram-positive. The Kirby Bauer disc diffusion method evaluated significant antibiotic resistance among the isolates. PCR amplification revealed phylum Proteobacteria predominantly carrying 21 disparate antibiotic-resistant genes like; (bla)AmpC 6 (100%), (bla)VIM-1, (bla)SHV and (bla)DHA 5 (100%) each, (bla)OXA-1 1 (100%), (bla)CMY-4 4 (100%), followed by Actinobacteria 14, Firmicutes 13 and Bacteroidetes 11. Tested isolates were negative for (bla)KPC, qnrA, vanA, ermA, ermB, intl2, and intl3. Predominant Gram-negative isolates had higher MAR index values, compared to Gram-positive. Alignment of protein homology sequences of antibiotic-resistant genes with references revealed amino acid variations in (bla)NDM-1, (bla)OXA-1, (bla)SHV, mecA, aac(6)-Ib3, tetA, tetB, sul2, qnrB, gyrA, and intI1. Promising antibiotic-resistant bacteria, harbored with numerous antibiotic-resistant genes and class 1 integron integrase with some amino acid variations detected, accentuating the mandatory focus to evaluate the intricate transcriptome analysis of glaciated bacteria conferring antibiotic resistance. | 2023 | 36754876 |
| 5235 | 11 | 0.9784 | Draft genome sequences of rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 carrying mobile colistin resistance gene mcr-9 isolated from wastewater in South Africa. OBJECTIVES: Antimicrobial-resistant bacteria of the order Enterobacterales are emerging threats to global public and animal health, leading to morbidity and mortality. The emergence of antimicrobial-resistant, livestock-associated pathogens is a great public health concern. The genera Enterobacter and Lelliottia are ubiquitous, facultatively anaerobic, motile, non-spore-forming, rod-shaped Gram-negative bacteria belonging to the Enterobacteriaceae family and include pathogens of public health importance. Here, we report the first draft genome sequences of a rare Lelliottia nimipressuralis strain MEZLN61 and two Enterobacter kobei strains MEZEK193 and MEZEK194 in Africa. METHODS: The bacteria were isolated from environmental wastewater samples. Bacteria were cultured on nutrient agar, and the pure cultures were subjected to whole-genome sequencing. Genomic DNA was sequenced using an Illumina MiSeq platform. Generated reads were trimmed and subjected to de novo assembly. The assembled contigs were analysed for virulence genes, antimicrobial resistance genes, and extra-chromosomal plasmids, and multilocus sequence typing was performed. To compare the sequenced strains with other, previously sequenced E. kobei and L. nimipressuralis strains, available raw read sequences were downloaded, and all sequence files were treated identically to generate core genome bootstrapped maximum likelihood phylogenetic trees. RESULTS: Whole-genome sequencing analyses identified strain MEZLN61 as L. nimipressuralis and strains MEZEK193 and MEZEK194 as E. kobei. MEZEK193 and MEZEK194 carried genes encoding resistance to fosfomycin (fosA), beta-lactam antibiotics (bla(ACT-9)), and colistin (mcr-9). Additionally, MEZEK193 harboured nine different virulence genes, while MEZEK194 harboured eleven different virulence genes. The phenotypic analysis showed that L. nimipressuralis strain MEZLN61 was susceptible to colistin (2 μg/mL), while E. kobei MEZEK193 (64 μg/mL) and MEZEK194 (32 μg/mL) were resistant to colistin. CONCLUSION: The genome sequences of strains L. nimipressuralis MEZLN6, E. kobei MEZEK193, and E. kobei MEZEK194 will serve as a reference point for molecular epidemiological studies of L. nimipressuralis and E. kobei in Africa. In addition, this study provides an in-depth analysis of the genomic structure and offers important information that helps clarify the pathogenesis and antimicrobial resistance of L. nimipressuralis and E. kobei. The detection of mcr-9, which is associated with very low-level colistin resistance in Enterobacter species, is alarming and may indicate the undetected dissemination of mcr genes in bacteria of the order Enterobacterales. Continuous monitoring and surveillance of the prevalence of mcr genes and their associated phenotypic changes in clinically important pathogens and environmentally associated bacteria is necessary to control and prevent the spread of colistin resistance. | 2023 | 36948496 |
| 1442 | 12 | 0.9784 | Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. BACKGROUND: Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. METHODS: We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). RESULTS: From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB (n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. CONCLUSIONS: We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat. | 2018 | 29484175 |
| 1989 | 13 | 0.9784 | Prevalence and characterization of IncQ1α-mediated multi-drug resistance in Proteus mirabilis Isolated from pigs in Kunming, Yunnan, China. BACKGROUND: Proteus mirabilis is a conditionally pathogenic bacterium that is inherently resistant to polymyxin and tigecycline, largely due to antibiotic resistance genes (ARGs). These ARGs can be horizontally transferred to other bacteria, raising concerns about the Inc plasmid-mediated ARG transmission from Proteus mirabilis, which poses a serious public health threat. This study aims to investigate the presence of Inc plasmid types in pig-derived Proteus mirabilis in Kunming, Yunnan, China. METHODS: Fecal samples were collected from pig farms across six districts of Kunming (Luquan, Jinning, Yiliang, Anning, Songming, and Xundian) from 2022 to 2023. Proteus mirabilis isolates were identified using IDS and 16S rRNA gene sequencing. Then, positive strains underwent antimicrobial susceptibility testing and incompatibility plasmid typing. Multi-drug-resistant isolates with positive incompatibility plasmid genes were selected for whole-genome sequencing. Resistance and Inc group data were then isolated and compared with 126 complete genome sequences from public databases. Whole-genome multi-locus sequence typing, resistance group analysis, genomic island prediction, and plasmid structural gene analysis were performed. RESULTS: A total of 30 isolates were obtained from 230 samples, yielding a prevalence of 13.04%. All isolates exhibited multi-drug resistance, with 100% resistance to cotrimoxazole, erythromycin, penicillin G, chloramphenicol, ampicillin, and streptomycin. Among these, 15 isolates tested positive for the IncQ1α plasmid repC gene. The two most multi-drug-resistant and repC-positive strains, NO. 15 and 21, were sequenced to compare genomic features on Inc groups and ARGs with public data. Genome analysis revealed that the repC gene was primarily associated with IncQ1α, with structural genes from other F-type plasmids (TraV, TraU, TraN, TraL, TraK, TraI, TraH, TraG, TraF, TraE/GumN, and TraA) also present. Strain NO. 15 carried 33 ARGs, and strain NO. 21 carried 38 ARGs, conferring resistance to tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, peptides, chloramphenicol, cephalosporins, lincomycins, macrolides, and 2-aminopyrimidines. CONCLUSION: The repC gene is primarily associated with IncQ1α, with structural genes from other F-type plasmids. A comparison with 126 public genome datasets confirmed this association. | 2024 | 39850143 |
| 5280 | 14 | 0.9783 | High prevalence of antibiotic-resistant and metal-tolerant cultivable bacteria in remote glacier environment. Studies of antibiotic-resistant bacteria (ARB) have mainly originated from anthropic-influenced environments, with limited information from pristine environments. Remote cold environments are major reservoirs of ARB and have been determined in polar regions; however, their abundance in non-polar cold habitats is underexplored. This study evaluated antibiotics and metals resistance profiles, prevalence of antibiotic resistance genes (ARGs) and metals tolerance genes (MTGs) in 38 ARB isolated from the glacier debris and meltwater from Baishui Glacier No 1, China. Molecular identification displayed Proteobacteria (39.3%) predominant in debris, while meltwater was dominated by Actinobacteria (30%) and Proteobacteria (30%). Bacterial isolates exhibited multiple antibiotic resistance index values > 0.2. Gram-negative bacteria displayed higher resistance to antibiotics and metals than Gram-positive. PCR amplification exhibited distinct ARGs in bacteria dominated by β-lactam genes bla(CTX-M) (21.1-71.1%), bla(ACC) (21.1-60.5%), tetracycline-resistant gene tetA (21.1-60.5%), and sulfonamide-resistant gene sulI (18.4-52.6%). Moreover, different MTGs were reported in bacterial isolates, including mercury-resistant merA (21.1-63.2%), copper-resistant copB (18.4-57.9%), chromium-resistant chrA (15.8-44.7%) and arsenic-resistant arsB (10.5-44.7%). This highlights the co-selection and co-occurrence of MTGs and ARGs in remote glacier environments. Different bacteria shared same ARGs, signifying horizontal gene transfer between species. Strong positive correlation among ARGs and MTGs was reported. Metals tolerance range exhibited that Gram-negative and Gram-positive bacteria clustered distinctly. Gram-negative bacteria were significantly tolerant to metals. Amino acid sequences of bla(ACC,)bla(CTX-M,)bla(SHV,)bla(ampC,)qnrA, sulI, tetA and bla(TEM) revealed variations. This study presents promising ARB, harboring ARGs with variations in amino acid sequences, highlighting the need to assess the transcriptome study of glacier bacteria conferring ARGs and MTGs. | 2023 | 37858689 |
| 1075 | 15 | 0.9783 | Extended Spectrum Beta-Lactamase-Producing Gram-Negative Bacteria Recovered From an Amazonian Lake Near the City of Belém, Brazil. Aquatic systems have been described as antibiotic resistance reservoirs, where water may act as a vehicle for the spread of resistant bacteria and resistance genes. We evaluated the occurrence and diversity of third generation cephalosporin-resistant gram-negative bacteria in a lake in the Amazonia region. This water is used for human activities, including consumption after appropriate treatment. Eighteen samples were obtained from six sites in October 2014. Water quality parameters were generally within the legislation limits. Thirty-three bacterial isolates were identified as Escherichia (n = 7 isolates), Acinetobacter, Enterobacter, and Klebsiella (n = 5 each), Pseudomonas (n = 4), Shigella (n = 3), and Chromobacterium, Citrobacter, Leclercia, Phytobacter (1 isolate each). Twenty nine out of 33 isolates (88%) were resistant to most beta-lactams, except carbapenems, and 88% (n = 29) were resistant to antibiotics included in at least three different classes. Among the beta-lactamase genes inspected, the bla (CTX-M) was the most prevalent (n = 12 positive isolates), followed by bla (TEM) (n = 5) and bla (SHV) (n = 4). bla (CTX-M-15) (n = 5), bla (CTX-M-14) (n = 1) and bla (CTX-M-2) (n = 1) variants were detected in conserved genomic contexts: bla (CTX-M-15) flanked by ISEcp1 and Orf477; bla (CTX-M-14) flanked by ISEcp1 and IS903; and bla (CTX-M-2) associated to an ISCR element. For 4 strains the transfer of bla (CTX-M) was confirmed by conjugation assays. Compared with the recipient, the transconjugants showed more than 500-fold increases in the MICs of cefotaxime and 16 to 32-fold increases in the MICs of ceftazidime. Two isolates (Escherichia coli APC43A and Acinetobacter baumannii APC25) were selected for whole genome analysis. APC43A was predicted as a E. coli pathogen of the high-risk clone ST471 and serotype O154:H18. bla (CTX-M-15) as well as determinants related to efflux of antibiotics, were noted in APC43A genome. A. baumannii APC25 was susceptible to carbapenems and antibiotic resistance genes detected in its genome were intrinsic determinants (e.g., bla (OXA-208) and bla (ADC-like)). The strain was not predicted as a human pathogen and belongs to a new sequence type. Operons related to metal resistance were predicted in both genomes as well as pathogenicity and resistance islands. Results suggest a high dissemination of ESBL-producing bacteria in Lake Água Preta which, although not presenting characteristics of a strongly impacted environment, contains multi-drug resistant pathogenic strains. | 2019 | 30873145 |
| 1189 | 16 | 0.9782 | Detection of the carbapenemase gene bla(VIM-5) in members of the Pseudomonas putida group isolated from polluted Nigerian wetlands. There are increasing concerns about possible dissemination of clinically relevant antibiotic resistance genes, including genes encoding for carbapenemases in the environment. However, little is known about environmental distribution of antibiotic resistance in Africa. In this study, four polluted urban wetlands in Nigeria were investigated as potential reservoirs of carbapenem-resistant bacteria (CRB). CRB were isolated from the wetlands, characterized by Blue-Carba test, MIC determinations and whole genome sequencing (WGS). Nine of 65 bacterial isolates identified as members of the Pseudomonas putida group (P. plecoglossicida and P. guariconensis, respectively) harboured the metallo-beta-lactamase gene bla(VIM-5). WGS revealed the bla(VIM-5) in three novel Tn402-like class 1 integron structures containing the cassette arrays aadB|bla(VIM-5)|bla(PSE-1), aadB|bla(VIM-5)|aadB|bla(PSE-1), and bla(VIM-5)|aadB|tnpA|bla(PSE-1)|smr2|tnpA, respectively. Strains carrying the aadB|bla(VIM-5)|bla(PSE-1) cassette also carried an identical integron without bla(VIM-5). In addition(,) the strains harboured another Tn402-like class 1 integron carrying bcr2, several multidrug resistance efflux pumps, and at least one of ampC, aph(3")-lb, aph(6)-ld, tetB, tetC, tetG, floR, and macAB. This is the first report of a carbapenemase gene in bacteria from environmental sources in Nigeria and the first report of bla(VIM-5) in environmental bacteria isolates. This result underscores the role of the Nigerian environment as reservoir of bacteria carrying clinically relevant antibiotic resistance genes. | 2018 | 30310126 |
| 1219 | 17 | 0.9782 | Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system. | 2023 | 38252715 |
| 1995 | 18 | 0.9782 | Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains. | 2025 | 41148367 |
| 899 | 19 | 0.9782 | Whole-Genome Sequencing Snapshot of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacteria from Wastewater in Serbia. Wastewater (WW) is considered a source of antibiotic-resistant bacteria with clinical relevance and may, thus, be important for their dissemination into the environment, especially in countries with poor WW treatment. To obtain an overview of the occurrence and characteristics of carbapenem-resistant Gram-negative bacteria (CR-GNB) in WW of Belgrade, we investigated samples from the four main sewer outlets prior to effluent into international rivers, the Sava and the Danube. Thirty-four CR-GNB isolates were selected for antimicrobial susceptibility testing (AST) and whole-genome sequencing (WGS). AST revealed that all isolates were multidrug-resistant. WGS showed that they belonged to eight different species and 25 different sequence types (STs), seven of which were new. ST101 K. pneumoniae (bla(CTX-M-15)/bla(OXA-48)) with novel plasmid p101_srb was the most frequent isolate, detected at nearly all the sampling sites. The most frequent resistance genes to aminoglycosides, quinolones, trimethroprim-sulfamethoxazole, tetracycline and fosfomycin were aac(6')-Ib-cr (55.9%), oqxA (32.3%), dfrA14 (47.1%), sul1 (52.9%), tet(A) (23.5%) and fosA (50%), respectively. Acquired resistance to colistin via chromosomal-mediated mechanisms was detected in K. pneumoniae (mutations in mgrB and basRS) and P. aeruginosa (mutation in basRS), while a plasmid-mediated mechanism was confirmed in the E. cloacae complex (mcr-9.1 gene). The highest number of virulence genes (>300) was recorded in P. aeruginosa isolates. Further research is needed to systematically track the occurrence and distribution of these bacteria so as to mitigate their threat. | 2023 | 36830261 |