AIMS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
560800.9976Molecular characterization of antibiotic resistance in bacteria from daycare centres in Ile-Ife, Nigeria. BACKGROUND: Antibiotic resistance is an escalating global health issue, with particularly severe implications in low- and middle-income countries (LMICs) such as Nigeria. This study examines antibiotic-resistant bacteria's prevalence and molecular characteristics in daycare centres in Ile-Ife, Nigeria, where high antibiotic use and limited infection control measures present significant challenges. METHODS: Between November 2017 and July 2019, samples were collected from 20 daycare centres, including swabs from fomites and children. Bacterial isolates were identified and assessed for antibiotic susceptibility using standard methods. Molecular techniques, including PCR, were employed to detect resistance genes such as blaSHV, tetA, dfr1 and mecA. RESULTS: The study found high resistance levels among common pathogens, with S. aureus and other staphylococci showing significant resistance to ampicillin and Augmentin and Gram-negative bacteria exhibiting broad resistance patterns. Resistance genes, including blaSHV and mecA, were identified in multiple isolates, indicating the spread of crucial resistance mechanisms. CONCLUSIONS: The results highlight the critical need for improved surveillance, targeted antimicrobial stewardship and enhanced infection control practices in daycare centres to address the growing threat of antibiotic resistance. This research offers valuable insights into resistance dynamics in paediatric settings and supports the development of strategies to manage the spread of resistant bacteria in LMIC contexts.202539737335
226610.9975Bloodstream infections in intensive care unit patients: distribution and antibiotic resistance of bacteria. Bloodstream infections (BSIs) are among the leading infections in critically ill patients. The case-fatality rate associated with BSIs in patients admitted to intensive care units (ICUs) reaches 35%-50%. The emergence and diffusion of bacteria with resistance to antibiotics is a global health problem. Multidrug-resistant bacteria were detected in 50.7% of patients with BSIs in a recently published international observational study, with methicillin resistance detected in 48% of Staphylococcus aureus strains, carbapenem resistance detected in 69% of Acinetobacter spp., in 38% of Klebsiella pneumoniae, and in 37% of Pseudomonas spp. Prior hospitalization and antibiotic exposure have been identified as risk factors for infections caused by resistant bacteria in different studies. Patients with BSIs caused by resistant strains showed an increased risk of mortality, which may be explained by a higher incidence of inappropriate empirical therapy in different studies. The molecular genetic characterization of resistant bacteria allows the understanding of the most common mechanisms underlying their resistance and the adoption of surveillance measures. Knowledge of epidemiology, risk factors, mechanisms of resistance, and outcomes of BSIs caused by resistant bacteria may have a major influence on global management of ICU patients. The aim of this review is to provide the clinician an update on BSIs caused by resistant bacteria in ICU patients.201526300651
581820.9974Temporal trends in prevalence of bacteria isolated from foals with sepsis: 1979-2010. REASONS FOR PERFORMING STUDY: Sepsis is an important cause of death in foals. Knowledge of which pathogens are likely to be involved is important for selection of antimicrobial drugs for initial treatment. OBJECTIVES: To identify temporal trends in prevalence of bacteria isolated from foals with sepsis between 1979 and 2010. STUDY DESIGN: Retrospective review of medical records. METHODS: All foals ≤30 days of age presented to the Veterinary Medical Teaching Hospital (VMTH) at the University of California, Davis between 1979 and 2010, with a diagnosis of sepsis confirmed by culture of bacteria from blood or internal organs (antemortem or at necropsy), were included in the study. Conventional microbiological methods were used to identify isolated organisms. The Cochran-Armitage trend test was used for statistical analysis. RESULTS: The percentage of Gram-positive isolates increased significantly over the years. The percentage Enterobacteriacea, and Klebsiella spp. in particular, decreased over time. Enterococcus spp. isolates were cultured more often in recent years. CONCLUSIONS: Whereas Gram-negative bacteria, particularly Enterobacteriaceae, remain the most common isolates from neonatal foals with sepsis, the prevalence of Gram-positive bacteria is increasing. This trend underlines the importance of including antimicrobial drugs active against both Gram-positive and Gram-negative bacteria in treatment protocols while awaiting the results of bacteriological culture and susceptibility tests. The increased prevalence of Enterococcus spp. is of concern because antimicrobial susceptibility patterns for enterococci are unpredictable and enterococci can also act as donors of antimicrobial resistance genes to other bacteria.201423808819
220830.9974Evaluation of the relatedness between the biofilm-associated genes and antimicrobial resistance among Acinetobacter baumannii isolates in the southwest Iran. BACKGROUND AND OBJECTIVES: Increasing antimicrobial resistance among Acinetobacter baumannii (A. baumannii) strains poses a significant challenge, particularly in intensive care units (ICUs) where these bacteria are common causes of hospital infections. Biofilm production is recognized as a key mechanism contributing to this resistance. This study aims to explore the relationship between biofilm production, the presence of biofilm-associated genes, and antibiotic resistance patterns in A. baumannii isolates obtained from ICU patients. MATERIALS AND METHODS: We collected 100 A. baumannii isolates from ICU patients at Nemazee Hospital in Shiraz, Iran. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, and biofilm production potential was assessed through the tissue culture plate (TCP) method. Additionally, we investigated eleven biofilm-related genes (ompA, bap, csuE, epsA, bla (per-1) , bfmS, pgaB, csgA, fimH, ptk, and kpsMII) in all isolates using polymerase chain reaction (PCR). The REP-PCR technique was utilized to analyze the genetic relatedness of the isolates (Fig. 4). RESULTS: All isolates displayed multi-drug resistance, with the highest resistance rates observed against ceftazidime, cefotaxime, and trimethoprim/sulfamethoxazole (100%). Gentamicin and amikacin showed the lowest resistance rates at 70% and 84%, respectively. A total of 98% of the isolates were capable of biofilm production, with 32% categorized as strong biofilm producers. The most frequently detected biofilm-associated genes included csuE (99%), bfmS (98%), ompA (97%), and pgaB (89%). CONCLUSION: Biofilm production significantly contributes to the prevalence of multi-drug resistant A. baumannii strains. It is essential to implement effective antimicrobial stewardship and develop innovative anti-biofilm strategies to address this global health issue.202540330064
226140.9974Emergence of drug resistant bacteria at the Hajj: A systematic review. BACKGROUND: Hajj is the annual mass gathering of Muslims, and is a reservoir and potential source of bacterial transmission. The emergence of bacterial transmission, including multi-drug resistance (MDR) bacteria, during Hajj has not been systematically assessed. METHODS: Articles in Pubmed, Scopus, and Google scholar were identified using controlled words relating to antibiotic resistance (AR) at the Hajj from January 2002 to January 2017. Eligible studies were identified by two researchers. AR patterns of bacteria were obtained for each study. RESULTS: We included 31 publications involving pilgrims, Hajj workers or local patients attending hospitals in Mecca, Mina, and the Medina area. Most of these publications provided antibiotic susceptibility results. Ten of them used the PCR approach to identify AR genes. MRSA carriage was reported in pilgrims and food handlers at a rate of 20%. Low rates of vancomycin-resistant gram-positive bacteria were reported in pilgrims and patients. The prevalence of third-generation cephalosporin-resistant bacteria was common in the Hajj region. Across all studies, carbapenem-resistant bacteria were detected in fewer than 10% of E.coli isolates tested but up to 100% in K. pneumoniae and A. baumannii. Colistin-resistant Salmonella enterica, including mcr-1 colistin-resistant E.coli and K.pneumoniae were only detected in the pilgrim cohorts. CONCLUSION: This study provides an overview of the prevalence of MDR bacteria at the Hajj. Pilgrims are at high risk of AR bacterial transmission and may carry and transfer these bacteria when returning to their home countries. Thus, pilgrims should be instructed by health care practitioners about hygiene practices aiming at reducing traveler's diarrhea and limited use of antibiotics during travel in order to reduce the risk of MDR bacterial transmission.201728652197
226550.9974Genotypic Patterns of Multidrug-Resistant Acinetobacter baumannii: A Systematic Review. Acinetobacter baumannii (A. baumannii) is one of the most common bacteria in nosocomial infections. Inappropriate usage of antibiotics has led to expanding emergence resistance to A. baumannii as a multidrug-resistant (MDR) strain. Empirical antibiotic therapy is necessary to evaluate the resistant gene pattern of MDR A. baumannii. For this purpose, the present study evaluated the resistance genes pattern of MDR A. baumannii collected from hospitalized patients using a genotypic diagnostic technique. To find evidence related to the study objectives, databases were searched such as Google Scholar, Web of Science, Science Direct, PubMed, and Scopus from 2000 to 2022, with specified keywords in the title and text of the articles. Articles were included based on inclusion and exclusion criteria. The mentioned database displayed 284 articles. After screening, 65 eligible articles were included. The results showed that various b-lactamases genes, aminoglycoside-modifying enzymes (AMEs) genes, and pump-expressing genes are resistance gene patterns in MDR A. baumannii isolates. MDR A. baumannii has significantly become resistant to b-lactams, carbapenems, and aminoglycosides.202337200758
93860.9973Molecular Identification of OXA Carbapenemase-Encoding Genes in Acinetobacter baumannii Isolated from Patients in Critical Care in Egypt. Background: The emergence of carbapenem-resistant Acinetobacter baumannii (CRAB) in hospitals, particularly within critical care units, has garnered substantial global concern. CRAB commonly arises from the degradation by various ß-lactamases. Objective: We aimed to assess OXA-type carbapenemases in clinical isolates of A. baumannii obtained from an Egyptian tertiary care facility. Patients and Methods: This study examined 25 distinct A. baumannii strains collected from various clinical samples of patients in intensive care unit. Bacterial identification was conducted utilizing both traditional methods and the Vitek2 system. Antibiotic resistance profiles were assessed according to the European Committee on Antimicrobial Susceptibility Testing standards using the Vitek2 Compact automated system. Additionally, multiplex real-time polymerase chain reaction was used to identify the presence of blaOXA23, blaOXA24, blaOXA51, and blaOXA58 carbapenemase genes. Colistin susceptibility was assessed utilizing the broth microdilution method. Results: Carbapenem resistance was identified in 100% of the studied isolates. The blaOXA51 gene was detected in all A. baumannii strains. The gene blaOXA23 was identified in 22 strains (88%), whereas blaOXA24 and blaOXA58 were present in 15 strains (60%). All isolates, except one, co-harbored two or more OXA encoding genes. Colistin resistance was detected in 4 of 25 strains (16%). Conclusion: Our findings demonstrate the widespread distribution of CRAB isolates that co-harbor multiple carbapenemase-encoding genes. Molecular epidemiological studies and the surveillance of antibiotic resistance profiles may aid in identifying and tracing the origins of resistant bacteria, thereby limiting their spread.202539602244
231970.9973Bacterial resistance to antibiotics and associated factors in two hospital centers in Lebanon from January 2017 to June 2017. GENERAL PRESENTATION: Resistance of bacteria to antibiotics is a universal problem. With the increase in the rate of resistance, knowledge of susceptibility patterns is essential to guide antimicrobial therapy. In Lebanon, many studies investigated this subject. OBJECTIVES: Determine the rate of multidrug and extremely drug-resistant bacteria as well as the patterns of resistance and the factors associated with this resistance. MATERIALS AND METHODS: A cross-sectional study was performed using the cultures from the labs of two university hospitals in Lebanon. Bacteria were divided into four groups: sensitive, multidrug-, extremely- and pan-drug resistant. Patient information was obtained from the medical records. Using the SPSS software for Windows, version 20 (IBM, Armonk, USA), the frequency of the bacteria, their susceptibilities and the association of resistance with seven potential factors (age, gender, diabetes mellitus, cancer, chronic kidney disease, dialysis, previous hospitalization) were studied. RESULTS: The frequency of resistance was 53.7% (39.9% multidrug-resistant and 13.8% extremely drug-resistant). Escherichia coli strains were mostly susceptible to carbapenems and tigecycline; and nitrofurantoine and fosfomycin in urine. Pseudomonas and Acinetobacter species were mostly sensitive to colistin. Klebsiella species were mostly susceptible to amikacin and carbapenems. MRSA rates were 34.8%. Association was seen between the resistant bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization. CONCLUSION: Resistance of bacteria to drugs in Lebanon is increasing. Significant association is seen between these bacteria and older age, chronic kidney disease, dialysis, and previous hospitalization.202034368694
93780.9973Data on the prevalence and distribution of carbapenemase genes in Enterobacterales species isolated from clinical specimens in the center of Irans. Carbapenem resistance in Enterobacterales is a major and persistent public health problem worldwide. In current research, we present data of 96 Enterobacterales species collected from a clinical hospital in Isfahan, Iran. The bacterial identification was performed by standard biochemical tests and API 20E methods. Agar disk diffusion assay was performed to determine the phenotypic antibiotic resistance of strains. Polymerase chain reaction (PCR) was carried out to detect carbapenemase genes. In this manuscript, multiple antimicrobial resistance phenotype such as multiple carbapenem resistance determinants were detected. The data would provide important information on distribution of carbapenemase genes of those pathogenic bacteria in Iran.202134568528
578990.9973Antibiotic Resistance and Biofilm Formation in Enterococcus spp. Isolated from Urinary Tract Infections. Background: A urinary tract infection (UTI) resulting from multidrug-resistant (MDR) enterococci is a common disease with few therapeutic options. About 15% of urinary tract infections are caused by biofilm-producing Enterococcus spp. Therefore, the objective of this study was to identify the MDR enterococci associated with UTIs and assess their potential to produce biofilms. Methods: Thirty Enterococcus isolates were obtained from urine samples collected from UTI patients at King Abdulaziz Specialist Hospital in Taif, Saudi Arabia. The antimicrobial resistance profiles of the isolates were evaluated using disk diffusion techniques against 15 antimicrobial agents. Two techniques, Congo red agar (CRA) and a microtiter plate (MTP), were used to assess the potential of the isolates to produce biofilms. The enterococcal isolates were screened for biofilm-related genes, esp; ebpA; and ebpB, using the PCR method. Results: The molecular identification of the collected bacteria revealed the presence of 73.3% Enterococcus faecalis and 26.6% Enterococcus faecium. The antibiotic susceptibility test revealed that all the tested Enterococcus spp. were resistant to all antimicrobials except for linezolid and tigecycline. Additionally, by employing the CRA and MTP techniques, 76.6% and 100% of the Enterococcus isolates were able to generate biofilms, respectively. In terms of the association between the antibiotic resistance and biofilm’s formation, it was observed that isolates capable of creating strong biofilms were extremely resistant to most of the antibiotics tested. The obtained data showed that all the tested isolates had biofilm-encoding genes. Conclusions: Our research revealed that the biofilm-producing enterococci bacteria that causes urinary tract infections were resistant to antibiotics. Therefore, it is necessary to seek other pharmacological treatments if antibiotic medicine fails.202236678381
2207100.9973Precision medicine in practice: unravelling the prevalence and antibiograms of urine cultures for informed decision making in federal tertiary care- a guide to empirical antibiotics therapy. BACKGROUND AND OBJECTIVES: Urinary tract infections (UTIs), one of the most prevalent bacterial infections, are facing limited treatment options due to escalating concern of antibiotic resistance. Urine cultures significantly help in identification of etiological agents responsible for these infections. Assessment of antibiotic susceptibility patterns of these bacteria aids in tackling the emerging concern of antibiotic resistance and establishment of empirical therapy guidelines. Our aim was to determine various agents responsible for urinary tract infections and to assess their antibiotic susceptibility patterns. MATERIALS AND METHODS: This cross-sectional study was performed over a period of six months from January 2023 to July 2023 in Department of Microbiology of Pakistan Institute of Medical Sciences (PIMS). RESULTS: Out of 2957 positive samples, Gram negative bacteria were the most prevalent in 1939 (65.6%) samples followed by Gram positive bacteria in 418 (14.1%) and Candida spp. in 269 (9.1%) samples. In gram negative bacteria, Escherichia coli (E. coli) was the most prevalent bacteria isolated from 1070 samples (55.2%) followed by Klebsiella pneumoniae in 397 samples (20.5%). In Gram positive bacteria, Enterococcus spp. was the most common bacteria in 213 samples (51%) followed by Staphylococcus aureus in 120 samples (28.7%). Amikacin was the most sensitive drug (91%) for Gram negative bacteria. Gram positive bacteria were most susceptible to linezolid (97%-100%). CONCLUSION: The generation of a hospital tailored antibiogram is essential for the effective management of infections and countering antibiotic resistance. By adopting antimicrobial stewardship strategies by deeper understanding of sensitivity patterns, we can effectively combat antibiotic resistance.202439267930
5688110.9973Isolation and molecular identification of bacteria from sheep with eye infections. BACKGROUND: Ocular disease in sheep is a severe concern for the health and welfare of livestock animals, as well as losses of productivity and value to the livestock industry. AIM: This study aimed to isolate and characterize bacteria in sheep with eye disease on the molecular level. METHODS: One hundred fifty sheep with eye infections were treated, and tissue samples were taken for microbiological studies. We isolated bacteria from traditional cultures and discovered molecules by polymerase chain reaction (PCR) of single bacterial genes. RESULTS: A total of 150 ocular samples were collected from sheep, with bacterial growth observed in 120 samples, resulting in an isolation rate of 80%. Staphylococcus aureus was the most bacteria isolated in this study, which PCR also confirmed. We found antibiotic-resistant bacteria such as S. aureus, Escherichia coli, and Pasteurella multocida. These results reveal that preventing sheep ocular infections requires the effective use of antibiotics. CONCLUSION: This study suggests the prevalence of bacterial infection in sheep eyes and argues the utility of molecular methods in veterinary diagnosis. Record levels of antibiotic resistance must be maintained in animal husbandry and the use of antibiotic stewardship programs.202439927373
2205120.9972Five-year period evaluation of isolated agents and their resistance profiles in intensive care unit patients with malignancy. INTRODUCTION: Patients treated in the intensive care unit (ICU) are usually patients who deteriorated health condition and could have longer hospital stay compared to other patients. Hospital infections are more common in ICU patients. The aim of this study was to evaluate the bacteria and treatment resistance profiles isolated from clinical specimens sent for hospital infections in ICU patients between January 1, 2014 and December 31, 2018. METHODOLOGY: Bacteria isolated from various clinical samples sent for hospital infections in hospitalized patients in the Anesthesia and Reanimation Intensive Care Unit were retrospectively analyzed. RESULTS: Culture positivity was detected in 547 of the sent clinical samples. Eighty Gram-positive bacteria, 389 Gram-negative bacteria and 78 fungi infection were identified in a total of 547 positive cultures. In Gram-positive bacteria, 4 MRSA, 6 VRE and 30 MRCoNS were identified as resistant strains. In Gram-negative bacteria, Acinetobacter spp. was the most culture positive strain with the number of 223. Carbapenem resistance was found in 258 of the Gram-negative bacteria and ESBL positivity was found in 44 of the Gram-negative bacteria strains. CONCLUSIONS: Gram-negative bacteria were the most frequently isolated strain in samples. Recently, colistin resistance has been increasing in Acinetobacter spp. and the increase in carbapenemase enzyme in Escherichia coli, Pseudomonas and Klebsiella species has increased resistance to carbapenems. Knowing the microorganisms that grow in ICUs and their antibiotic resistance patterns may help to prevent contamination of resistant microorganisms by both appropriate empirical antibiotic treatment and more isolation as well as general hygiene standard precautions.202032903237
2512130.9972Understanding and addressing β-lactam resistance mechanisms in gram-negative bacteria in Lebanon: A scoping review. BACKGROUND: A growing threat to public health is the worldwide problem of antimicrobial resistance (AMR), in which gram-negative organisms are playing a significant role. Antibiotic abuse and misuse, together with inadequate monitoring and control protocols, have contributed to the emergence of resistant strains. This global scenario prepares us to look more closely at the situation in Lebanon. The aim of this review is to investigate in detail the resistance mechanisms and related genes that are displayed by gram-negative organisms in Lebanon. METHODS: A comprehensive analysis was carried out to pinpoint and gather information regarding gram-negative bacteria displaying resistance to antibiotics. To contribute to a complete understanding of the current state of antibiotic resistance in gram-negative strains, it was intended to collect and evaluate data on these organisms' resistance patterns in a comprehensive manner. RESULTS: Several studies have emphasized the prevalence of carbapenem-resistant Enterobacteriaceae (CRE) in Lebanon, specifically noting Escherichia coli and Klebsiella pneumoniae as the most frequent culprits, with OXA-48 and NDM-1 being the primary carbapenemases discovered. Furthermore, the TEM β-lactamase families are the primary source of extended-spectrum β-lactamases (ESBLs) in Shigella and Salmonella. Additionally, resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa have been linked to nosocomial infections in the country. CONCLUSION: There is a considerable frequency of antibiotic overuse and misuse in Lebanon, based to the limited data available on antibiotic consumption. In conclusion, antibiotic stewardship initiatives and additional research beyond the confines of single-center studies in Lebanon are needed.202539981361
2234140.9972Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BACKGROUND: Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. METHODS: Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. RESULTS: We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. CONCLUSIONS: qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy.201627585633
2206150.9972Retrospective analysis of pediatric sepsis and the burden of antimicrobial resistance in Duhok, Kurdistan Region of Iraq. Introduction: Sepsis is a life-threatening complication in pediatric patients. This study primarily aimed to investigate sepsis-causing bacteria and their antimicrobial resistance profile and check the change in the antimicrobial resistance trend for some selected bacteria. In addition, we evaluated the incidence of sepsis, the related mortality rate, and the effectiveness and outcome of the treatment regimes in sepsis pediatric patients. Methods: A retrospective analysis was conducted on 4-year data (2018-2021) collected from three intensive care units at the Hevi Pediatric Teaching Hospital. Sepsis screening involved clinical detection and confirmation by blood culture. Results: A total of 520 out of 1,098 (47.35%) blood samples showed positive microbial growth. A decrease in sepsis rate was observed during the COVID-19 pandemic. Coagulase-negative Staphylococci (CoNS) and Klebsiella pneumonia were the most commonly isolated bacteria. A notable variation in the antimicrobial resistance trend was observed among sepsis-causing bacteria. The empirical sepsis treatment recommended by the WHO was ineffective, as certain bacteria exhibited 100% resistance to every antibiotic tested. The mortality rate significantly increased from 1.3% in 2018 to 16.5% in 2021. Discussion: The antimicrobial resistance profile of sepsis causing bacteria is of concerns, indicating a potentially serious situation. Thus, to avoid treatment failure, the monitoring of antimicrobial resistance in pediatric patients is essential.202438469402
2537160.9972Global prevalence and molecular epidemiology of mcr-mediated colistin resistance in Escherichia coli clinical isolates: a systematic review. OBJECTIVES: The continuing rise in infections caused by multidrug-resistant (MDR) bacteria is one of the most serious public-health issues in society today. Colistin is a last-resort antimicrobial drug used to treat infections caused by MDR Gram-negative bacteria, therefore resistance to this antibiotic is extremely hazardous. The current study aimed to evaluate the global prevalence nd distribution of colistin resistance genes among human clinical isolates of Escherichia coli by systematic review. METHODS: PubMed, Embase and Web of Science databases were systematically searched. For further evaluation, all original English language articles that reported colistin resistance in E. coli clinical isolates published between 2000 and 2020 were examined. RESULTS: Of 4857 initial articles, after various stages of review and evaluation 190 related articles were selected for the systematic review. More than 79% of the publications selected in this research were published from 2014-2020. In Asia, Europe, America, Africa and Oceania, the prevalence of mobile colistin resistance (mcr)-harbouring colistin-resistant E. coli was 66.72%, 25.49%, 5.19%, 2.27% and 0.32 %, respectively. CONCLUSION: The recent widespread dissemination of E. coli strains harbouring mcr genes conferring colistin resistance, especially in Asia and Europe, is concerning and requires more attention.202234788692
2585170.9972A scoping review of the prevalence of antimicrobial-resistant pathogens and signatures in ready-to-eat street foods in Africa: implications for public health. BACKGROUND AND OBJECTIVE: Despite its critical role in individual and societal health, food hygiene remains underexplored. Antibiotic-resistant pathogenic bacteria in ready-to-eat (RTE) food threaten public health. This scoping review collected data on the epidemiological prevalence of RTE food-contaminated pathogens resistant to antimicrobial drugs and resistance genes in Africa. METHOD: Using electronic databases, such as PubMed, Scopus, and Web of Science (WoS), handpicked from references, pre-reviewed published articles were retrieved and analyzed according to the PRISMA-ScR guidelines. RESULTS: The findings indicate 40 previewed published articles qualified for meta-synthesis in the scoping review with a population/case ratio of 11,653/5,338 (45.80%). The most frequently reported RTE foods were meat or beef/beef-soup, chicken or poultry products, salads, vegetable salads, and sandwiches, which harboured pathogens such as E. coli, Salmonella, and Staphylococcus. Antibiotic susceptibility tests revealed the use of 48 antibiotics to manage infections, following CLSI (Clinical and Laboratory Standards Institute) protocols. Moreover, 10 authors reported 54 resistance genes associated with pathogenic resistant bacteria. In addition, only 15 studies received funding or financial support. CONCLUSION: These findings from several researchers indicate that RTE street foods in African and resource-limited nations harbour enteric pathogens and are a significant concern to the public health system and reservoir of the spread of antibiotic resistance. This underscores the necessity of implementing effective control strategies to address challenges and limit the spread of resistant bacteria in RTE foods. The antimicrobial resistance surveillance system in the region is a significant concern. Notably, Africa needs to strengthen the national and international regulatory bodies and a health surveillance system on antimicrobial resistance, particularly among developing nations.202540270817
2516180.9972Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: resistance genes, therapeutics, and prevention - a comprehensive review. Intensive care units (ICUs) are specialized environments dedicated to the management of critically ill patients, who are particularly susceptible to drug-resistant bacteria. Among these, carbapenem-resistant Gram-negative bacteria (CR-GNB) pose a significant threat endangering the lives of ICU patients. Carbapenemase production is a key resistance mechanism in CR-GNB, with the transfer of resistance genes contributing to the extensive emergence of antimicrobial resistance (AMR). CR-GNB infections are widespread in ICUs, highlighting an urgent need for prevention and control measures to reduce mortality rates associated with CR-GNB transmission or infection. This review provides an overview of key aspects surrounding CR-GNB within ICUs. We examine the mechanisms of bacterial drug resistance, the resistance genes that frequently occur with CR-GNB infections in ICU, and the therapeutic options against carbapenemase genotypes. Additionally, we highlight crucial preventive measures to impede the transmission and spread of CR-GNB within ICUs, along with reviewing the advances made in the field of clinical predictive modeling research, which hold excellent potential for practical application.202438601497
2245190.9972Biofilm Formation Status in ESBL-Producing Bacteria Recovered from Clinical Specimens of Patients: A Systematic Review and Meta-Analysis. BACKGROUND: Recently, the emergence and spread of extended-spectrum beta-lactamase (ESBL) bacteria have become a global health concern. In addition, the ability to form biofilm due to less impermeability to antibiotics and the horizontal transformation (conjugation) of genes involved in antibiotic resistance have exacerbated the concerns. With a comprehensive meta-analysis, this study evaluated the potential relationship between ESBL and biofilm formation. METHODS: A literature search was performed using global databases, such as PubMed and Scopus, up to November 2021. We retrieved all relevant documents and selected eligible articles based on inclusion criteria. Finally, the potential association between the biofilm formation capacity and resistance of ESBL-producing bacteria was measured with an odds ratio and a 95% confidence interval. RESULTS: In the present study, 17 articles, including 2,069 Gram-negative isolates, were considered as eligible. The prevalence of biofilm formation in all clinical isolates of ESBL and non-ESBL pathogens was 72.4% (95% CI: 60.7-81.6) and 40.5% (95% CI: 30.2-51.8), respectively. Our results showed a positive relationship between the ability for biofilm formation and conferring antibiotic resistance in ESBL-producing bacteria (OR: 3.35; 95% CI: 1.67-6.74; p-value: 0.001). CONCLUSION: In general, we showed the rate of biofilm formation to be significantly higher in ESBLproducing strains. Given the current results, the updated therapeutic guidelines should consider the role of biofilm production for optimal therapy, treatment course, and clinical outcomes rather than the recommendation of antimicrobial agents by focusing on the results of the antibiotic susceptibility test.202336125823