AIRPLANE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
726900.8958Sewage from Airplanes Exhibits High Abundance and Diversity of Antibiotic Resistance Genes. Airplane sanitary facilities are shared by an international audience. We hypothesized the corresponding sewage to be an extraordinary source of antibiotic-resistant bacteria (ARB) and resistance genes (ARG) in terms of diversity and quantity. Accordingly, we analyzed ARG and ARB in airplane-borne sewage using complementary approaches: metagenomics, quantitative polymerase chain reaction (qPCR), and cultivation. For the purpose of comparison, we also quantified ARG and ARB in the inlets of municipal treatment plants with and without connection to airports. As expected, airplane sewage contained an extraordinarily rich set of mobile ARG, and the relative abundances of genes were mostly increased compared to typical raw sewage of municipal origin. Moreover, combined resistance against third-generation cephalosporins, fluorochinolones, and aminoglycosides was unusually common (28.9%) among Escherichia coli isolated from airplane sewage. This percentage exceeds the one reported for German clinical isolates by a factor of 8. Our findings suggest that airplane-borne sewage can effectively contribute to the fast and global spread of antibiotic resistance.201931713420
306310.8937Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12.1976779633
678820.8882Release and Constancy of an Antibiotic Resistance Gene in Seawater under Grazing Stress by Ciliates and Heterotrophic Nanoflagellates. Extracellular DNA (exDNA) is released from bacterial cells through various processes. The antibiotic resistance genes (ARGs) coded on exDNA may be horizontally transferred among bacterial communities by natural transformation. We quantitated the released/leaked tetracycline resistance gene, tet(M) over time under grazing stress by ciliates and heterotrophic nanoflagellates (HNFs), and found that extracellular tet(M) (ex-tetM) increased with bacterial grazing. Separate microcosms containing tet(M)-possessing bacteria with ciliates or HNFs were prepared. The copy number of ex-tetM in seawater in the ciliate microcosm rapidly increased until 3 d after the incubation, whereas that in the HNF microcosm showed a slower increase until 20 d. The copy number of ex-tetM was stable in both cases throughout the incubation period, suggesting that extracellular ARGs are preserved in the environment, even in the presence of grazers. Additionally, ARGs in bacterial cells were constant in the presence of grazers. These results suggest that ARGs are not rapidly extinguished in a marine environment under grazing stress.201728592722
678730.8878Impact of chlorine disinfection on intracellular and extracellular antimicrobial resistance genes in wastewater treatment and water reclamation. Wastewater treatment plants and water reclamation facilities are reservoirs of antimicrobial resistance genes (ARGs). These ARGs are not limited solely to intracellular DNA (inARGs) but include extracellular DNA (exARGs) present in wastewater. The release of exARGs from cells can be exacerbated by treatment processes, including chlorine disinfection, which disrupts bacterial cells. Given the potential for exARGs to drive horizontal gene transfer and contribute to the proliferation of antimicrobial resistance, it is imperative to recognize these fractions as emerging environmental pollutants. In this study, we conducted a comprehensive year-long assessment of both inARGs and exARGs, further differentiating between dissolved exARGs (Dis_exARGs) and exARGs adsorbed onto particulate matter (Ads_exARGs), within a full-scale wastewater treatment and water reclamation facility. The results revealed that Ads_exARGs comprised up to 30 % of the total ARGs in raw sewage with high biomass content. Generally, treatments at low and high doses of chlorine increased the abundance of Dis_exARGs and Ads_exARGs. The fate of ARG levels that varied depending on the type of ARGs suggested variations in the susceptibility of the host bacteria to chlorination. Moreover, co-occurrence of several potential opportunistic pathogenic bacteria and ARGs were observed. Therefore, we propose higher doses of chlorination as a prerequisite for the effective removal of inARGs and exARGs.202439067603
53940.8876A role of ygfZ in the Escherichia coli response to plumbagin challenge. Plumbagin is found in many herbal plants and inhibits the growth of various bacteria. Escherichia coli strains are relatively resistant to this drug. The mechanism of resistance is not clear. Previous findings showed that plumbagin treatment triggered up-regulation of many genes in E. coli including ahpC, mdaB, nfnB, nfo, sodA, yggX and ygfZ. By analyzing minimal inhibition concentration and inhibition zones of plumbagin in various gene-disruption mutants, ygfZ and sodA were found critical for the bacteria to resist plumbagin toxicity. We also found that the roles of YgfZ and SodA in detoxifying plumbagin are independent of each other. This is because of the fact that ectopically expressed SodA reduced the superoxide stress but not restore the resistance of bacteria when encountering plumbagin at the absence of ygfZ. On the other hand, an ectopically expressed YgfZ was unable to complement and failed to rescue the plumbagin resistance when sodA was perturbed. Furthermore, mutagenesis analysis showed that residue Cys228 within YgfZ fingerprint region was critical for the resistance of E. coli to plumbagin. By solvent extraction and HPLC analysis to follow the fate of the chemical, it was found that plumbagin vanished apparently from the culture of YgfZ-expressing E. coli. A less toxic form, methylated plumbagin, which may represent one of the YgfZ-dependent metabolites, was found in the culture supernatant of the wild type E. coli but not in the ΔygfZ mutant. Our results showed that the presence of ygfZ is not only critical for the E coli resistance to plumbagin but also facilitates the plumbagin degradation.201021059273
813150.8868Effects of levodopa on gut bacterial antibiotic resistance in Parkinson's disease rat. The second most prevalent neurodegenerative ailment, Parkinson's disease (PD), is characterized by both motor and non-motor symptoms. Levodopa is the backbone of treatment for PD at the moment. However, levodopa-induced side effects, such as dyskinesia, are commonly seen in PD patients. Recently, several antibiotics were found to present neuroprotective properties against neurodegenerative and neuro-inflammatory processes, which might be developed to effective therapies against PD. In this study, we aimed to identify if levodopa treatment could influence the gut bacterial antibiotic resistance in PD rat. Fecal samples were collected from healthy rats and 6-OHDA induced PD rats treated with different doses of levodopa, metagenomic sequencing data showed that levodopa resulted in gut bacteria composition change, the biomarkers of gut bacteria analyzed by LEfSe changed as well. More interestingly, compared with levodopa (5 mg/kg)-treated or no levodopa-treated PD rats, levodopa (10 mg/kg) caused a significant decrease in the abundance of tetW and vanTG genes in intestinal bacteria, which were related to tetracycline and vancomycin resistance, while the abundance of AAC6-lb-Suzhou gene increased apparently, which was related to aminoglycosides resistance, even though the total quantity of Antibiotic Resistance Gene (ARG) and Antibiotic Resistance Ontology (ARO) among all groups did not significantly differ. Consequently, our results imply that the combination of levodopa and antibiotics, such as tetracycline and vancomycin, in the treatment of PD may decrease the amount of corresponding antibiotic resistance genes in gut bacteria, which would give a theoretical basis for treating PD with levodopa combined with tetracycline and vancomycin in the future.202336824263
693260.8866Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms. The floating aquatic plant of Azolla imbricata has an outstanding purification capability for polluted river water, and it is also employed to improve soil fertility. However, the occurrence and distribution of antibiotic resistance genes (ARGs) in soil amended using A.imbricata remain unclear. In the soil amendment with A. imbricata, heavy metals, antibiotics, transposase genes, ARGs, and bacterial communities in the soil were determined in this study. The results indicated that the diversity of bacteria and ARGs increased, while the diversity of ARGs decreased under the amendment using an appropriate amount of A. imbricata. The Firmicutes, Chloroflexi, Actinobacteria, and Cyanobacteria were the main host bacteria of ARGs. The vertical gene transfer of ARGs was weak, and the horizontal gene transfer became the dominant transfer pathway of ARGs. The amendment with A. imbricata altered the distribution of heavy metals, antibiotics, transposase genes, ARGs, and dominant bacteria. The amendment using A. imbricata promoted the degradation of antibiotics, decreased the concentrations of available heavy metals, and eliminated the abundance of ARGs and transposase genes. Our findings suggested a comprehensive effect of multiple stresses on the fate of ARGs in soil amended with A. imbricata, providing an insight into the distribution and propagation of ARGs in soil amended using plant residues.201931351286
679270.8864Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.202438759465
82680.8862Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States.19957695291
673290.8858Assessment of Bioavailability of Biochar-Sorbed Tetracycline to Escherichia coli for Activation of Antibiotic Resistance Genes. Human overuse and misuse of antibiotics have caused the wide dissemination of antibiotics in the environment, which has promoted the development and proliferation of antibiotic resistance genes (ARGs) in soils. Biochar (BC) with strong sorption affinity to many antibiotics is considered to sequester antibiotics and hence mitigate their impacts to bacterial communities in soils. However, little is known about whether BC-sorbed antibiotics are bioavailable and exert selective pressure on soil bacteria. In this study, we probed the bioavailability of tetracycline sorbed by BCs prepared from rice-, wheat-, maize-, and bean-straw feedstock using Escherichia coli MC4100/pTGM bioreporter strain. The results revealed that BC-sorbed tetracycline was still bioavailable to the E. coli attached to BC surfaces. Tetracycline sorbed by BCs prepared at 400 °C (BC400) demonstrated a higher bioavailability to bacteria compared to that sorbed by BCs prepared at 500 °C (BC500). Tetracycline could be sorbed primarily in the small pores of BC500 where bacteria could not access due to the size exclusion to bacteria. In contrast, tetracycline could be sorbed mainly on BC400 surfaces where bacteria could conveniently access tetracycline. Increasing the ambient humidity apparently enhanced the bioavailability of BC400-sorbed tetracycline. BC500-sorbed tetracycline exposed to varying levels of ambient humidity showed no significant changes in bioavailability, indicating that water could not effectively mobilize tetracycline from BC500 pores to surfaces where bacteria could access tetracycline. The results from this study suggest that BCs prepared at a higher pyrolysis temperature could be more effective to sequester tetracycline and mitigate the selective pressure on soil bacteria.202032786566
3482100.8858Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation.201829751438
7616110.8857Transport of antibiotic resistance genes in the landfill plume: Experiment and numerical modeling. Antibiotic resistance genes (ARGs) in the landfill site would potentially seep into groundwater by leachate infiltration, which poses great threat of ARGs dissemination through groundwater flow. However, the transport characteristics of ARGs in the landfill plume are still unclear, impeding the risk management and remediation of landfill sites. This study carried out a series of column experiments to investigate the transport of various ARGs in the landfill plume and its influencing factors. Besides, a numerical model was also developed to simulate the transport of ARGs in the porous media, which could determine the attachment and decay rates of ARGs in various scenarios. Experimental results showed that high contents of organic matter and corresponding antibiotics in the landfill plume promoted the transport of antibiotic-resistant bacteria (ARB) and reduced the decay rates of intracellular ARGs (iARGs) in the porous media. Inorganic ions such as Cl(-) and SO(4)(2-) inhibited the mobility of ARB, while they had little influence on iARGs decay. Extracellular ARGs (eARGs) in plasmids exhibited higher decay rate in pore water, leading to shorter transport distance in porous media. In the landfill plume, sul1 had higher mobility than aadA and ermB, which was tightly correlated with its lower decay rate in groundwater and the smaller bacterial host. The decrease of particle size greatly inhibited the transport of ARGs in porous media due to the attachment of ARB on sand surface, while the attached ARGs would easily detach from sand surface during background water flushing. This study could guide the accurate risk assessment of ARGs in the landfill plume as well as the optimization of management strategy for landfill site.202540320129
7436120.8856New parameters for the quantitative assessment of the proliferation of antibiotic resistance genes dynamic in the environment and its application: A case of sulfonamides and sulfonamide resistance genes. Antibiotic resistance genes (ARGs) have been widely detected around the world and are generally viewed as emerging pollutants with environmental persistence. The proliferation of ARGs can be easily promoted by antibiotics. However, the dynamics of ARGs in the environment are still unable to be quantified using a single parameter, which is vital to evaluating the ability of ARGs to spread by antibiotics and effectively controlling ARGs. A new parameter, termed the relative area ratio of sample to control (ΔA(R)), was developed based on the quantitative features determined by ARG-time curves in soils contaminated with sulfonamides (SAs) and verified by quantitative structure-activity relationships (QSARs) models. The results showed that ΔA(R) can not only be used to accurately quantify the characteristics of SAs resistance genes (Suls) over time but also be applied to reveal the relationships between the proliferation of Suls and important factors (i.e., concentrations and chemical structures). Moreover, the ΔA(R)-based QSARs model indicated that bioavailability and the frequency of conjugative transfer, rather than the ability of induced mutations in bacteria, tend to be key processes of the characteristics of the proliferation of Suls. Therefore, ΔA(R) is a useful parameter to perform environmental risk assessments of ARG proliferation in the environment.202032305759
7458130.8855Hidden Resistome: Enrichment Reveals the Presence of Clinically Relevant Antibiotic Resistance Determinants in Treated Wastewater-Irrigated Soils. Treated-wastewater (TW) irrigation transfers antibiotic-resistant bacteria (ARB) to soil, but persistence of these bacteria is generally low due to resilience of the soil microbiome. Nonetheless, wastewater-derived bacteria and associated antibiotic resistance genes (ARGs) may persist below detection levels and potentially proliferate under copiotrophic conditions. To test this hypothesis, we exposed soils from microcosm, lysimeter, and field experiments to short-term enrichment in copiotroph-stimulating media. In microcosms, enrichment stimulated growth of multidrug-resistant Escherichia coli up to 2 weeks after falling below detection limits. Lysimeter and orchard soils irrigated in-tandem with either freshwater or TW were subjected to culture-based, qPCR and shotgun metagenomic analyses prior, and subsequent, to enrichment. Although native TW- and freshwater-irrigated soil microbiomes and resistomes were similar to each other, enrichment resulted in higher abundances of cephalosporin- and carbapenem-resistant Enterobacteriaceae and in substantial differences in the composition of microbial communities and ARGs. Enrichment stimulated ARG-harboring Bacillaceae in the freshwater-irrigated soils, whereas in TWW-irrigated soils, ARG-harboring γ-proteobacterial families Enterobacteriaceae and Moraxellaceae were more profuse. We demonstrate that TW-derived ARB and associated ARGs can persist at below detection levels in irrigated soils and believe that similar short-term enrichment strategies can be applied for environmental antimicrobial risk assessment in the future.202133904706
6380140.8855Seasonal dynamics of anammox bacteria in estuarial sediment of the Mai Po Nature Reserve revealed by analyzing the 16S rRNA and hydrazine oxidoreductase (hzo) genes. The community and population dynamics of anammox bacteria in summer (wet) and winter (dry) seasons in estuarial mudflat sediment of the Mai Po Nature Reserve were investigated by 16S rRNA and hydrazine oxidoreductase (hzo) genes. 16S rRNA phylogenetic diversity showed that sequences related to 'Kuenenia' anammox bacteria were presented in summer but not winter while 'Scalindua' anammox bacteria occurred in both seasons and could be divided into six different clusters. Compared to the 16S rRNA genes, the hzo genes revealed a relatively uniform seasonal diversity, with sequences relating to 'Scalindua', 'Anammoxoglobus', and planctomycete KSU-1 found in both seasons. The seasonal specific bacterial groups and diversity based on the 16S rRNA and hzo genes indicated strong seasonal community structures in estuary sediment of this site. Furthermore, the higher abundance of hzo genes in summer than winter indicates clear seasonal population dynamics. Combining the physicochemical characteristics of estuary sediment in the two seasons and their correlations with anammox bacteria community structure, we proposed the strong seasonal dynamics in estuary sediment of Mai Po to be due to the anthropogenic and terrestrial inputs, especially in summer, which brings in freshwater anammox bacteria, such as 'Kuenenia', interacting with the coastal marine anammox bacteria 'Scalindua'.201121487198
7295150.8854Dissemination of antibiotic resistance in receiving environments under a changing climate: A modeling exercise. Antibiotic resistance in rivers has become a global problem, particularly due to the discharge of wastewater treatment plant (WWTP) effluents into these systems. These effluents contain residual antibiotics, antibiotic-resistance genes (ARGs), and antibiotic-resistant bacteria (ARB). While watershed-scale models are commonly used to address other water quality issues, they have not typically been used to address antibiotic resistance. In this study, we present a new model called SWAT-ARB (SWAT- Antibiotic-Resistant Bacteria) that can simulate antibiotic resistance in E. coli at the watershed scale. SWAT-ARB is an adaptation of the widely-used SWAT (Soil and Water Assessment Tool) model, which is a physically-based, watershed-scale hydrological model. We used SWAT-ARB to study the receiving environments of WWTPs in the Adyar River basin in India, Crab Creek in the United States, and the Upper Viskan basin in Sweden. We analyzed the simulations of resistant fractions (the ratio of resistant E. coli concentration to total E. coli concentration) in the streamflow at different flow levels. We also examined the long-term trends of resistant fractions to understand how rising temperatures may impact resistance. We found that in the Adyar and Crab Creek basins, the resistant fractions were largely influenced by temperature rather than flow and wash-off processes, while in the Upper Viskan basin, the resistant fractions were affected by both temperature and flow conditions. In a simulation where we only increased temperatures by 2 °C in the bacteria sub-routine, we found that the Adyar basin showed a decrease in resistant fractions of up to 17 % in dry conditions, while Crab Creek showed increases of 17.5-24.1 % and Upper Viskan showed increases of 4.6-33.5 % across flow classes. Under future climate scenarios (SSP 2-4.5 and SSP 5-8.5), Adyar's resistant fractions decreased by up to 55.5 % as temperatures approached the bacterial growth inhibition threshold, while Crab Creek's resistant fractions increased by up to 175 % as temperatures remained within the optimal 10-20 °C growth range. Our results suggest that the SWAT-ARB model could be further improved by incorporating temperature-dependent parameters into the resistance simulation component.202540743959
7350160.8854The vertical distribution of tetA and intI1 in a deep lake is rather due to sedimentation than to resuspension. Lakes are exposed to anthropogenic pollution including the release of allochthonous bacteria into their waters. Antibiotic resistance genes (ARGs) stabilize in bacterial communities of temperate lakes, and these environments act as long-term reservoirs of ARGs. Still, it is not clear if the stabilization of the ARGs is caused by a periodical introduction, or by other factors regulated by dynamics within the water column. Here we observed the dynamics of the tetracycline resistance gene (tetA) and of the class 1 integron integrase gene intI1 a proxy of anthropogenic pollution in the water column and in the sediments of subalpine Lake Maggiore, together with several chemical, physical and microbiological variables. Both genes resulted more abundant within the bacterial community of the sediment compared to the water column and the water-sediment interface. Only at the inset of thermal stratification they reached quantifiable abundances in all the water layers, too. Moreover, the bacterial communities of the water-sediment interface were more similar to deep waters than to the sediments. These results suggest that the vertical distribution of tetA and intI1 is mainly due to the deposition of bacteria from the surface water to the sediment, while their resuspension from the sediment is less important.202031926010
7244170.8853Manure and sulfadiazine synergistically increased bacterial antibiotic resistance in soil over at least two months. Manuring of arable soils may stimulate the spread of resistance genes by introduction of resistant populations and antibiotics. We investigated effects of pig manure and sulfadiazine (SDZ) on bacterial communities in soil microcosms. A silt loam and a loamy sand were mixed with manure containing SDZ (10 or 100 mg per kilogram of soil), and compared with untreated soil and manured soil without SDZ over a 2-month period. In both soils, manure and SDZ positively affected the quotients of total and SDZ-resistant culturable bacteria [most probable number (MPN)], and transfer frequencies of plasmids conferring SDZ resistance in filter matings of soil bacteria and an Escherichia coli recipient. Detection of sulfonamide resistance genes sul1, sul2 and sul3 in community DNA by polymerase chain reaction (PCR) and hybridization revealed a high prevalence of sul1 in manure and manured soils, while sul2 was mainly found in the loamy sand treated with manure and high SDZ amounts, and sul3 was not detected. By PCR quantification of sul1 and bacterial rrn genes, a transient effect of manure alone and a long-term effect of SDZ plus manure on absolute and relative sul1 abundance in soil was shown. The dynamics in soil of class 1 integrons, which are typically associated with sul1, was analysed by amplification of the gene cassette region. Integrons introduced by manure established in both soils. Soil type and SDZ affected the composition of integrons. The synergistic effects of manure and SDZ were still detectable after 2 months. The results suggest that manure from treated pigs enhances spread of antibiotic resistances in soil bacterial communities.200717298366
8117180.8853Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting.202033099099
8545190.8853Role of anaerobic sludge digestion in handling antibiotic resistant bacteria and antibiotic resistance genes - A review. Currently, anaerobic sludge digestion (ASD) is considered not only for treating residual sewage sludge and energy recovery but also for the reduction of antibiotic resistance genes (ARGs). The current review highlights the reasons why antibiotic resistant bacteria (ARB) and ARGs exist in ASD and how ASD performs in the reduction of ARB and ARGs. ARGs and ARB have been detected in ASD with some reports indicating some of the ARGs can be completely removed during the ASD process, while other studies reported the enrichment of ARB and ARGs after ASD. This paper reviews the performance of ASD based on operational parameters as well as environmental chemistry. More studies are needed to improve the performance of ASD in reducing ARGs that are difficult to handle and also differentiate between extracellular (eARGs) and intracellular ARGs (iARGs) to achieve more accurate quantification of the ARGs.202133735726